Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37688116

RESUMO

Effective mobility management is crucial for efficient operation of next-generation cellular systems in the millimeter wave (mmWave) band. Massive multiple-input-multiple-output (MIMO) systems are seen as necessary to overcome the significant path losses in this band, but the highly directional beam makes the channels more susceptible to radio link failures due to blockages. To meet stringent capacity and reliability requirements, multi-connectivity has attracted significant attention. This paper proposes a multiagent distributed Q learning-based mobility management scheme for multi-connectivity in mmWave cellular systems. A hierarchical structure is adopted to address the model complexity and speed up the learning process. The performance is assessed using a realistic measurement data set collected from Wireless Insite in an urban area and compared with independent Q learning and a heuristic scheme in terms of handover probability and spectral efficiency.

2.
Sensors (Basel) ; 22(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35062548

RESUMO

The fifth-generation (5G) network is presented as one of the main options for Industry 4.0 connectivity. To comply with critical messages, 5G offers the Ultra-Reliable and Low latency Communications (URLLC) service category with a millisecond end-to-end delay and reduced probability of failure. There are several approaches to achieve these requirements; however, these come at a cost in terms of redundancy, particularly the solutions based on multi-connectivity, such as Packet Duplication (PD). Specifically, this paper proposes a Machine Learning (ML) method to predict whether PD is required at a specific data transmission to successfully send a URLLC message. This paper is focused on reducing the resource usage with respect to pure static PD. The concept was evaluated on a 5G simulator, comparing between single connection, static PD and PD with the proposed prediction model. The evaluation results show that the prediction model reduced the number of packets sent with PD by 81% while maintaining the same level of latency as a static PD technique, which derives from a more efficient usage of the network resources.


Assuntos
Comunicação , Redes de Comunicação de Computadores , Indústrias , Aprendizado de Máquina , Probabilidade
3.
Sensors (Basel) ; 22(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36236690

RESUMO

To manage a growing number of users and an ever-increasing demand for bandwidth, future 5th Generation (5G) cellular networks will combine different radio access technologies (cellular, satellite, and WiFi, among others) and different types of equipment (pico-cells, femto-cells, small-cells, macro-cells, etc.). Multi-connectivity is an emerging paradigm aiming to leverage this heterogeneous architecture. To achieve this, multi-connectivity proposes to enable UE to simultaneously use component carriers from different and heterogeneous network nodes: base stations, WiFi access points, etc. This could offer many benefits in terms of quality of service, energy efficiency, fairness, mobility, and spectrum and interference management. Therefore, this survey aims to present an overview of multi-connectivity in 5G networks and beyond. To do so, a comprehensive review of existing standards and enabling technologies is proposed. Then, a taxonomy is defined to classify the different elements characterizing multi-connectivity in 5G and future networks. Thereafter, existing research works using multi-connectivity to improve the quality of service, energy efficiency, fairness, mobility management, and spectrum and interference management are analyzed and compared. In addition, lessons common to these different contexts are presented. Finally, open challenges for multi-connectivity in 5G networks and beyond are discussed.


Assuntos
Agricultura , Padrões de Referência
4.
Sensors (Basel) ; 22(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015940

RESUMO

The use of multi-connectivity has become a useful tool to manage the traffic in heterogeneous cellular network deployments, since it allows a device to be simultaneously connected to multiple cells. The proper exploitation of this technique requires to adequately configure the traffic sent through each cell depending on the experienced conditions. This motivates this work, which tackles the problem of how to optimally split the traffic among the cells when the multi-connectivity feature is used. To this end, the paper proposes the use of a deep reinforcement learning solution based on a Deep Q-Network (DQN) in order to determine the amount of traffic of a device that needs to be delivered through each cell, making the decision as a function of the current traffic and radio conditions. The obtained results show a near-optimal performance of the DQN-based solution with an average difference of only 3.9% in terms of reward with respect to the optimum strategy. Moreover, the solution clearly outperforms a reference scheme based on Signal to Interference Noise Ratio (SINR) with differences of up to 50% in terms of reward and up to 166% in terms of throughput for certain situations. Overall, the presented results show the promising performance of the DQN-based approach that establishes a basis for further research in the topic of multi-connectivity and for the application of this type of techniques in other problems of the radio access network.


Assuntos
Algoritmos , Redes Neurais de Computação , Razão Sinal-Ruído
5.
Sensors (Basel) ; 21(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884066

RESUMO

This paper focuses on edge-enabled cloud radio access network architecture to achieve ultra-reliable communication, a crucial enabler for supporting mission-critical machine-type communication networks. We propose coordinated multi-point transmission schemes taking advantage of diversity mechanisms in interference-limited downlink cellular networks. The network scenario comprises spatially distributed multiple remote radio heads (RRHs) that may cooperate through silencing, or by using more elaborated diversity strategies such as maximum ratio transmission or transmit antenna selection to serve user equipment in the ultra-reliable operation regime. We derive an exact closed-form expression for the outage probabilities and expected values of signal-to-interference ratio for silencing, transmit antenna selection and maximum ratio transmission schemes. We formulate rate control and energy efficiency under reliability constraints to test the performance and resource usage of the proposed schemes. Furthermore, we study the impact on average system sum throughput with throughput-reliability trade-off under cooperative communication. Extensive numerical analysis shows the feasibility of ultra-reliable communication by implementing diversity schemes with RRHs cooperation.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Probabilidade , Reprodutibilidade dos Testes
6.
J Affect Disord ; 329: 192-206, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841299

RESUMO

BACKGROUND: Previous studies suggested an association between functional alteration of the amygdala and typical major depressive disorder (MDD) symptoms. Examining whether and how the interaction between the amygdala and regions/functional networks is altered in patients with MDD is important for understanding its neural basis. METHODS: Resting-state functional magnetic resonance imaging data were recorded from 67 patients with MDD and 74 age- and sex-matched healthy controls (HCs). A framework for large-scale network analysis based on seed mappings of amygdala sub-regions, using a multi-connectivity-indicator strategy (cross-correlation, total interdependencies (TI), Granger causality (GC), and machine learning), was employed. Multiple indicators were compared between the two groups. The altered indicators were ranked in a supporting-vector machine-based procedure and associated with the Hamilton Rating Scale for Depression scores. RESULTS: The amygdala connectivity with the default mode network and ventral attention network regions was enhanced and that with the somatomotor network, dorsal frontoparietal network, and putamen regions in patients with MDD was reduced. The machine learning analysis highlighted altered indicators that were most conducive to the classification between the two groups. LIMITATIONS: Most patients with MDD received different pharmacological treatments. It is difficult to illustrate the medication state's effect on the alteration model because of its complex situation. CONCLUSION: The results indicate an unbalanced interaction model between the amygdala and functional networks and regions essential for various emotional and cognitive functions. The model can help explain potential aberrancy in the neural mechanisms that underlie the functional impairments observed across various domains in patients with MDD.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tonsila do Cerebelo/diagnóstico por imagem , Cognição , Emoções , Encéfalo , Mapeamento Encefálico/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA