Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Neuroimage ; 250: 118969, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35124225

RESUMO

Invasive brain-computer interfaces (BCI) have made great progress in the reconstruction of fine hand movement parameters for paralyzed patients, where superficial measurement modalities including electrocorticography (ECoG) and micro-array recordings are mostly used. However, these recording techniques typically focus on the signals from the sensorimotor cortex, leaving subcortical regions and other cortical regions related to the movements largely unexplored. As an intracranial recording technique for the presurgical assessments of brain surgery, stereo-encephalography (SEEG) inserts depth electrodes containing multiple contacts into the brain and thus provides the unique opportunity for investigating movement-related neural representation throughout the brain. Although SEEG samples neural signals with high spatial-temporal resolutions, its potential of being used to build BCIs has just been realized recently, and the decoding of SEEG activity related to hand movements has not been comprehensively investigated yet. Here, we systematically evaluated the factors influencing the performance of movement decoding using SEEG signals recorded from 32 human subjects performing a visually-cued hand movement task. Our results suggest that multiple regions in both lateral and depth directions present significant neural selectivity to the task, whereas the sensorimotor area, including both precentral and postcentral cortex, carries the richest discriminative neural information for the decoding. The posterior parietal and prefrontal cortex contribute gradually less, but still rich sources for extracting movement parameters. The insula, temporal and occipital cortex also contains useful task-related information for decoding. Under the cortex layer, white matter presents decodable neural patterns but yields a lower accuracy (42.0 ± 0.8%) than the cortex on average (44.2 ± 0.8%, p<0.01). Notably, collectively using neural signals from multiple task-related areas can significantly enhance the movement decoding performance by 6.9% (p<0.01) on average compared to using a single region. Among the different spectral components of SEEG activity, the high gamma and delta bands offer the most informative features for hand movements reconstruction. Additionally, the phase-amplitude coupling strength between these two frequency ranges correlates positively with the performance of movement decoding. In the temporal domain, maximum decoding accuracy is first reached around 2 s after the onset of movement commands. In sum, this study provides valuable insights for the future motor BCIs design employing both SEEG recordings and other recording modalities.


Assuntos
Mapeamento Encefálico/métodos , Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Mãos/fisiologia , Movimento/fisiologia , Adulto , Sinais (Psicologia) , Epilepsia Resistente a Medicamentos/fisiopatologia , Feminino , Humanos , Masculino , Técnicas Estereotáxicas
2.
J Neurophysiol ; 127(5): 1348-1362, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171745

RESUMO

Nonhuman primate (NHP) movement kinematics have been decoded from spikes and local field potentials (LFPs) recorded during motor tasks. However, the potential of LFPs to provide network-like characterizations of neural dynamics during planning and execution of sequential movements requires further exploration. Is the aggregate nature of LFPs suitable to construct informative brain state descriptors of movement preparation and execution? To investigate this, we developed a framework to process LFPs based on machine-learning classifiers and analyzed LFP from a primate, implanted with several microelectrode arrays covering the premotor cortex in both hemispheres and the primary motor cortex on one side. The monkey performed a reach-to-grasp task, consisting of five consecutive states, starting from rest until a rewarding target (food) was attained. We use this five-state task to characterize neural activity within eight frequency bands, using spectral amplitude and pairwise correlations across electrodes as features. Our results show that we could best distinguish all five movement-related states using the highest frequency band (200-500 Hz), yielding an 87% accuracy with spectral amplitude, and 60% with pairwise electrode correlation. Further analyses characterized each movement-related state, showing differential neuronal population activity at above-γ frequencies during the various stages of movement. Furthermore, the topological distribution for the high-frequency LFPs allowed for a highly significant set of pairwise correlations, strongly suggesting a concerted distribution of movement planning and execution function is distributed across premotor and primary motor cortices in a specific fashion, and is most significant in the low ripple (100-150 Hz), high ripple (150-200 Hz), and multiunit frequency bands. In summary, our results show that the concerted use of novel machine-learning techniques with coarse grained queue broad signals such as LFPs may be successfully used to track and decode fine movement aspects involving preparation, reach, grasp, and reward retrieval across several brain regions.NEW & NOTEWORTHY Local field potentials (LFPs), despite lower spatial resolution compared to single-neuron recordings, can be used with machine learning classifiers to decode sequential movements involving motor preparation, execution, and reward retrieval. Our results revealed heterogeneity of neural activity on small spatial scales, further evidencing the utility of micro-electrode array recordings for complex movement decoding. With further advancement, high-dimensional LFPs may become the gold standard for brain-computer interfaces such as neural prostheses in the near future.


Assuntos
Interfaces Cérebro-Computador , Córtex Motor , Animais , Aprendizado de Máquina , Microeletrodos , Córtex Motor/fisiologia , Movimento/fisiologia
3.
Mov Disord ; 36(4): 863-873, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33547859

RESUMO

BACKGROUND: High-frequency thalamic stimulation is an effective therapy for essential tremor, which mainly affects voluntary movements and/or sustained postures. However, continuous stimulation may deliver unnecessary current to the brain due to the intermittent nature of the tremor. OBJECTIVE: We proposed to close the loop of thalamic stimulation by detecting tremor-provoking movement states using local field potentials recorded from the same electrodes implanted for stimulation, so that the stimulation is only delivered when necessary. METHODS: Eight patients with essential tremor participated in this study. Patient-specific support vector machine classifiers were first trained using data recorded while the patient performed tremor-provoking movements. Then, the trained models were applied in real-time to detect these movements and triggered the delivery of stimulation. RESULTS: Using the proposed method, stimulation was switched on for 80.37 ± 7.06% of the time when tremor-evoking movements were present. In comparison, the stimulation was switched on for 12.71 ± 7.06% of the time when the patients were at rest and tremor-free. Compared with continuous stimulation, a similar amount of tremor suppression was achieved while only delivering 36.62 ± 13.49% of the energy used in continuous stimulation. CONCLUSIONS: The results suggest that responsive thalamic stimulation for essential tremor based on tremor-provoking movement detection can be achieved without any requirement for external sensors or additional electrocorticography strips. Further research is required to investigate whether the decoding model is stable across time and generalizable to the variety of activities patients may engage with in everyday life. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Tremor Essencial/terapia , Humanos , Movimento , Tálamo , Tremor/terapia
4.
Hum Brain Mapp ; 35(8): 3867-79, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24453113

RESUMO

Cortical activity has been shown to correlate with different parameters of movement. However, the dynamic properties of cortico-motor mappings still remain unexplored in humans. Here, we show that during the repetition of simple stereotyped wrist movements both stable and unstable correlates simultaneously emerge in human sensorimotor cortex. Using visual feedback of wrist movement target inferred online from MEG, we assessed the dynamics of the tuning properties of two neuronal signals: the MEG signal below 1.6 Hz and within the 4 to 6 Hz range. We found that both components are modulated by wrist movement allowing for closed-loop inference of movement targets. Interestingly, while tuning of 4 to 6 Hz signals remained stable over time leading to stable inference of movement target using a static classifier, the tuning of cortical signals below 1.6 Hz significantly changed resulting in steadily decreasing inference accuracy. Our findings demonstrate that non-invasive neuronal population signals in human sensorimotor cortex can reflect a stable correlate of voluntary movements. Hence, we provide first evidence for a stable control signal in non-invasive human brain-machine interface research. However, as not all neuronal signals initially tuned to movement were stable across days, a careful selection of features for real-life applications seems to be mandatory.


Assuntos
Atividade Motora/fisiologia , Córtex Sensório-Motor/fisiologia , Punho/fisiologia , Interfaces Cérebro-Computador , Eletroculografia , Retroalimentação Sensorial/fisiologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Estimulação Luminosa , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Percepção Visual/fisiologia , Adulto Jovem
5.
Comput Biol Med ; 182: 109132, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39332118

RESUMO

The classification of handwritten letters from invasive neural signals has lately been subject of research to restore communication abilities in people with limited movement capacities. This study explores the classification of ten letters (a,d,e,f,j,n,o,s,t,v) from non-invasive neural signals of 20 participants, offering new insights into the neural correlates of handwriting. Letters were classified with two methods: the direct classification from low-frequency and broadband electroencephalogram (EEG) and a two-step approach comprising the continuous decoding of hand kinematics and the application of those in subsequent classification. The two-step approach poses a novel application of continuous movement decoding for the classification of letters from EEG. When using low-frequency EEG, results show moderate accuracies of 23.1% for ten letters and 39.0% for a subset of five letters with highest discriminability of the trajectories. The two-step approach yielded significantly higher performances of 26.2% for ten letters and 46.7% for the subset of five letters. Hand kinematics could be reconstructed with a correlation of 0.10 to 0.57 (average chance level: 0.04) between the decoded and original kinematic. The study shows the general feasibility of extracting handwritten letters from non-invasively recorded neural signals and indicates that the proposed two-step approach can improve performances. As an exploratory investigation of the neural mechanisms of handwriting in EEG, we found significant influence of the written letter on the low-frequency components of neural signals. Differences between letters occurred mostly in central and occipital channels. Further, our results suggest movement speed as the most informative kinematic for the decoding of short hand movements.

6.
Med Biol Eng Comput ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400855

RESUMO

Human-machine interface (HMI) has been extensively developed and applied in rehabilitation. However, the performance of amputees on continuous movement decoding was significantly decreased compared with that of able-bodied individuals. To explore the impact of the absence of joint movements on the performance of HMI in rehabilitation, a generic musculoskeletal model (MM) was employed in this study to evaluate and compare the performance of subjects completing a series of on-line tasks with the wrist and metacarpophalangeal (MCP) joints unconstrained and constrained. The performance of the generic MM has been demonstrated in previous studies. The electromyography (EMG) signals of four muscles were employed as inputs of the generic MM to realize the continuous movement decoding of wrist and MCP joints. Ten able-bodied subjects were recruited to perform the on-line tasks. The completion time, the number of overshoots, and the path efficiency of the tasks were taken as the indexes to quantify the subjects' performance. The muscle activation associated with the movement was analyzed. Across all tasks and subjects, the average values of the three indexes with the joints unconstrained were 7.7 s, 0.59, and 0.38, respectively, while those with the joints constrained were 17.86 s, 1.47, and 0.22, respectively. The results demonstrated that the subjects performed better with the wrist and MCP joints unconstrained than with those joints constrained in the on-line tasks, suggesting that the absence of joint movements can be a reason of the decreased performance of continuous movement decoding with HMIs. Meanwhile, it is revealed that the different performance on motion behaviors is caused by the absence of joint movements.

7.
Int J Neural Syst ; 34(1): 2450006, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38063378

RESUMO

The stable decoding of movement parameters using neural activity is crucial for the success of brain-machine interfaces (BMIs). However, neural activity can be unstable over time, leading to changes in the parameters used for decoding movement, which can hinder accurate movement decoding. To tackle this issue, one approach is to transfer neural activity to a stable, low-dimensional manifold using dimensionality reduction techniques and align manifolds across sessions by maximizing correlations of the manifolds. However, the practical use of manifold stabilization techniques requires knowledge of the true subject intentions such as target direction or behavioral state. To overcome this limitation, an automatic unsupervised algorithm is proposed that determines movement target intention before manifold alignment in the presence of manifold rotation and scaling across sessions. This unsupervised algorithm is combined with a dimensionality reduction and alignment method to overcome decoder instabilities. The effectiveness of the BMI stabilizer method is represented by decoding the two-dimensional (2D) hand velocity of two rhesus macaque monkeys during a center-out-reaching movement task. The performance of the proposed method is evaluated using correlation coefficient and R-squared measures, demonstrating higher decoding performance compared to a state-of-the-art unsupervised BMI stabilizer. The results offer benefits for the automatic determination of movement intents in long-term BMI decoding. Overall, the proposed method offers a promising automatic solution for achieving stable and accurate movement decoding in BMI applications.


Assuntos
Interfaces Cérebro-Computador , Córtex Motor , Animais , Macaca mulatta , Movimento , Algoritmos , Mãos
8.
J Neurophysiol ; 109(12): 3067-81, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23536714

RESUMO

The performance of brain-machine interfaces (BMIs) that continuously control upper limb neuroprostheses may benefit from distinguishing periods of posture and movement so as to prevent inappropriate movement of the prosthesis. Few studies, however, have investigated how decoding behavioral states and detecting the transitions between posture and movement could be used autonomously to trigger a kinematic decoder. We recorded simultaneous neuronal ensemble and local field potential (LFP) activity from microelectrode arrays in primary motor cortex (M1) and dorsal (PMd) and ventral (PMv) premotor areas of two male rhesus monkeys performing a center-out reach-and-grasp task, while upper limb kinematics were tracked with a motion capture system with markers on the dorsal aspect of the forearm, hand, and fingers. A state decoder was trained to distinguish four behavioral states (baseline, reaction, movement, hold), while a kinematic decoder was trained to continuously decode hand end point position and 18 joint angles of the wrist and fingers. LFP amplitude most accurately predicted transition into the reaction (62%) and movement (73%) states, while spikes most accurately decoded arm, hand, and finger kinematics during movement. Using an LFP-based state decoder to trigger a spike-based kinematic decoder [r = 0.72, root mean squared error (RMSE) = 0.15] significantly improved decoding of reach-to-grasp movements from baseline to final hold, compared with either a spike-based state decoder combined with a spike-based kinematic decoder (r = 0.70, RMSE = 0.17) or a spike-based kinematic decoder alone (r = 0.67, RMSE = 0.17). Combining LFP-based state decoding with spike-based kinematic decoding may be a valuable step toward the realization of BMI control of a multifingered neuroprosthesis performing dexterous manipulation.


Assuntos
Ondas Encefálicas , Dedos/fisiologia , Córtex Motor/fisiologia , Movimento , Animais , Fenômenos Biomecânicos , Dedos/inervação , Força da Mão , Macaca mulatta , Masculino , Modelos Neurológicos , Postura , Desempenho Psicomotor , Tempo de Reação
9.
J Neural Eng ; 20(6)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37963397

RESUMO

Objective.To identify the electrocorticography (ECoG) frequency features that encode distinct finger movement states during repeated finger flexions.Approach.We used the publicly available Stanford ECoG dataset of cue-based, repeated single finger flexions. Using linear regression, we identified the spectral features that contributed most to the encoding of movement dynamics and discriminating movement events from rest, and combined them to predict finger movement trajectories. Furthermore, we also looked into the effect of the used frequency range and the spatial distribution of the identified features.Main results.Two frequency features generate superior performance, each one for a different movement aspect: high gamma band activity distinguishes movement events from rest, whereas the local motor potential (LMP) codes for movement dynamics. Combining these two features in a finger movement decoder outperformed comparable prior work where the entire spectrum was used as the average correlation coefficient with the true trajectories increased from 0.45 to 0.5, both applied to the Stanford dataset, and erroneous predictions during rest were demoted. In addition, for the first time, our results show the influence of the upper cut-off frequency used to extract LMP, yielding a higher performance when this range is adjusted to the finger movement rate.Significance.This study shows the benefit of a detailed feature analysis prior to designing the finger movement decoder.


Assuntos
Eletrocorticografia , Córtex Motor , Eletrocorticografia/métodos , Dedos , Movimento , Amplitude de Movimento Articular , Eletroencefalografia/métodos
10.
Exp Neurol ; 359: 114261, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36349662

RESUMO

The first commercially sensing enabled deep brain stimulation (DBS) devices for the treatment of movement disorders have recently become available. In the future, such devices could leverage machine learning based brain signal decoding strategies to individualize and adapt therapy in real-time. As multi-channel recordings become available, spatial information may provide an additional advantage for informing machine learning models. To investigate this concept, we compared decoding performances from single channels vs. spatial filtering techniques using intracerebral multitarget electrophysiology in Parkinson's disease patients undergoing DBS implantation. We investigated the feasibility of spatial filtering in invasive neurophysiology and the putative utility of combined cortical ECoG and subthalamic local field potential signals for decoding grip-force, a well-defined and continuous motor readout. We found that adding spatial information to the model can improve decoding (6% gain in decoding), but the spatial patterns and additional benefit was highly individual. Beyond decoding performance results, spatial filters and patterns can be used to obtain meaningful neurophysiological information about the brain networks involved in target behavior. Our results highlight the importance of individualized approaches for brain signal decoding, for which multielectrode recordings and spatial filtering can improve precision medicine approaches for clinical brain computer interfaces.


Assuntos
Interfaces Cérebro-Computador , Doença de Parkinson , Humanos , Movimento/fisiologia , Eletrocorticografia , Encéfalo/fisiologia , Doença de Parkinson/terapia
11.
Front Neurorobot ; 16: 845127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574232

RESUMO

Decoding human hand movement from electroencephalograms (EEG) signals is essential for developing an active human augmentation system. Although existing studies have contributed much to decoding single-hand movement direction from EEG signals, decoding primary hand movement direction under the opposite hand movement condition remains open. In this paper, we investigated the neural signatures of the primary hand movement direction from EEG signals under the opposite hand movement and developed a novel decoding method based on non-linear dynamics parameters of movement-related cortical potentials (MRCPs). Experimental results showed significant differences in MRCPs between hand movement directions under an opposite hand movement. Furthermore, the proposed method performed well with an average binary decoding accuracy of 89.48 ± 5.92% under the condition of the opposite hand movement. This study may lay a foundation for the future development of EEG-based human augmentation systems for upper limbs impaired patients and healthy people and open a new avenue to decode other hand movement parameters (e.g., velocity and position) from EEG signals.

12.
J Neural Eng ; 19(6)2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36317288

RESUMO

Objective. Pre-movement decoding plays an important role in detecting the onsets of actions using low-frequency electroencephalography (EEG) signals before the movement of an upper limb. In this work, a binary classification method is proposed between two different states.Approach. The proposed method, referred to as filter bank standard task-related component analysis (FBTRCA), is to incorporate filter bank selection into the standard task-related component analysis (STRCA) method. In FBTRCA, the EEG signals are first divided into multiple sub-bands which start at specific fixed frequencies and end frequencies that follow in an arithmetic sequence. The STRCA method is then applied to the EEG signals in these bands to extract CCPs. The minimum redundancy maximum relevance feature selection method is used to select essential features from these correlation patterns in all sub-bands. Finally, the selected features are classified using the binary support vector machine classifier. A convolutional neural network (CNN) is an alternative approach to select canonical correlation patterns.Main Results. Three methods were evaluated using EEG signals in the time window from 2 s before the movement onset to 1 s after the movement onset. In the binary classification between a movement state and the resting state, the FBTRCA achieved an average accuracy of 0.8968 ± 0.0847 while the accuracies of STRCA and CNN were 0.8228 ± 0.1149 and 0.8828 ± 0.0917, respectively. In the binary classification between two actions, the accuracies of STRCA, CNN, and FBTRCA were 0.6611 ± 0.1432, 0.6993 ± 0.1271, 0.7178 ± 0.1274, respectively. Feature selection using filter banks, as in FBTRCA, produces comparable results to STRCA.Significance. The proposed method provides a way to select filter banks in pre-movement decoding, and thus it improves the classification performance. The improved pre-movement decoding of single upper limb movements is expected to provide people with severe motor disabilities with a more natural, non-invasive control of their external devices.


Assuntos
Interfaces Cérebro-Computador , Humanos , Eletroencefalografia/métodos , Máquina de Vetores de Suporte , Movimento , Extremidade Superior , Algoritmos , Imaginação
13.
J Neural Eng ; 19(6)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36240727

RESUMO

Objective.We introduce extended Block-Term Tensor Regression (eBTTR), a novel regression method designed to account for the multilinear nature of human intracranial finger movement recordings.Approach.The proposed method relies on recursive Tucker decomposition combined with automatic component extraction.Main results.eBTTR outperforms state-of-the-art regression approaches, including multilinear and deep learning ones, in accurately predicting finger trajectories as well as unintentional finger coactivations.Significance.eBTTR rivals state-of-the-art approaches while being less computationally expensive which is an advantage when intracranial electrodes are implanted acutely, as part of the patient's presurgical workup, limiting time for decoder development and testing.


Assuntos
Interfaces Cérebro-Computador , Movimento , Humanos , Movimento/fisiologia , Dedos/fisiologia , Encéfalo/fisiologia , Eletrocorticografia/métodos
14.
Front Hum Neurosci ; 16: 830221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399364

RESUMO

Several studies showed evidence supporting the possibility of hand trajectory decoding from low-frequency electroencephalography (EEG). However, the decoding in the source space via source localization is scarcely investigated. In this study, we tried to tackle the problem of collinearity due to the higher number of signals in the source space by two folds: first, we selected signals in predefined regions of interest (ROIs); second, we applied dimensionality reduction techniques to each ROI. The dimensionality reduction techniques were computing the mean (Mean), principal component analysis (PCA), and locality preserving projections (LPP). We also investigated the effect of decoding between utilizing a template head model and a subject-specific head model during the source localization. The results indicated that applying source-space decoding with PCA yielded slightly higher correlations and signal-to-noise (SNR) ratios than the sensor-space approach. We also observed slightly higher correlations and SNRs when applying the subject-specific head model than the template head model. However, the statistical tests revealed no significant differences between the source-space and sensor-space approaches and no significant differences between subject-specific and template head models. The decoder with Mean and PCA utilizes information mainly from precuneus and cuneus to decode the velocity kinematics similarly in the subject-specific and template head models.

15.
J Neural Eng ; 18(4)2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34284361

RESUMO

Objective. White matter tissue takes up approximately 50% of the human brain volume and it is widely known as a messenger conducting information between areas of the central nervous system. However, the characteristics of white matter neural activity and whether white matter neural recordings can contribute to movement decoding are often ignored and still remain largely unknown. In this work, we make quantitative analyses to investigate these two important questions using invasive neural recordings.Approach. We recorded stereo-electroencephalography (SEEG) data from 32 human subjects during a visually-cued motor task, where SEEG recordings can tap into gray and white matter electrical activity simultaneously. Using the proximal tissue density method, we identified the location (i.e. gray or white matter) of each SEEG contact. Focusing on alpha oscillatory and high gamma activities, we compared the activation patterns between gray matter and white matter. Then, we evaluated the performance of such white matter activation in movement decoding.Main results. The results show that white matter also presents activation under the task, in a similar way with the gray matter but at a significantly lower amplitude. Additionally, this work also demonstrates that combing white matter neural activities together with that of gray matter significantly promotes the movement decoding accuracy than using gray matter signals only.Significance. Taking advantage of SEEG recordings from a large number of subjects, we reveal the response characteristics of white matter neural signals under the task and demonstrate its enhancing function in movement decoding. This study highlights the importance of taking white matter activities into consideration in further scientific research and translational applications.


Assuntos
Substância Branca , Córtex Cerebral , Eletroencefalografia , Substância Cinzenta/diagnóstico por imagem , Humanos , Movimento , Substância Branca/diagnóstico por imagem
16.
Front Neuroinform ; 13: 74, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849632

RESUMO

Electrocorticography (ECoG) holds promise to provide efficient neuroprosthetic solutions for people suffering from neurological disabilities. This recording technique combines adequate temporal and spatial resolution with the lower risks of medical complications compared to the other invasive methods. ECoG is routinely used in clinical practice for preoperative cortical mapping in epileptic patients. During the last two decades, research utilizing ECoG has considerably grown, including the paradigms where behaviorally relevant information is extracted from ECoG activity with decoding algorithms of different complexity. Several research groups have advanced toward the development of assistive devices driven by brain-computer interfaces (BCIs) that decode motor commands from multichannel ECoG recordings. Here we review the evolution of this field and its recent tendencies, and discuss the potential areas for future development.

17.
Front Neurosci ; 13: 901, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616237

RESUMO

Invasive brain-computer interfaces yield remarkable performance in a multitude of applications. For classification experiments, high-gamma bandpower features and linear discriminant analysis (LDA) are commonly used due to simplicity and robustness. However, LDA is inherently static and not suited to account for transient information that is typically present in high-gamma features. To resolve this issue, we here present an extension of LDA to the time-variant feature space. We call this method time-variant linear discriminant analysis (TVLDA). It intrinsically provides a feature reduction stage, which makes external approaches thereto obsolete, such as feature selection techniques or common spatial patterns (CSPs). As well, we propose a time-domain whitening stage which equalizes the pronounced 1/f-shape of the typical brain-wave spectrum. We evaluated our proposed architecture based on recordings from 15 epilepsy patients with temporarily implanted subdural grids, who participated in additional research experiments besides clinical treatment. The experiments featured two different motor tasks involving three high-level gestures and individual finger movement. We used log-transformed bandpower features from the high-gamma band (50-300 Hz, excluding power-line harmonics) for classification. On average, whitening improved the classification performance by about 11%. On whitened data, TVLDA outperformed LDA with feature selection by 11.8%, LDA with CSPs by 13.9%, and regularized LDA with vectorized features by 16.4%. At the same time, TVLDA only required one or two internal features to achieve this. TVLDA provides stable results even if very few trials are available. It is easy to implement, fully automatic and deterministic. Due to its low complexity, TVLDA is suited for real-time brain-computer interfaces. Training is done in less than a second. TVLDA performed particularly well in experiments with data from high-density electrode arrays. For example, the three high-level gestures were correctly identified at a rate of 99% over all subjects. Similarly, the decoding accuracy of individual fingers was 96% on average over all subjects. To our knowledge, these mean accuracies are the highest ever reported for three-class and five-class motor-control BCIs.

18.
Front Hum Neurosci ; 12: 381, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455636

RESUMO

Research about decoding neurophysiological signals mainly aims to elucidate the details of human motion control from the perspective of neural activity. We performed brain connectivity analysis with EEG to propose a brain functional network (BFN) and used a feature extraction algorithm for decoding the voluntary hand movement of a subject. By analyzing the characteristic parameters obtained from the BFN, we extracted the most important electrode nodes and frequencies for identifying the direction of movement of a hand. The results demonstrated that the most sensitive EEG components were for frequencies delta, theta, and gamma1 from electrodes F4, F8, C3, Cz, C4, CP4, T3, and T4. Finally, we proposed a model for decoding voluntary movement of the right hand by using a hierarchical linear model (HLM). Through a voluntary hand movement experiment in a spiral trajectory, the Poisson coefficient between the measurement trajectory and the decoding trajectory was used as a test standard to compare the HLM with the traditional multiple linear regression model. It was found that the decoding model based on the HLM obtained superior results. This paper contributes a feature extraction method based on brain connectivity analysis that can mine more comprehensive feature information related to a specific mental state of a subject. The decoding model based on the HLM possesses a strong structure for data manipulation that facilitates precise decoding.

19.
Neuron ; 95(6): 1406-1419.e5, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28910623

RESUMO

Egocentric neural coding has been observed in parietal cortex (PC), but its topographical and laminar organization is not well characterized. We used multi-site recording to look for evidence of local clustering and laminar consistency of linear and angular velocity encoding in multi-neuronal spiking activity (MUA) and in the high-frequency (300-900 Hz) component of the local field potential (HF-LFP), believed to reflect local spiking activity. Rats were trained to run many trials on a large circular platform, either to LED-cued goal locations or as a spatial sequence from memory. Tuning to specific self-motion states was observed and exhibited distinct cortical depth-invariant coding properties. These patterns of collective local and laminar activation during behavior were reactivated in compressed form during post-experience sleep and temporally coupled to cortical delta waves and hippocampal sharp-wave ripples. Thus, PC neuron motion encoding is consistent across cortical laminae, and this consistency is maintained during memory reactivation.


Assuntos
Hipocampo/fisiologia , Locomoção/fisiologia , Memória/fisiologia , Lobo Parietal/fisiologia , Animais , Masculino , Neurônios/fisiologia , Lobo Parietal/citologia , Ratos , Autoestimulação , Sono/fisiologia
20.
Front Neurosci ; 6: 164, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23162425

RESUMO

The performance of neural decoders can degrade over time due to non-stationarities in the relationship between neuronal activity and behavior. In this case, brain-machine interfaces (BMI) require adaptation of their decoders to maintain high performance across time. One way to achieve this is by use of periodical calibration phases, during which the BMI system (or an external human demonstrator) instructs the user to perform certain movements or behaviors. This approach has two disadvantages: (i) calibration phases interrupt the autonomous operation of the BMI and (ii) between two calibration phases the BMI performance might not be stable but continuously decrease. A better alternative would be that the BMI decoder is able to continuously adapt in an unsupervised manner during autonomous BMI operation, i.e., without knowing the movement intentions of the user. In the present article, we present an efficient method for such unsupervised training of BMI systems for continuous movement control. The proposed method utilizes a cost function derived from neuronal recordings, which guides a learning algorithm to evaluate the decoding parameters. We verify the performance of our adaptive method by simulating a BMI user with an optimal feedback control model and its interaction with our adaptive BMI decoder. The simulation results show that the cost function and the algorithm yield fast and precise trajectories toward targets at random orientations on a 2-dimensional computer screen. For initially unknown and non-stationary tuning parameters, our unsupervised method is still able to generate precise trajectories and to keep its performance stable in the long term. The algorithm can optionally work also with neuronal error-signals instead or in conjunction with the proposed unsupervised adaptation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA