Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542893

RESUMO

A disposable electrochemical sensor based on silver nanoparticle-embedded cellulose hydrogel composites was developed for sensitive detection of sulfamethoxazole residues in meat samples. Scanning electron microscopy confirmed the porous structure of the cellulose matrix anchored with 20-50 nm silver nanoparticles (AgNPs). Fourier transform infrared spectroscopy and X-ray diffraction verified that the metallic AgNPs coordinated with the amorphous cellulose chains. At an optimum 0.5% loading, the nanocomposite sensor showed a peak-to-peak separation of 150 mV, diffusion-controlled charge transfer kinetics, and an electron transfer coefficient of 0.6 using a ferro/ferricyanide redox probe. Square-wave voltammetry was applied for sensing sulfamethoxazole based on its two-electron oxidation peak at 0.72 V vs. Ag/AgCl in Britton-Robinson buffer of pH 7.0. A linear detection range of 0.1-100 µM sulfamethoxazole was obtained with a sensitivity of 0.752 µA/µM and limit of detection of 0.04 µM. Successful recovery between 86 and 92% and less than 6% RSD was achieved from spiked meat samples. The key benefits of the proposed disposable sensor include facile fabrication, an antifouling surface, and a reliable quantification ability, meeting regulatory limits. This research demonstrates the potential of novel cellulose-silver nanocomposite materials towards developing rapid, low-cost electroanalytical devices for decentralized on-site screening of veterinary drug residues to ensure food safety.


Assuntos
Nanopartículas Metálicas , Prata , Prata/química , Sulfametoxazol , Nanopartículas Metálicas/química , Hidrogéis , Carne , Celulose , Técnicas Eletroquímicas/métodos
2.
Mikrochim Acta ; 186(1): 21, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30554349

RESUMO

The authors describe a simplified chemical precipitation method and silver mirror reaction to synthesize a nanocomposite consiting of silver nanoparticles on a thin and porous nickel oxide film. Placed on a glassy carbon electrode (GCE), it allows for the determination of levofloxacin (LEV) via square wave voltammetry (SWV). Under optimal detection conditions, the voltammetric signal (typically measured at around 0.96 V vs. SCE) increases linearly in the 0.25-100 µM LEV concentration range. And the detection limit was calculated as 27 nM (at S/N = 3). The sensor is highly selective, stable and repeatable. It was applied to the determination of LEV in spiked human serum samples, and the satisfactory results confirm the applicability of this sensor to practical analyses. Graphical abstract Schematic of a two-step method to synthesize a nanocomposite consisting of nickel oxide porous thin-film supported silver nanoparticles. The composite was used for improved voltammetric determination of levofloxacin.


Assuntos
Antibacterianos/sangue , Técnicas Eletroquímicas/métodos , Levofloxacino/sangue , Nanopartículas Metálicas/química , Níquel/química , Prata/química , Técnicas Biossensoriais/métodos , Eletrodos , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Nanocompostos/química , Porosidade
3.
Sensors (Basel) ; 18(5)2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29724032

RESUMO

Self-sensing capability of composite materials has been the core of intensive research over the years and particularly boosted up by the recent quantum leap in nanotechnology. The capacity of most existing self-sensing approaches is restricted to static strains or low-frequency structural vibration. In this study, a new breed of functionalized epoxy-based composites is developed and fabricated, with a graphene nanoparticle-enriched, dispersed sensing network, whereby to self-perceive broadband elastic disturbance from static strains, through low-frequency vibration to guided waves in an ultrasonic regime. Owing to the dispersed and networked sensing capability, signals can be captured at any desired part of the composites. Experimental validation has demonstrated that the functionalized composites can self-sense strains, outperforming conventional metal foil strain sensors with a significantly enhanced gauge factor and a much broader response bandwidth. Precise and fast self-response of the composites to broadband ultrasonic signals (up to 440 kHz) has revealed that the composite structure itself can serve as ultrasound sensors, comparable to piezoceramic sensors in performance, whereas avoiding the use of bulky cables and wires as used in a piezoceramic sensor network. This study has spotlighted promising potentials of the developed approach to functionalize conventional composites with a self-sensing capability of high-sensitivity yet minimized intrusion to original structures.

4.
Sensors (Basel) ; 18(6)2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843461

RESUMO

Sitting posture is the position in which one holds his/her body upright against gravity while sitting. Poor sitting posture is regarded as an aggravating factor for various diseases. In this paper, we present an inverse piezoresistive nanocomposite sensor, and related deciphering neural network, as a new tool to identify human sitting postures accurately. As a low power consumption device, the proposed tool has simple structure, and is easy to use. The strain gauge is attached to the back of the user to acquire sitting data. A three-layer BP neural network is employed to distinguish normal sitting posture, slight hunchback and severe hunchback according to the acquired data. Experimental results show that our method is both realizable and effective, achieving 98.75% posture identification accuracy. This successful application of inverse piezoresistive nanocomposite sensors reveals that the method could potentially be used for monitoring of diverse physiological parameters in the future.


Assuntos
Técnicas Biossensoriais/métodos , Monitorização Fisiológica/métodos , Movimento/fisiologia , Postura/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nanocompostos/química , Redes Neurais de Computação , Adulto Jovem
5.
Biosensors (Basel) ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38667181

RESUMO

Carbon nanotube (CNT)-based nanocomposites have found applications in making sensors for various types of physiological sensing. However, the sensors' fabrication process is usually complex, multistep, and requires longtime mixing and hazardous solvents that can be harmful to the environment. Here, we report a flexible dry silver (Ag)/CNT/polydimethylsiloxane (PDMS) nanocomposite-based sensor made by a solvent-free, low-temperature, time-effective, and simple approach for electrophysiological recording. By mechanical compression and thermal treatment of Ag/CNT, a connected conductive network of the fillers was formed, after which the PDMS was added as a polymer matrix. The CNTs make a continuous network for electrons transport, endowing the nanocomposite with high electrical conductivity, mechanical strength, and durability. This process is solvent-free and does not require a high temperature or complex mixing procedure. The sensor shows high flexibility and good conductivity. High-quality electroencephalography (EEG) and electrooculography (EOG) were performed using fabricated dry sensors. Our results show that the Ag/CNT/PDMS sensor has comparable skin-sensor interface impedance with commercial Ag/AgCl-coated dry electrodes, better performance for noninvasive electrophysiological signal recording, and a higher signal-to-noise ratio (SNR) even after 8 months of storage. The SNR of electrophysiological signal recording was measured to be 26.83 dB for our developed sensors versus 25.23 dB for commercial Ag/AgCl-coated dry electrodes. Our process of compress-heating the functional fillers provides a universal approach to fabricate various types of nanocomposites with different nanofillers and desired electrical and mechanical properties.


Assuntos
Dimetilpolisiloxanos , Nanocompostos , Nanotubos de Carbono , Prata , Nanocompostos/química , Nanotubos de Carbono/química , Prata/química , Dimetilpolisiloxanos/química , Eletroencefalografia , Condutividade Elétrica , Técnicas Biossensoriais , Humanos , Eletroculografia , Eletrodos , Razão Sinal-Ruído
6.
ACS Appl Mater Interfaces ; 12(29): 33050-33057, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32589007

RESUMO

We report the first demonstration of a solid-state, direct-conversion sensor for thermal neutrons based on a polymer/inorganic nanocomposite. Sensors were fabricated from ultrathick films of poly(triarylamine) (PTAA) semiconducting polymer, with thicknesses up to 100 µm. Boron nanoparticles (NPs) were dispersed throughout the PTAA film to provide the neutron stopping power arising from the high thermal neutron cross section of the isotope 10B. To maximize the quantum efficiency (QE) of the sensor to thermal neutrons, a high volume fraction of homogeneously dispersed boron nanoparticles was achieved in the thick PTAA film using an optimized processing method. Thick active layers were realized using a high molecular weight of the PTAA so that molecular entanglements provide a high cohesive strength. A nonionic surfactant was used to stabilize the boron dispersion in solvent and hence suppress the formation of agglomerates and associated electrical pathways. Boron nanoparticle loadings of up to ten volume percent were achieved, with thermal neutron quantum efficiency estimates up to 6% resulting. The sensors' neutron responses were characterized under a high flux thermal neutron exposure, showing a linear correlation between the response current and the thermal neutron flux up to ∼107 cm-2 s-1. Polymer-based boron nanocomposite sensors offer a new neutron detection technology that uses low-cost, scalable solution processing and provides an alternative to traditional neutron sensors that use rare isotopes, such as 3He.

7.
Ultrasonics ; 78: 166-174, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28371650

RESUMO

A novel nanocomposite-inspired in-situ broadband ultrasonic sensor previously developed, with carbon black as the nanofiller and polyvinylidene fluoride as the matrix, was networked for acousto-ultrasonic wave-based passive and active structural health monitoring (SHM). Being lightweight and small, this kind of sensor was proven to be capable of perceiving strain perturbation in virtue of the tunneling effect in the formed nanofiller conductive network when acousto-ultrasonic waves traverse the sensor. Proof-of-concept validation was implemented, to examine the sensor performance in responding to acousto-ultrasonic waves in a broad frequency regime: from acoustic emission (AE) of lower frequencies to guided ultrasonic waves (GUWs) of higher frequencies. Results have demonstrated the high fidelity, ultrafast response and high sensitivity of the sensor to acousto-ultrasonic waves up to 400kHz yet with an ultra-low magnitude (of the order of micro-strain). The sensor is proven to possess sensitivity and accuracy comparable with commercial piezoelectric ultrasonic transducers, whereas with greater flexibility in accommodating curved structural surfaces. Application paradigms of using the sensor for damage evaluation have spotlighted the capability of the sensor in compromising "sensing cost" with "sensing effectiveness" for passive AE- or active GUW-based SHM.


Assuntos
Monitorização Fisiológica/instrumentação , Nanocompostos/química , Ultrassom , Calibragem , Desenho de Equipamento , Microscopia Eletrônica de Varredura , Polivinil/química , Processamento de Sinais Assistido por Computador , Fuligem/química , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA