Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(49): 30928-30933, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33234563

RESUMO

Herein, we report a 64Cu positron emission tomography (PET) imaging agent that shows appreciable in vivo brain uptake and exhibits high specific affinity for beta-amyloid (Aß) aggregates, leading to the successful PET imaging of amyloid plaques in the brains of 5xFAD mice versus those of wild-type mice. The employed approach uses a bifunctional chelator with two Aß-interacting fragments that dramatically improves the Aß-binding affinity and lipophilicity for favorable blood-brain barrier penetration, while the use of optimized-length spacers between the Cu-chelating group and the Aß-interacting fragments further improves the in vivo Aß-binding specificity and brain uptake of the corresponding 64Cu PET imaging agent.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/diagnóstico , Quelantes/química , Radioisótopos de Cobre/química , Tomografia por Emissão de Pósitrons , Animais , Autorradiografia , Quelantes/síntese química , Camundongos Transgênicos
2.
Chembiochem ; 23(11): e202200077, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322924

RESUMO

The synthesis of five new multivalent derivatives of a trihydroxypiperidine iminosugar was accomplished through copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction of an azido ending piperidine and several propargylated scaffolds. The resulting multivalent architectures were assayed as inhibitors of lysosomal GCase, the defective enzyme in Gaucher disease. The multivalent compounds resulted in much more potent inhibitors than a parent monovalent reference compound, thus showing a good multivalent effect. Biological investigation of these compounds as pharmacological chaperones revealed that the trivalent derivative (12) gives a 2-fold recovery of the GCase activity on Gaucher patient fibroblasts bearing the L444P/L444P mutations responsible for neuropathies. Additionally, a thermal denaturation experiment showed its ability to impart stability to the recombinant enzyme used in therapy.


Assuntos
Doença de Gaucher , Glucosilceramidase , Inibidores Enzimáticos/farmacologia , Fibroblastos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Glucosilceramidase/genética , Glucosilceramidase/uso terapêutico , Humanos , Mutação
3.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080188

RESUMO

Recently, the strategy of multivalency has been widely employed to design glycosidase inhibitors, as glycomimetic clusters often induce marked enzyme inhibition relative to monovalent analogs. Polyhydroxylated pyrrolidines, one of the most studied classes of iminosugars, are an attractive moiety due to their potent and specific inhibition of glycosidases and glycosyltransferases, which are associated with many crucial biological processes. The development of multivalent pyrrolidine derivatives as glycosidase inhibitors has resulted in several promising compounds that stand out. Herein, we comprehensively summarized the different synthetic approaches to the preparation of multivalent pyrrolidine clusters, from total synthesis of divalent iminosugars to complex architectures bearing twelve pyrrolidine motifs. Enzyme inhibitory properties and multivalent effects of these synthesized iminosugars were further discussed, especially for some less studied therapeutically relevant enzymes. We envision that this comprehensive review will help extend the applications of multivalent pyrrolidine iminosugars in future studies.


Assuntos
Imino Açúcares , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases , Imino Açúcares/farmacologia , Pirrolidinas/farmacologia
4.
Small ; 16(20): e2000949, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32323494

RESUMO

Minimal residual disease (MRD) offers a highly independent prognostic factor for leukemia patients. However, challenges confronting conventional MRD assays are high invasiveness, as well as limited detection sensitivity and clinical applicability. Inspired by the self-adaptive skeleton and multiple suckers or tendrils of climbing plants, a biomimetic Multivalent Aptamer Nanoclimber (MANC)-functionalized microfluidic chip (MANC-Chip) is reported for minimally invasive, highly sensitive and clinically applicable MRD detection in the peripheral blood of T-cell acute lymphoblastic leukemia patients. The MANCs are synthesized by a simple co-polymerization reaction. Due to their flexible structure and cooperative multivalent effect, MANCs dramatically enhance the binding affinity of aptamers targeting leukemia cells. A deterministic lateral displacement-patterned microfluidic chip is designed to further increase the collision probability between MANCs and leukemia cells. Benefiting from the synergistic effect of multivalent binding and enhanced collision, a high capture efficiency of 92.2% for leukemia cells is achieved. Moreover, the captured leukemia cells can be released with high efficiency of 88.9% and high viability of 93.8% via nuclease treatment prior to downstream analysis. Overall, the excellent features of MANC-Chip make it very useful for precise detection of MRD and better understanding of leukemia.


Assuntos
Leucemia , Microfluídica , Biomimética , Humanos , Leucemia/diagnóstico , Neoplasia Residual , Oligonucleotídeos , Prognóstico
5.
Angew Chem Int Ed Engl ; 58(46): 16676-16681, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31502339

RESUMO

Metal-organic framework nanoparticles (MOF NPs) have emerged as an important class of materials that display significantly enhanced performance in many applications compared to bulk MOF materials; their synthesis, however, commonly involves a tedious sequence that controls particle size and surface properties in separate steps. Now, a simple strategy to access functional MOF NPs in one pot is reported that uses a polyMOF ligand possessing a polymer block for surface functionalization and a coordination block with tunable multivalency for size control. This strategy produces uniform polyMOF-5 NPs with sizes down to 20 nm, displaying exceptional structural and colloidal stability upon exposure to ambient conditions. A detailed time-dependent study revealed that the polyMOF NPs were formed following an aggregation-confined crystallization mechanism. Generality was demonstrated through the synthesis of well-defined polyUiO-66 NPs.

6.
Eur J Med Chem ; 260: 115723, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595545

RESUMO

N-acetylneuraminic acid (Neu5Ac) is a glycan receptor of viruses spread in many eukaryotic cells. The present work aimed to design, synthesis and biological evaluation of a panel of Neu5Ac derivatives based on a cyclodextrin (CD) scaffold for targeting influenza and coronavirus membrane proteins. The multivalent Neu5Ac glycoclusters efficiently inhibited chicken erythrocyte agglutination induced by intact influenza virus in a Neu5Ac density-dependent fashion. Compared with inhibition by Neu5Ac, the multivalent inhibitor with 21 Neu5Ac residues on the primary face of the ß-CD scaffold afforded 1788-fold higher binding affinity inhibition for influenza virus hemagglutinin with a dissociation constant (KD) of 3.87 × 10-7 M. It showed moderate binding affinity to influenza virus neuraminidase, but with only about one-thirtieth the potency of that with the HA protein. It also exhibited strong binding affinity to the spike protein of three human coronaviruses (severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and severe acute respiratory syndrome coronavirus 2), with KD values in the low micromolar range, which is about 10-time weaker than that of HA. Therefore, these multivalent sialylated CD derivatives have possible therapeutic application as broad-spectrum antiviral entry inhibitors for many viruses by targeting the Neu5Ac of host cells.


Assuntos
COVID-19 , Ciclodextrinas , Inibidores da Fusão de HIV , Influenza Humana , Humanos , Animais , Ácido N-Acetilneuramínico , Antivirais/farmacologia , Galinhas
7.
Biomaterials ; 293: 121987, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36584445

RESUMO

Various cancer cells overexpress L-type amino acid transporter 1 (LAT1) to take up a large number of neutral amino acids such as phenylalanine and methionine, and LAT1 transporter should be a promising target for cancer diagnosis and therapy. However, only a few studies reported drug delivery systems targeting LAT1 probably due to limited knowledge about the interaction between LAT1 and its substrate. Here, we developed polymers having methionine (Met)- or cysteine (Cys)-like structures on their side chains to examine their affinity with LAT1. While both the Met- and Cys-modified polymers exhibited efficient cellular uptake selectively in cancer cells, the Met-modified polymers exhibited higher cellular uptake efficiency in an LAT1-selective manner than the Cys-modified polymers. In the in vivo study, the intraperitoneally injected Met-modified polymers showed appreciable tumor-selective accumulation in the peritoneal dissemination model, and importantly, Met-modified polymers conjugated with photosensitizers exhibited significant therapeutic effects upon photoirradiation with reduced photochemical damage to normal organs. Our results may provide important knowledge about the polymer-LAT1 interaction, and the Met-modified polymers should offer a new concept for designing LAT1-targeting drug delivery systems.


Assuntos
Aminoácidos , Neoplasias , Humanos , Neoplasias/metabolismo , Metionina/metabolismo , Racemetionina , Sistemas de Transporte de Aminoácidos , Polímeros/metabolismo , Enxofre/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo
8.
Adv Mater ; 35(17): e2210879, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36786375

RESUMO

Efficient therapeutic strategies that concurrently target both Aß aggregation and oxidative stress in the Alzheimer's disease (AD) microenvironment emerge as a cutting-edge tool to combat the intricate pathogenesis of AD. Here, a multivalent nanobody conjugate with rigid, reactive oxygen species (ROS) scavenging scaffold is developed to achieve simultaneous Aß amyloidogenesis mitigation, ROS elimination, and Aß plaque clearance. Grafting Aß segment (33-GLMVGGVVIA-42) into the third complementary-determining region of a parent nanobody generates an engineered nanobody NB that can recognize Aß and inhibit its aggregation through homotypic interactions. NB is further genetically modified with a fragment of human interleukin-1ß (163-VQGEESNDK-171), so that the obtained fusion nanobody NBIL can also facilitate the Aß clearance by microglia. Linking NBIL covalently onto a rigid, ROS scavenging scaffold poly(deca-4,6-diynedioic acid) (PDDA) creates the multivalent nanobody conjugate PNBIL, which not only boosts the binding affinity between NBIL and Aß aggregates for nearly 100 times but also possesses a long-term capability of oxidative stress alleviation, inflammation reduction, and neuron protection. PNBIL has significantly attenuated symptoms on two AD mouse models through amyloidogenesis inhibition and AD microenvironment modulation, validating that the multivalent nanobody conjugate design based on combinatory nanobody and molecular engineering is a promising approach of multi-target therapeutic strategies.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peptídeos beta-Amiloides/metabolismo , Estresse Oxidativo
9.
Colloids Surf B Biointerfaces ; 208: 112071, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34461486

RESUMO

Macrophages have high plasticity and heterogeneity, and can suppress or mediate inflammation, depending on their cytokine secretion and phenotype. Regulating macrophage polarization into its M2 phenotype has a remarkable effect on inflammatory inhibition, inducing the regeneration of injured tissues. Here, we synthesized two heptamannosylated ß-cyclodextrin derivatives (CD-Man7 and C3-CD-Man7) and demonstrated that their multivalent mannose ligands could induce M2 macrophage polarization to accelerate wound healing. Unlike hydrophilic CD-Man7, amphiphilic C3-CD-Man7 can self-assemble to form nanoparticles (CD-Man-NPs) in aqueous solution. Further, in vitro results confirmed that multivalent mannose ligands of either CD-Man7 or CD-Man-NPs stimulated RAW264.7 macrophages to differentiate into the M2 phenotype, which promoted fibroblast migration via a paracrine mechanism. In vivo results confirmed that both CD-Man7 and CD-Man-NPs reduced the inflammatory response in wound tissue and accelerated wound healing. The present study demonstrates multivalent effects of CD-Man7 and CD-Man-NPs on M2 macrophage polarization, indicating the therapeutic potential of these ß-cyclodextrin glycoconjugates in the treatment of inflammatory diseases and wound healing.


Assuntos
Cicatrização , beta-Ciclodextrinas , Citocinas , Humanos , Ativação de Macrófagos , Macrófagos
10.
ACS Nano ; 15(8): 13319-13328, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34293858

RESUMO

The development of inhibitors that can effectively mitigate the amyloidogenesis of human islet amyloid polypeptide (hIAPP), which is linked to type II diabetes, remains a great challenge. Oligotyrosines are intriguing candidates in that they can block the hIAPP aggregation through multiplex phenol-hIAPP interactions. However, oligotyrosines containing too many tyrosine units (larger than three) may fail to inhibit amyloidogenesis due to their increased hydrophobicity and strong self-aggregation propensity. In this work, we developed a strategy to hierarchically vitalize oligotyrosines in mitigating hIAPP amyloidogenesis. Tetratyrosine YYYY (4Y) was grafted into the third complementary-determining region (CDR3) of a parent nanobody to construct a sequence-programmed nanobody N4Y, in which the conformation of the grafted 4Y fragment was constrained for a significantly enhanced binding affinity with hIAPP. We next conjugated N4Y to a polymer to approach a secondary vitalization of 4Y through a multivalent effect. The in vitro and in vivo experiments validated that the resulting PDN4Y could completely inhibit the hIAPP amyloidogenesis at low stoichiometric concentrations and effectively suppress the generation of toxic reactive oxygen species and alleviate amyloidogenesis-mediated damage to INS-1 cells and zebrafish (Danio rerio) embryos. The hierarchical vitalization of 4Y via a synergistic conformation restraint and multivalent effect represents a strategic prototype of boosting the efficacy of peptide-based amyloidogenesis inhibitors, especially those with a high hydrophobicity and strong aggregation tendency, which holds great promise for future translational studies.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Animais , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Ligantes , Diabetes Mellitus Tipo 2/metabolismo , Peixe-Zebra/metabolismo , Conformação Proteica , Amiloide/química
11.
J Colloid Interface Sci ; 583: 267-278, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002698

RESUMO

Owing to the emerging resistance to current anti-influenza therapies, strategies for blocking virus-cell interaction with agents that mimic interactions with host cell receptors are garnering interest. In this context, a multivalent presentation of sialyl groups on various types of scaffold materials such as dendrimers, liposomes, nanoparticles, and natural/synthetic polymers has been investigated for the inhibition of influenza A virus infection. However, the development of versatile antiviral agents based on monodisperse scaffolds capable of precise molecular design remains challenging. Whether an anisotropically extended filamentous nanostructure can serve as an effective scaffold for maximum inhibition of viral cell attachment has not been investigated. In this study, the preparation of a series of sialyllactose-conjugated filamentous bacteriophages (SLPhages), with controlled loading levels, ligand valencies, and two types of sialyllactose (α2,3' and α2,6'), is demonstrated. With optimal ligand loading and valency, SLPhages showed inhibitory activity (in vitro) against influenza A viruses at concentrations of tens of picomolar. This remarkable inhibition is due to the strong interaction between the SLPhage and the virus; this interaction is adequately potent to compensate for the cost of the bending and wrapping of the SLPhage around the influenza virus. Our study may open new avenues for the development of filamentous anti-viral agents, in which virus-wrapping or aggregation is the primary feature responsible for the blocking of cell entry.


Assuntos
Vírus da Influenza A , Influenza Humana , Nanopartículas , Antivirais/farmacologia , Humanos , Influenza Humana/tratamento farmacológico
12.
ACS Appl Bio Mater ; 3(5): 2940-2947, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35025340

RESUMO

DNA nanomachines developed by DNA nanotechnology, an attractive branch of nanoengineering, have been widely applied in drug delivery, biomarker detection, etc. However, the existing DNA nanomachines are mainly conducted in solution systems and the application of surface-confined DNA nanomachines is limited due to the less variety and lower efficiency than those in a solution. The efficiency is greatly limited due to the fact that the surface-confined substances cannot freely perform the Brownian movement, which is not conducive to performance improvement. In this work, we proposed a DNA nanomachine with multitentacles based on the multivalent effect and confirmed that the processing efficiency of multitentacles is much higher than that of a single tentacle by kinetic experiments. Interestingly, a multitentacle DNA nanomachine enables stable capture and integral processing of nanoparticles through only one collision between the surface and the nanoparticle, avoiding the loss of efficiency caused by repeated collisions. In addition, a multitentacle DNA nanomachine-based immunoassay exhibits comparable sensitivity to traditional enzyme-linked immunosorbent assay (ELISA) methods in practical applications. Therefore, it is believed that the construction and application of a multitentacle DNA nanomachine expand the application of DNA nanomachines in interfacial biosensing systems, e.g., ELISA and electrochemical biosensors, and provide ideas for the design of other nanomachines working on the interface.

13.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167387

RESUMO

A set of 6- to 24-valent clusters was constructed with terminal deoxynojirimycin (DNJ) inhibitory heads through C6 or C9 linkers by way of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions between mono- or trivalent azido-armed iminosugars and calix[8]arene scaffolds differing in their valency and their rigidity but not in their size. The power of multivalency to upgrade the inhibition potency of the weak DNJ inhibitor (monovalent DNJ Ki being at 322 and 188 µM for C6 or C9 linkers, respectively) was evaluated on the model glycosidase Jack Bean α-mannosidase (JBα-man). Although for the clusters with the shorter C6 linker the rigidity of the scaffold was essential, these parameters had no influence for clusters with C9 chains: all of them showed rather good relative affinity enhancements per inhibitory epitopes between 70 and 160 highlighting the sound combination of the calix[8]arene core and the long alkyl arms. Preliminary docking studies were performed to get insights into the preferred binding modes.

14.
Nanomaterials (Basel) ; 9(8)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374940

RESUMO

Nanosized metal-organic frameworks (nanoMOFs) MIL-100(Fe) are highly porous and biodegradable materials that have emerged as promising drug nanocarriers. A challenging issue concerns their surface functionalization in order to evade the immune system and to provide molecular recognition ability, so that they can be used for specific targeting. A convenient method for their coating with tetraethylene glycol, polyethylene glycol, and mannose residues is reported herein. The method consists of the organic solvent-free self-assembly on the nanoMOFs of building blocks based on ß-cyclodextrin facially derivatized with the referred functional moieties, and multiple phosphate groups to anchor to the nanoparticles' surface. The coating of nanoMOFs with cyclodextrin phosphate without further functional groups led to a significant decrease of macrophage uptake, slightly improved by polyethylene glycol or mannose-containing cyclodextrin phosphate coating. More notably, nanoMOFs modified with tetraethylene glycol-containing cyclodextrin phosphate displayed the most efficient "stealth" effect. Mannose-coated nanoMOFs displayed a remarkably enhanced binding affinity towards a specific mannose receptor, such as Concanavalin A, due to the multivalent display of the monosaccharide, as well as reduced macrophage internalization. Coating with tetraethylente glycol of nanoMOFs after loading with doxorubicin is also described. Therefore, phosphorylated cyclodextrins offer a versatile platform to coat nanoMOFs in an organic solvent-free, one step manner, providing them with new biorecognition and/or "stealth" properties.

15.
Sci Technol Adv Mater ; 9(2): 024407, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877974

RESUMO

A glycopolymer carrying trehalose was found to suppress the formation of amyloid fibrils from the amyloid ß peptide (1-42) (Aß), as evaluated by thioflavin T assay and atomic force microscopy. Glycopolymers carrying sugar alcohols also changed the aggregation properties of Aß, and the inhibitory effect depended on the type of sugar and alkyl side chain. Neutralization activity was confirmed by in vitro assay using HeLa cells. The glycopolymer carrying trehalose strongly inhibited amyloid formation and neutralized cytotoxicity.

16.
Theranostics ; 8(15): 4062-4071, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30128036

RESUMO

Activatable aptamers have emerged as promising molecular tools for cancer theranostics, but reported monovalent activatable aptamer probes remain problematic due to their unsatisfactory affinity and poor stability. To address this problem, we designed a novel theranostic strategy of DNA nanotriangle-scaffolded multivalent split activatable aptamer probe (NTri-SAAP), which combines advantages of programmable self-assembly, multivalent effect and target-activatable architecture. Methods: NTri-SAAP was assembled by conjugating multiple split activatable aptamer probes (SAAPs) on a planar DNA nanotriangle scaffold (NTri). Leukemia CCRF-CEM cell line was used as the model to investigate its detection, imaging and therapeutic effect both in vitro and in vivo. Binding affinity and stability were evaluated using flow cytometry and nuclease resistance assays. Results: In the free state, NTri-SAAP was stable with quenched signals and loaded doxorubicin, while upon binding to target cells, it underwent a conformation change with fluorescence activation and drug release after internalization. Compared to monovalent SAAP, NTri-SAAP displayed greatly-improved target binding affinity, ultralow nonspecific background and robust stability in harsh conditions, thus affording contrast-enhanced tumor imaging within an extended time window of 8 h. Additionally, NTri-SAAP increased doxorubicin loading capacity by ~5 times, which further realized a high anti-tumor efficacy in vivo with 81.95% inhibition but no obvious body weight loss. Conclusion: These results strongly suggest that the biocompatible NTri-SAAP strategy would provide a promising platform for precise and high-quality theranostics.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Leucemia/diagnóstico , Leucemia/tratamento farmacológico , Técnicas de Diagnóstico Molecular/métodos , Terapia de Alvo Molecular/métodos , Nanopartículas/administração & dosagem , Nanomedicina Teranóstica/métodos , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Humanos , Camundongos Nus , Modelos Teóricos , Resultado do Tratamento
17.
ACS Appl Mater Interfaces ; 9(4): 3505-3513, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28071051

RESUMO

Surfaces having dynamic control of interactions at the biological system-material interface are of great scientific and technological interest. In this work, a supramolecular platform with switchable multivalent affinity was developed to efficiently capture bacteria and on-demand release captured bacteria in response to irradiation with light of different wavelengths. The system consists of a photoresponsive self-assembled monolayer containing azobenzene (Azo) groups as guest and ß-cyclodextrin (ß-CD)-mannose (CD-M) conjugates as host with each CD-M containing seven mannose units to display localized multivalent carbohydrates. Taking the advantage of multivalent effect of CD-M, this system exhibited high capacity and specificity for the capture of mannose-specific type 1-fimbriated bacteria. Moreover, ultraviolet (UV) light irradiation caused isomerization of the Azo groups from trans-form to cis-form, resulting in the dissociation of the host-guest Azo/CD-M inclusion complexes and localized release of the captured bacteria. The capture and release process could be repeated for multiple cycles, suggesting good reproducibility. This platform provides the basis for development of reusable biosensors and diagnostic devices for the detection and measurement of bacteria and exhibits great potential for use as a standard protocol for the on-demand switching of surface functionalities.


Assuntos
Bactérias , Reprodutibilidade dos Testes , Raios Ultravioleta
18.
Eur J Med Chem ; 134: 133-139, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28411453

RESUMO

Multivalent ligands that exhibit high binding affinity to influenza hemagglutinin (HA) trimer can block the interaction of HA with its sialic acid receptor. In this study, a series of multivalent pentacyclic triterpene-functionalized per-O-methylated cyclodextrin (CD) derivatives were designed and synthesized using 1, 3-dipolar cycloaddition click reaction. A cell-based assay showed that three compounds (25, 28 and 31) exhibited strong inhibitory activity against influenza A/WSN/33 (H1N1) virus. Compound 28 showed the most potent anti-influenza activity with IC50 of 4.7 µM. The time-of-addition assay indicated that compound 28 inhibited the entry of influenza virus into host cell. Further hemagglutination inhibition (HI) and surface plasmon resonance (SPR) assays indicated that compound 28 tightly bound to influenza HA protein with a dissociation constant (KD) of 4.0 µM. Our results demonstrated a strategy of using per-O-methylated ß-CD as a scaffold for designing multivalent compounds to disrupt influenza HA protein-host receptor protein interaction and thus block influenza virus entry into host cells.


Assuntos
Antivirais/química , Antivirais/farmacologia , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacologia , Animais , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/tratamento farmacológico , Células Madin Darby de Rim Canino , Internalização do Vírus/efeitos dos fármacos
19.
Biomaterials ; 78: 74-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26686050

RESUMO

Multivalent effect plays an important role in biological processes, particularly in the specific recognition of virus with its host cell during the first step of infection. Here we report the synthesis of multivalent pentacyclic triterpene grafted on cyclodextrin core and potency of against influenza entry activity. Nine star-shaped compounds containing six, seven and eight pentacyclic triterpene pharmacophore on cyclodextrin scaffold were prepared by way of copper-catalyzed azide-alkyl cycloaddition reaction under microwave activation. Some of the multimers exhibited much potent antiviral activity against H1N1 virus (A/WSN/33), even equivalent or superior to oseltamivir. The most active compound 31, a heptavalent oleanolic acid-ß-cyclodextrin conjugate, shows an up to 125-fold potency enhancement by its IC50 value over the corresponding monovalent conjugate and oleanolic acid, disclosing a clear multivalent effect. Further studies show that three compounds 31-33 exhibited broad spectrum inhibitory activity against other two human influenza A/JX/312 (H3N2) and A/HN/1222 (H3N2) viruses with the IC50 values at 2.47-14.90 µM. Most importantly, we found that compound 31, one of the best representative conjugate, binds tightly to the viral envelope hemagglutinin with a dissociation constant of KD = 2.08 µM, disrupting the interaction of hemagglutinin with the sialic acid receptor and thus the attachment of viruses to host cells. Our study might establish a strategy for the design of new pharmaceutical agents based on multivalency so as to block influenza virus entry into host cells.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Fusão de Membrana , Triterpenos/química , Animais , Cães , Células Madin Darby de Rim Canino
20.
Carbohydr Res ; 435: 68-75, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27710815

RESUMO

A new class of S-sialoside Human Serum Albumin (HSA) and Bovine Serum Albumin (BSA) conjugates were prepared to enhance the binding affinity to hemagglutinin (HA) and neuraminidase (NA). The valency of glycoconjugates was controlled by the reaction ratio of the S-sialoside monomer and protein. Hemagglutination inhibition assay showed that these synthetic glycoproteins have higher affinity to HA than the small clusters of sialosides with lower valency, due to multivalent effect and optimized three dimensional presentation of sialosides on the protein platform. The results of fluorescent NA inhibition assay showed that some of the conjugates have moderate NA inhibitory activity, in comparison to the monomer and low valent conjugates with weak or none inhibitory activity. These synthetic sialylated proteins were not cytotoxic with concentrations up to 100 µM, since the sialylation did not change the secondary structure of protein. This new kind of conjugates can be used as lead compounds for antiviral drug design and the construction of pseudo sialoside-protein conjugates library to investigate the carbohydrate-HA/NA recognition process and a platform for the influenza virus capturing.


Assuntos
Glicoconjugados/síntese química , Hemaglutininas/metabolismo , Neuraminidase/antagonistas & inibidores , Albumina Sérica/química , Ácidos Siálicos/síntese química , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicoconjugados/química , Glicoconjugados/farmacologia , Vírus da Influenza A/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Ácidos Siálicos/química , Ácidos Siálicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA