Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Microbiol ; 22(10): e13236, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562333

RESUMO

Mucor circinelloides, a dimorphic opportunistic pathogen, expresses three heterotrimeric G-protein beta subunits (Gpb1, Gpb2 and Gpb3). The Gpb1-encoding gene is up-regulated during mycelial growth compared with that in the spore or yeast stage. gpb1 deletion mutation analysis revealed its relevance for an adequate development during the dimorphic transition and for hyphal growth under low oxygen concentrations. Infection assays in mice indicated a phenotype with considerably reduced virulence and tissue invasiveness in the deletion mutants (Δgpb1) and decreased host inflammatory response. This finding could be attributed to the reduced filamentous growth in animal tissues compared with that of the wild-type strain. Mutation in a regulatory subunit of cAMP-dependent protein kinase A (PKA) subunit (PkaR1) resulted in similar phenotypes to Δgpb1. The defects exhibited by the Δgpb1 strain were genetically suppressed by pkaR1 overexpression, indicating that the PKA pathway is controlled by Gpb1 in M. circinelloides. Moreover, during growth under low oxygen levels, cAMP levels were much higher in the Δgpb1 than in the wild-type strain, but similar to those in the ΔpkaR1 strain. These findings reveal that M. circinelloides possesses a signal transduction pathway through which the Gpb1 heterotrimeric G subunit and PkaR1 control mycelial growth in response to low oxygen levels.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Mucor/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Genes Fúngicos , Hifas/crescimento & desenvolvimento , Mucor/metabolismo , Mucor/patogenicidade , Mutação , Micélio/crescimento & desenvolvimento , Oxigênio/análise , Transdução de Sinais , Virulência/genética
2.
Infect Immun ; 88(2)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31685547

RESUMO

The fungus Mucor circinelloides undergoes yeast-mold dimorphism, a developmental process associated with its capability as a human opportunistic pathogen. Dimorphism is strongly influenced by carbon metabolism, and hence the type of metabolism likely affects fungus virulence. We investigated the role of ethanol metabolism in M. circinelloides virulence. A mutant in the adh1 gene (M5 strain) exhibited higher virulence than the wild-type (R7B) and the complemented (M5/pEUKA-adh1+) strains, which were nonvirulent when tested in a mouse infection model. Cell-free culture supernatant (SS) from the M5 mutant showed increased toxic effect on nematodes compared to that from R7B and M5/pEUKA-adh1+ strains. The concentration of acetaldehyde excreted by strain M5 in the SS was higher than that from R7B, which correlated with the acute toxic effect on nematodes. Remarkably, strain M5 showed higher resistance to H2O2, resistance to phagocytosis, and invasiveness in mouse tissues and induced an enhanced systemic inflammatory response compared with R7B. The mice infected with strain M5 under disulfiram treatment exhibited only half the life expectancy of those infected with M5 alone, suggesting that acetaldehyde produced by M. circinelloides contributes to the toxic effect in mice. These results demonstrate that the failure in fermentative metabolism, in the step of the production of ethanol in M. circinelloides, contributes to its virulence, inducing a more severe tissue burden and inflammatory response in mice as a consequence of acetaldehyde overproduction.


Assuntos
Fermentação/fisiologia , Mucor/metabolismo , Mucor/patogenicidade , Virulência/fisiologia , Álcool Desidrogenase/metabolismo , Animais , Linhagem Celular , Fermentação/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Peróxido de Hidrogênio/farmacologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mucor/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Células RAW 264.7 , Virulência/efeitos dos fármacos
3.
3 Biotech ; 11(7): 311, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34109096

RESUMO

Mucor circinelloides is a fungus that produces diverse spores throughout its life cycle. The sporangiospores, which are the most well-studied spores in this fungus, are asexual spores produced during aerial mycelial development. M. circinelloides has the potential to be used in diverse biotechnological applications. In this study, we propose rice (Oryza sativa) grains as an alternative substrate for inexpensive and large-scale sporangiospore production. The sporangiospores produced from rice and a yeast extract-peptone-glucose (YPG) medium exhibited similar protein and nucleic acid contents and phenotypes in terms of germination under different conditions and culture media, including similar virulence rates against the nematode Caenorhabditis elegans. Transgenic strains carrying self-replicative plasmids were sporulated on rice and showed plasmid stability similar to that of spores produced on the YPG medium. Approximately 20% of the spore population lost plasmids after the first passage on rice. These results reveal that rice is a suitable substrate for the mass production of sporangiospores in M. circinelloides. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02853-1.

4.
Fungal Biol ; 124(7): 619-628, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32540185

RESUMO

Mucor circinelloides is an opportunistic dimorphic pathogen, with the dimorphic process controlled in parts by fermentative and oxidative metabolisms, which lead to yeast or mycelial growth, respectively. Dimorphic transition is important for pathogenesis since the mycelium represents the virulent morphology. We previously reported that the deletion of arl1 or arl2 stimulate anaerobic germination in M. circinelloides, suggesting an augmented fermentative metabolism. In the present study, we demonstrate that the heterokaryon Δarl1(+)(-) and homokaryon Δarl2 strains contain low number of mitochondria, which possibly results in a dysfunctional oxidative metabolism, marked by a low oxygen consumption in glucose and poor growth in glycerol as the unique carbon source. This dysfunction is compensated for by an increase in the glycolysis and fermentation in aerobic conditions, demonstrating growth kinetics similar to that in the wild-type strain. Moreover, as a consequence a high fermentative activity, the Δarl1(+)(-) and Δarl2 strains possibly increased the yeast cell growth during low oxygen concentrations in presence of glucose. To the best of our knowledge, this is the first study to demonstrate the control of members of Arf family on the mitochondrial population in a Mucor species.


Assuntos
Fatores de Ribosilação do ADP , Homeostase , Proteínas de Membrana , Mitocôndrias , Mucor , Fatores de Ribosilação do ADP/metabolismo , Homeostase/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mucor/genética , Mucor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA