Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 19(1): 235, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34781956

RESUMO

BACKGROUND: Circulating miRNAs (c-miRNAs) are found in most, if not all, biological fluids and are becoming well-established non-invasive biomarkers of many human pathologies. However, their features in non-pathological contexts and whether their expression profiles reflect normal life history events have received little attention, especially in non-mammalian species. The aim of the present study was to investigate the potential of c-miRNAs to serve as biomarkers of reproductive and metabolic states in fish. RESULTS: The blood plasma was sampled throughout the reproductive cycle of female rainbow trout subjected to two different feeding regimes that triggered contrasting metabolic states. In addition, ovarian fluid was sampled at ovulation, and all samples were subjected to small RNA-seq analysis, leading to the establishment of a comprehensive miRNA repertoire (i.e., miRNAome) and enabling subsequent comparative analyses to a panel of RNA-seq libraries from a wide variety of tissues and organs. We showed that biological fluid miRNAomes are complex and encompass a high proportion of the overall rainbow trout miRNAome. While sharing a high proportion of common miRNAs, the blood plasma and ovarian fluid miRNAomes exhibited strong fluid-specific signatures. We further revealed that the blood plasma miRNAome significantly changed depending on metabolic and reproductive states. We subsequently identified three evolutionarily conserved muscle-specific miRNAs or myomiRs (miR-1-1/2-3p, miR-133a-1/2-3p, and miR-206-3p) that accumulated in the blood plasma in response to high feeding rates, making these myomiRs strong candidate biomarkers of active myogenesis. We also identified miR-202-5p as a candidate biomarker for reproductive success that could be used to predict ovulation and/or egg quality. CONCLUSIONS: Together, these promising results reveal the high potential of c-miRNAs, including evolutionarily conserved myomiRs, as physiologically relevant biomarker candidates and pave the way for the use of c-miRNAs for non-invasive phenotyping in various fish species.


Assuntos
MicroRNAs , Oncorhynchus mykiss , Animais , Biomarcadores , Feminino , Humanos , MicroRNAs/genética , Oncorhynchus mykiss/genética , Reprodução/genética
2.
Am J Physiol Cell Physiol ; 321(5): C859-C875, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34586896

RESUMO

Several chronic diseases lead to skeletal muscle loss and a decline in physical performance. MicroRNAs (miRNAs) are small, noncoding RNAs, which have exhibited their role in the development and diseased state of the skeletal muscle. miRNA regulates gene expression by binding to the 3' untranslated region of its target mRNA. Due to the robust stability in biological fluids, miRNAs are ideal candidate as biomarker. These miRNAs provide a novel avenue in strengthening our awareness and knowledge about the factors governing skeletal muscle functions such as development, growth, metabolism, differentiation, and cell proliferation. It also helps in understanding the therapeutic strategies in improving or conserving skeletal muscle health. This review outlines the evidence regarding the present knowledge on the role miRNA as a potential biomarker in skeletal muscle diseases and their exploration might be a unique and potential therapeutic strategy for various skeletal muscle disorders.


Assuntos
MicroRNAs/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/diagnóstico , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/terapia , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/terapia , Mapas de Interação de Proteínas , Transdução de Sinais
3.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575884

RESUMO

Sarcopenia, an age-related decline in skeletal muscle mass and function, dramatically affects the quality of life. Although there is a consensus that sarcopenia is a multifactorial syndrome, the etiology and underlying mechanisms are not yet delineated. Moreover, research about nutritional interventions to prevent the development of sarcopenia is mainly focused on the amount and quality of protein intake. The impact of several nutrition strategies that consider timing of food intake, anti-inflammatory nutrients, metabolic control, and the role of mitochondrial function on the progression of sarcopenia is not fully understood. This narrative review summarizes the metabolic background of this phenomenon and proposes an integral nutritional approach (including dietary supplements such as creatine monohydrate) to target potential molecular pathways that may affect reduce or ameliorate the adverse effects of sarcopenia. Lastly, miRNAs, in particular those produced by skeletal muscle (MyomiR), might represent a valid tool to evaluate sarcopenia progression as a potential rapid and early biomarker for diagnosis and characterization.


Assuntos
Sarcopenia/etiologia , Sarcopenia/terapia , Envelhecimento/fisiologia , Biomarcadores , Suplementos Nutricionais , Gerenciamento Clínico , Suscetibilidade a Doenças , Exercício Físico , Humanos , MicroRNAs/genética , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Estresse Oxidativo , Sarcopenia/diagnóstico
4.
J Cell Physiol ; 235(4): 3984-3993, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31643088

RESUMO

Hibernating brown bears, Ursus arctos, undergo extended periods of inactivity and yet these large hibernators are resilient to muscle disuse atrophy. Physiological characteristics associated with atrophy resistance in bear muscle have been examined (e.g., muscle mechanics, neural activity) but roles for molecular signaling/regulatory mechanisms in the resistance to muscle wasting in bears still require investigation. Using quantitative reverse transcription PCR (RT-qPCR), the present study characterized the responses of 36 microRNAs linked with development, metabolism, and regeneration of skeletal muscle, in the vastus lateralis of brown bears comparing winter hibernating and summer active animals. Relative levels of mRNA of selected genes (mef2a, pax7, id2, prkaa1, and mstn) implicated upstream and downstream of the microRNAs were examined. Results indicated that hibernation elicited a myogenic microRNA, or "myomiR", response via MEF2A-mediated signaling. Upregulation of MEF2A-controlled miR-1 and miR-206 and respective downregulation of pax7 and id2 mRNA are suggestive of responses that promote skeletal muscle maintenance. Increased levels of metabolic microRNAs, such as miR-27, miR-29, and miR-33, may facilitate metabolic suppression during hibernation via mechanisms that decrease glucose uptake and fatty acid oxidation. This study identified myomiR-mediated mechanisms for the promotion of muscle regeneration, suppression of ubiquitin ligases, and resistance to muscle atrophy during hibernation mediated by observed increases in miR-206, miR-221, miR-31, miR-23a, and miR-29b. This was further supported by the downregulation of myomiRs associated with a muscle injury and inflammation (miR-199a and miR-223) during hibernation. The present study provides evidence of myomiR-mediated signaling pathways that are activated during hibernation to maintain skeletal muscle functionality in brown bears.


Assuntos
Hibernação/genética , MicroRNAs/genética , Músculo Esquelético/metabolismo , Ursidae/genética , Animais , Hibernação/fisiologia , MicroRNAs/metabolismo , Músculo Esquelético/fisiologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , RNA Mensageiro/genética , Transdução de Sinais/genética , Ursidae/metabolismo , Ursidae/fisiologia
5.
Reumatologia ; 57(2): 72-77, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130744

RESUMO

INTRODUCTION: Rheumatoid arthritis (RA) is a persistent autoimmune disease in which the activity of proinflammatory cytokines and the imbalance, related to the inflammatory process, between elements of bone tissue remodeling such as osteoclasts and osteoblasts play a key role in development of erosions and bone destruction. MicroRNAs are important regulators of skeletal remodeling and are involved in RA pathogenesis. Myomir-206 (miR-206) is unrivalled among the myomirRs, where it is expressed in skeletal muscle and either absent or minimally expressed in other tissues. MATERIAL AND METHODS: This study was designed to analyze the miR-206 expression pattern in peripheral blood mononuclear cells (PBMCs) using quantitative real time polymerase chain reaction and its correlation with IL-16/IL-17 proinflammatory cytokines in two groups - 20 healthy individuals and 30 patients with RA. RESULTS: Elevated expression of miR-206 was observed in RA patients compared with healthy controls (p < 0.001). A significant increase in both IL-17 and IL-16 serum levels was found in the RA group (p < 0.01 and p < 0.05; respectively) compared to the control group. miR-206 expression level and IL-17 production were directly positively correlated (r = 0.491; p < 0.01). ROC analysis of miR-206 showed a cutoff value of 2.7 with 70% sensitivity, 85% specificity, and the area under the curve was 0.802 (p < 0.001) with the 95% confidence interval from 0. 676 to 0.927. CONCLUSIONS: Taken together, our results indicate the importance of miR-206 expression in patients with RA, as a potential new biomarker that affects bone loss/deformity and its collaborative role with proinflammatory cytokines such as IL-16 and IL-17 in RA bone metabolism. Particular interest should be given to further research to determine the contribution of expression of miR-206 in RA pathogenesis.

6.
Mol Cell Biochem ; 436(1-2): 179-187, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28660410

RESUMO

Thyroid hormone deficiency during fetal life (fetal hypothyroidism) causes intrauterine growth restriction (IUGR). Fetal hypothyroidism (FH) could attenuate normal cardiac functions in the later life of the offspring rats. The aim of this study was to evaluate the contribution of myomiR network and its target gene expression in cardiac dysfunction in fetal hypothyroid rats. Six Pregnant female rats were divided into two groups: Control consumed tap water, and the hypothyroid group received water containing 0.025% 6-propyl-2-thiouracil during gestation. Hearts from male offspring rats in adulthood (month 3) were tested with Langendorff apparatus for measuring hemodynamic parameters. Expressions of miR-208a, -208b, and -499 and its target genes including thyroid hormone receptor 1 (Thrap1), sex-determining region Y-box 6 (Sox6), and purine-rich element-binding protein ß (Purß) were measured by qPCR. FH rats had lower LVDP (%20), +dp/dt (%26), -dp/dt (%20), and heart rate (%21) than controls. FH rats at month 3 had a higher expression of ß-MHC (190%), Myh7b (298%), and lower expression of α-MHC (36%) genes in comparison with controls. FH rats at month 3 had a higher expression of miR-499 (520%) and miR-208b (439%) and had lower expression of miR-208a (74%), Thrap1 (47%), Sox6 (49%), and Purß (45%) compared with controls. Our results showed that thyroid hormone deficiency during fetal life changes the pattern of gene expression of myomiR network and its target genes in fetal heart, which, in turn, resulted in increased ß-MHC expression and associated cardiac dysfunction in adulthood.


Assuntos
Doenças Fetais/metabolismo , Regulação da Expressão Gênica , Cardiopatias/metabolismo , Hipotireoidismo/metabolismo , MicroRNAs/biossíntese , Miocárdio/metabolismo , Animais , Feminino , Doenças Fetais/patologia , Cardiopatias/patologia , Hipotireoidismo/patologia , Masculino , Proteínas Musculares/biossíntese , Miocárdio/patologia , Gravidez , Ratos , Ratos Wistar
7.
J Exp Biol ; 220(Pt 16): 2932-2938, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28576820

RESUMO

In fish, data on microRNAs (miRNAs) involved in myogenesis are scarce. In order to identify miRNAs involved in satellite cell differentiation, we used a methionine depletion/replenishment protocol to synchronize myogenic cell differentiation. Our results validated that methionine removal (72 h) from the medium strongly decreased myoD1 and myogenin expression, indicating differentiation arrest. In contrast, methionine replenishment rescued expression of myoD1 and myogenin, showing a resumption of differentiation. We performed a miRNA array analysis of myogenic cells under three conditions: presence of methionine for 72 h (control), absence of methionine for 72 h (Meth-) and absence of methionine for 48 h followed by 24 h of methionine replenishment (Meth-/+). A clustering analysis identified three clusters: cluster I corresponds to miRNA upregulated only in Meth-/+ conditions; cluster II corresponds to miRNA downregulated only in Meth-/+ conditions; cluster III corresponds to miRNAs with high expression in control, low expression in Meth- conditions and intermediate expression after methionine replenishment (Meth-/+). Cluster III was very interesting because it fitted with the data obtained for myoD1 and myogenin (supporting an involvement in differentiation) and contained seven miRNAs with muscle-related function (e.g. miR-133a) and one (miR-210) with unknown function. Based on our previously published miRNA repertoire ( Juanchich et al., 2016), we confirmed miR-133a was expressed only in white muscle and showed that miR-210 had strong expression in white muscle. We also showed that miR-210 expression was upregulated during differentiation of satellite cells, suggesting that miR-210 was potentially involved in the differentiation of satellite cells.


Assuntos
Diferenciação Celular , Metionina/deficiência , Desenvolvimento Muscular , Células Satélites de Músculo Esquelético/fisiologia , Truta/fisiologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Truta/genética
8.
Anim Genet ; 46(1): 73-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25530254

RESUMO

MicroRNAs (miRNAs) encoded by the myosin heavy chain (MHC) genes are muscle-specific miRNAs (myomiRs) and regulate the expression of MHC isoforms in skeletal muscle. These miRNAs have been implicated in muscle fibre types and their characteristics by affecting the heterogeneity of myosin. In pigs, miR-208b and miR-499 are embedded in introns of MYH7 and MYH7b respectively. Here, we identified a novel single nucleotide polymorphism (SNP) in intron 30 of MYH7 by which porcine miR-208b is encoded. Based on the association study using a total of 487 pigs including Berkshire (n = 164), Landrace (n = 121) and Yorkshire (n = 202), the miR-208b SNP (g.17104G>A) had significant effects on the proportions of types I and IIb fibre numbers (P < 0.010) among muscle fibre characteristics and on drip loss (P = 0.012) in meat quality traits. Moreover, the SNP affected the processing of primary miR-208b into precursor miR-208b with a marginal trend towards significance (P = 0.053), thereby leading to significant changes in the levels of mature miR-208b (P = 0.009). These SNP-dependent changes in mature miR-208b levels were negatively correlated with the expression levels of its target gene, SOX-6 (P = 0.038), and positively associated with the expression levels of its host gene, MYH7 (P = 0.046). Taken together, our data suggest that the porcine miR-208b SNP differentially represses the expression of SOX-6 by regulating miRNA biogenesis, thereby affecting the expression of MYH7 and the traits of muscle fibre characteristics and meat quality.


Assuntos
Carne , MicroRNAs/genética , Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fatores de Transcrição SOXD/metabolismo , Sus scrofa/genética , Animais , Feminino , Regulação da Expressão Gênica , Estudos de Associação Genética , Íntrons , Masculino , MicroRNAs/biossíntese , Cadeias Pesadas de Miosina/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição SOXD/genética
9.
Adv Biol (Weinh) ; 8(3): e2300573, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38149527

RESUMO

The present study aims to analyze the role of microRNA-1 in the regulation of skeletal muscle loss under hypobaric hypoxia (HH). Male Sprague Dawley rats (n = 10) weighing 230-250 g are divided into two groups, control and HH exposure for 7 days at 25 000 ft. After the hypoxia exposure, the animals are sacrificed and hindlimb skeletal muscles are excised for further analysis. Studies found the potential role of miR-1 (myomiR) as a biomarker under different atrophic conditions. Prolonged exposure to HH leads to enhanced expression of miR-1 in skeletal muscle as compared to unexposed controls. The Bioinformatics approach is used to identify the validated targets and the biological processes of miR-1. The target prediction tools identify PAX3 and HSP70 as major targets for miR-1. Exposure to HH significantly reduces PAX3 and HSP70 expression during 7 days of HH exposure, which further enhances the activity of FOXO3, MSTN, and ATROGIN known for the progression of skeletal muscle atrophy in relation to control rats. This study indicates the increased expressions of miR-1 and reduced expression of PAX3 and HSP70 lead to impaired myogenesis in skeletal muscle under HH. Further, enhanced expression of muscle degradation genes such as FOXO3, MSTN, and ATROGIN under HH exposure causes skeletal muscle protein loss.


Assuntos
MicroRNAs , Músculo Esquelético , Animais , Masculino , Ratos , Proteínas de Choque Térmico HSP70/genética , Hipóxia/genética , MicroRNAs/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Ratos Sprague-Dawley
10.
Sports Med Health Sci ; 5(1): 2-9, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36994170

RESUMO

Muscle fibers are multinucleated, and muscle fiber nuclei (myonuclei) are believed to be post-mitotic and are typically situated near the periphery of the myofiber. Due to the unique organization of muscle fibers and their nuclei, the cellular and molecular mechanisms regulating myofiber homeostasis in unstressed and stressed conditions (e.g., exercise) are unique. A key role myonuclei play in regulating muscle during exercise is gene transcription. Only recently have investigators had the capability to identify molecular changes at high resolution exclusively in myonuclei in response to perturbations in vivo. The purpose of this review is to describe how myonuclei modulate their transcriptome, epigenetic status, mobility and shape, and microRNA expression in response to exercise in vivo. Given the relative paucity of high-fidelity information on myonucleus-specific contributions to exercise adaptation, we identify specific gaps in knowledge and provide perspectives on future directions of research.

11.
Mol Ther Nucleic Acids ; 29: 955-968, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36159597

RESUMO

Therapies that restore dystrophin expression are presumed to correct Duchenne muscular dystrophy (DMD), with antisense-mediated exon skipping being the leading approach. Here we aimed to determine whether exon skipping using a peptide-phosphorodiamidate morpholino oligonucleotide (PPMO) conjugate results in dose-dependent restoration of uniform dystrophin localization, together with correction of putative DMD serum and muscle biomarkers. Dystrophin-deficient mdx mice were treated with a PPMO (Pip9b2-PMO) designed to induce Dmd exon 23 skipping at single, ascending intravenous doses (3, 6, or 12 mg/kg) and sacrificed 2 weeks later. Dose-dependent exon skipping and dystrophin protein restoration were observed, with dystrophin uniformly distributed at the sarcolemma of corrected myofibers at all doses. Serum microRNA biomarkers (i.e., miR-1a-3p, miR-133a-3p, miR-206-3p, miR-483-3p) and creatinine kinase levels were restored toward wild-type levels after treatment in a dose-dependent manner. All biomarkers were strongly anti-correlated with both exon skipping level and dystrophin expression. Dystrophin rescue was also strongly positively correlated with muscle stiffness (i.e., Young's modulus) as determined by atomic force microscopy (AFM) nanoindentation assay. These data demonstrate that PPMO-mediated exon skipping generates myofibers with uniform dystrophin expression and that both serum microRNA biomarkers and muscle AFM have potential utility as pharmacodynamic biomarkers of dystrophin restoration therapy in DMD.

12.
Biomedicines ; 10(9)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36140281

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy. The molecular mechanisms determining HCM phenotypes are incompletely understood. Myocardial biopsies were obtained from a group of patients with obstructive HCM (n = 23) selected for surgical myectomy and from 9 unused donor hearts (controls). A subset of tissue-abundant myectomy samples from HCM (n = 10) and controls (n = 6) was submitted to laser-capture microdissection to isolate cardiomyocytes. We investigated the relationship among clinical phenotype, cardiac myosin proteins (MyHC6, MyHC7, and MyHC7b) measured by optimized label-free mass spectrometry, the relative genes (MYH7, MYH7B and MYLC2), and the MyomiR network (myosin-encoded microRNA (miRs) and long-noncoding RNAs (Mhrt)) measured using RNA sequencing and RT-qPCR. MyHC6 was lower in HCM vs. controls, whilst MyHC7, MyHC7b, and MyLC2 were comparable. MYH7, MYH7B, and MYLC2 were higher in HCM whilst MYH6, miR-208a, miR-208b, miR-499 were comparable in HCM and controls. These results are compatible with defective transcription by active genes in HCM. Mhrt and two miR-499-target genes, SOX6 and PTBP3, were upregulated in HCM. The presence of HCM-associated mutations correlated with PTBP3 in myectomies and with SOX6 in cardiomyocytes. Additionally, iPSC-derived cardiomyocytes, transiently transfected with either miR-208a or miR-499, demonstrated a time-dependent relationship between MyomiRs and myosin genes. The transfection end-stage pattern was at least in part similar to findings in HCM myectomies. These data support uncoupling between myosin protein/genes and a modulatory role for the myosin/MyomiR network in the HCM myocardium, possibly contributing to phenotypic diversity and providing putative therapeutic targets.

13.
Animals (Basel) ; 11(7)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206912

RESUMO

Appropriate skeletal muscle development in poultry is positively related to increasing its meat production. Synthetic peptides with growth hormone-boosting properties can intensify the effects of endogenous growth hormones. However, their effects on the mRNA and miRNA expression profiles that control muscle development post-hatching in broiler chicks is unclear. Thus, we evaluated the possible effects of synthetic growth hormone-boosting peptide (GHBP) inclusion on a chicken's growth rate, skeletal muscle development-related genes and myomiRs, serum biochemical parameters, and myofiber characteristics. A total of 400 one-day-old broiler chicks were divided into four groups supplied with GHBP at the levels of 0, 100, 200 and 300 µg/kg for 7 days post-hatching. The results showed that the highest levels of serum IGF-1 and GH at d 20 and d 38 post-hatching were found in the 200 µg/kg GHBP group. Targeted gene expression analysis in skeletal muscle revealed that the GHBP effect was more prominent at d 20 post-hatching. The maximum muscle development in the 200 µg/kg GHBP group was fostered by the upregulation of IGF-1, mTOR, myoD, and myogenin and the downregulation of myostatin and the Pax-3 and -7 genes compared to the control group. In parallel, muscle-specific myomiR analysis described upregulation of miR-27b and miR-499 and down-regulation of miR-1a, miR-133a, miR-133b, and miR-206 in both the 200 and 300 µg/kg GHBP groups. This was reflected in the weight gain of birds, which was increased by 17.3 and 11.2% in the 200 and 300 µg/kg GHBP groups, respectively, when compared with the control group. Moreover, the maximum improvement in the feed conversion ratio was achieved in the 200 µg/kg GHBP group. The myogenic effects of GHBP were also confirmed via studying myofiber characteristics, wherein the largest myofiber sizes and areas were achieved in the 200 µg/kg GHBP group. Overall, our findings indicated that administration of 200 µg/kg GHBP for broiler chicks could accelerate their muscle development by positively regulating muscle-specific mRNA and myomiR expression and reinforcing myofiber growth.

14.
Physiol Rep ; 9(23): e15137, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34889054

RESUMO

Many of the molecular and cellular mechanisms discovered to regulate skeletal muscle hypertrophy were first identified using the rodent synergist ablation model. This model reveals the intrinsic capability and necessary pathways of skeletal muscle growth in response to mechanical overload (MOV). Reminiscent of the rapid cellular growth observed with cancer, we hypothesized that in response to MOV, skeletal muscle would undergo metabolic programming to sustain increased demands to support hypertrophy. To test this hypothesis, we analyzed the gene expression of specific metabolic pathways taken from transcriptomic microarray data of a MOV time course. We found an upregulation of genes involved in the oxidative branch of the pentose phosphate pathways (PPP) and mitochondrial branch of the folate cycle suggesting an increase in the production of NADPH. In addition, we sought to determine the potential role of skeletal muscle-enriched microRNA (myomiRs) and satellite cells in the regulation of the metabolic pathways that changed during MOV. We observed an inverse pattern in gene expression between muscle-enriched myomiR-1 and its known target gene glucose-6-phosphate dehydrogenase, G6pdx, suggesting myomiR regulation of PPP activation in response to MOV. Satellite cell fusion had a significant but modest impact on PPP gene expression. These transcriptomic findings suggest the robust muscle hypertrophy induced by MOV requires enhanced redox metabolism via PPP production of NADPH which is potentially regulated by a myomiR network.


Assuntos
Hipertrofia/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Via de Pentose Fosfato/fisiologia , Animais , Feminino , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Glicólise/fisiologia , Hipertrofia/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Musculares/genética
15.
Biochim Biophys Acta Gene Regul Mech ; 1863(1): 194473, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837470

RESUMO

When food scarcity is coupled with decreased temperatures, gray mouse lemurs (Microcebus murinus) depress their metabolic rates and retreat into bouts of either daily torpor or multi-day hibernation, without dramatically dropping body temperatures like other 'traditional hibernators'. Rapid and reversible mechanisms are required to coordinate the simultaneous suppression of energetically expensive processes and activation of pro-survival pathways critical for successful torpor-arousal cycling. MicroRNAs, a class of endogenous non-coding small RNAs, are effective post-transcriptional regulators that modulate all aspects of cellular function. The present study hypothesizes that miRNAs are intimately involved in facilitating the molecular reorganization events necessary for lemur skeletal muscle torpor. Small RNA-Sequencing was used to compare miRNA profiles from skeletal muscles of torpid and control primates. We characterized 234 conserved miRNAs, of which 20 were differentially expressed during torpor, relative to control. Examples included downregulation of key muscle-specific (myomiR) members, miR-1 and miR-133, suggesting a switch to muscle-specific energy-saving strategies. In silico target mapping and logistic regression-based gene set analysis indicated the inhibition of energy costly pathways such as oxidative phosphorylation and muscle proliferation. The suppression of these metabolic pathways was balanced with a lack of miRNA inhibition of various signaling pathways, such as MAPK, mTOR, focal adhesion, and ErbB. This study identifies unique miRNA signatures and 'biomarkers of torpor' that provide us with primate-specific insights on torpor at high body temperatures that can be exploited for human biomedical concerns.


Assuntos
Cheirogaleidae/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Torpor/genética , Animais , Cheirogaleidae/metabolismo , Análise por Conglomerados , Regulação para Baixo , Regulação da Expressão Gênica , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real
16.
Front Cell Dev Biol ; 8: 257, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373612

RESUMO

Cachexia is a complex metabolic syndrome that determines a severe body weight loss characterized by a marked reduction in muscle mass. About 80% of patients with advanced cancer develop cachexia due to both the tumor itself and cancer treatment (radiotherapy and/or chemotherapy), which is associated to a worse prognosis. Despite its clinical relevance, this syndrome is still under-diagnosed and it lacks effective treatments. Radio-chemotherapy treatment is essential in patients with advanced head and neck cancers (HNSCC). Although this treatment has improved patients' life expectancy, it has also dramatically increased their need for assistance and support. The management of adverse symptoms, including cachexia, is of great importance in order to avoid delays in therapy, reduction of dosages and hospitalizations. MicroRNAs (miRNAs) are small non-coding RNA molecules, which have emerged as powerful biomarkers in stratifying human cancers. Due to their high stability in body fluids, miRNAs might be excellent non-invasive biomarkers for the early detection and follow-up of cancer patients. Here, we will summarize the current knowledge and debate the strong need to identify circulating biomarkers for the early diagnosis of cachexia. We will propose circulating non-coding RNAs as biomarkers for detecting early cachexia and implementing specific treatment. We will also discuss the potential use of circulating miRNAs as biomarkers of cachexia in HNSCC patients' blood samples collected before and after radio-chemotherapy treatment. Our intent is to pave the way to the identification of specific circulating miRNAs associated to cachexia occurrence and to the design of specific interventions aimed at improving the quality of life of cancer patients.

17.
Physiol Rep ; 6(23): e13931, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30548426

RESUMO

Ingesting protein and carbohydrate together during aerobic exercise suppresses the expression of specific skeletal muscle microRNA and promotes muscle hypertrophy. Determining whether there are independent effects of carbohydrate and protein on microRNA will allow for a clearer understanding of the mechanistic role microRNA serve in regulating skeletal muscle protein synthetic and proteolytic responses to nutrition and exercise. This study determined skeletal muscle microRNA responses to aerobic exercise with or without carbohydrate, and recovery whey protein (WP). Seventeen males were randomized to consume carbohydrate (CHO; 145 g; n = 9) or non-nutritive control (CON; n = 8) beverages during exercise. Muscle was collected before (BASE) and after 80 min of steady-state exercise (1.7 ± 0.3 V̇O2  L·min-1 ) followed by a 2-mile time trial (17.9 ± 3.5 min; POST), and 3-h into recovery after consuming WP (25 g; REC). RT-qPCR was used to determine microRNA and mRNA expression. Bioinformatics analysis was conducted using the mirPath software. Western blotting was used to assess protein signaling. The expression of six microRNA (miR-19b-3p, miR-99a-5p, miR-100-5p, miR-222-3p, miR-324-3p, and miR-486-5p) were higher (P < 0.05) in CHO compared to CON, all of which target the PI3K-AKT, ubiquitin proteasome, FOXO, and mTORC1 pathways. p-AKTThr473 and p-FOXO1Thr24 were higher (P < 0.05) in POST CHO compared to CON. The expression of PTEN was lower (P < 0.05) in REC CHO than CON, while MURF1 was lower (P < 0.05) POST CHO than CON. These findings suggest the mechanism by which microRNA facilitate skeletal muscle adaptations in response to exercise with carbohydrate and protein feeding is by inhibiting markers of proteolysis.


Assuntos
Carboidratos da Dieta/farmacologia , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Humano/métodos , Proteólise , Transdução de Sinais , Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/farmacologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Masculino , MicroRNAs/genética , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Adulto Jovem
18.
Front Physiol ; 9: 1149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30177888

RESUMO

Background: Extracellular vesicles (EVs) are nano-sized vesicles that are known to be powerful mediators of intercellular communication via their microRNA (miR) content. A paucity of information on EV-mediated communication arising from skeletal muscle (SkM) in response to exercise-induced muscle damage is present in the published literature. Lack of such information inhibits our understanding of muscle injury and repair processes. Aims: To assess circulating EV levels and selected miR content within them, in response to two consecutive bouts of muscle-damaging exercise. Methods: Serum creatine kinase activity (CK) and EVs were analyzed from the blood of 9 healthy, untrained males at baseline, and at 2 and 24 h post-exercise. The exercise regimen consisted of a combination of plyometric jumping and downhill running. Perceived muscle pain (PMP) was assessed on a scale from 1 to 10. Plasma EVs were isolated using size exclusion columns and visualized with transmission electron microscopy (TEM). EV size and number were quantified using nanoparticle tracking analysis (NTA). miR expression was quantified using qPCR, with normalization to an exogenous control (cel-miR-39). Results: PMP and CK were significantly elevated post-exercise compared to baseline levels, providing indirect evidence for muscle damage. EV visualization using TEM revealed an abundant and heterogeneously sized pool of intact particles within the exosome size range (30-150 nm). No significant change in mean EV size or number was seen over time. The SkM-specific miR-206 in EVs was found to be variable among participants and no significant change occurred in SkM-important miRs; 1, 133a, 133b, 486, and 499a. However, EV miR-31 decreased from baseline to 24 h post-exercise (p = 0.027). Conclusion: Mild to moderate exercise-induced muscle damage altered the miR-31 profile of circulating EVs within the first 24 h post-exercise, but not that of myomiRs in EVs. These data demonstrate that EVs carry selectively packaged cargo which can be affected by exercise. Future research into the total miR content of EVs in response to exercise-induced muscle damage may reveal other miRs responsive to this relatively mild perturbation. More time points post-muscle-damaging exercise would provide a better understanding of the temporal EV myomiR response.

19.
Front Physiol ; 8: 182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386239

RESUMO

Skeletal muscle microRNAs (myomiR) expression is modulated by exercise, however, the influence of endurance exercise mode, combined with essential amino acid and carbohydrate (EAA+CHO) supplementation are not well defined. This study determined the effects of weighted versus non-weighted endurance exercise, with or without EAA+CHO ingestion on myomiR expression and their association with muscle protein synthesis (MPS). Twenty five adults performed 90 min of metabolically-matched (2.2 VO2 L·m-1) load carriage (LC; performed on a treadmill wearing a vest equal to 30% of individual body mass) or cycle ergometry (CE) exercise, during which EAA+CHO (10 g EAA and 46 g CHO) or non-nutritive control (CON) drinks were consumed. Expression of myomiR (RT-qPCR) were determined at rest (PRE), immediately post-exercise (POST), and 3 h into recovery (REC). Muscle protein synthesis (2H5-phenylalanine) was measured during exercise and recovery. Relative to PRE, POST, and REC expression of miR-1-3p, miR-206, miR-208a-5, and miR-499 was lower (P < 0.05) for LC compared to CE, regardless of dietary treatment. Independent of exercise mode, miR-1-3p and miR-208a-5p expression were lower (P < 0.05) after ingesting EAA+CHO compared to CON. Expression of miR-206 was highest for CE-CON than any other treatment (exercise-by-drink, P < 0.05). Common targets of differing myomiR were identified as markers within mTORC1 signaling, and miR-206 and miR-499 were inversely associated with MPS rates immediately post-exercise. These findings suggest the alterations in myomiR expression between exercise mode and EAA+CHO intake may in part be due to differing MPS modulation immediately post-exercise.

20.
Biochem Biophys Rep ; 9: 273-280, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28691106

RESUMO

Myostatin is small glycopeptide that is produced and secreted by skeletal muscle. It is a potent negative regulator of muscle growth that has been associated with conditions of frailty. In C2C12 cells, myostatin limits cell differentiation. Myostatin acts through activin receptor IIB, activin receptor-like kinase (ALK) and Smad transcription factors. microRNAs (miRNA) are short, 22 base pair nucleotides that bind to the 3' UTR of target mRNA to repress translation or reduce mRNA stability. In the present study, expression in differentiating C2C12 cells of the myomiRs miR-1 and 133a were down-regulated following treatment with 1 µg of recombinant myostatin at 1 d post-induction of differentiation while all myomiRs (miR-1, 133a/b and 206) were upregulated by SB431542, a potent ALK4/5/7 inhibitor which reduces Smad2 signaling, at 1 d and all, with the exception of miR-206, were upregulated by SB431542 at 3 d. The expression of the muscle-enriched miR-486 was greater following treatment with SB431542 but not altered by myostatin. Other highly expressed miRNAs in skeletal muscle, miR-23a/b and 145, were altered only at 1 d post-induction of differentiation. miR-27b responded differently to treatments at 1 d, where it was upregulated, as compared to 3 d, where it was downregulated. Neither myostatin nor SB431542 altered cell size or cell morphology. The data indicate that myostatin represses myomiR expression in differentiating C2C12 cells and that inhibition of Smad signaling with SB431542 can result in large changes in highly expressed miRNAs in differentiating myoblasts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA