Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(31): 13845-13855, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38874627

RESUMO

There is a growing concern that nanoplastic pollution may pose planetary threats to human and ecosystem health. However, a quantitative and mechanistic understanding of nanoplastic release via nanoscale mechanical degradation of bulk plastics and its interplay with photoweathering remains elusive. We developed a lateral force microscope (LFM)-based nanoscratch method to investigate mechanisms of nanoscale abrasive wear of low-density polyethylene (LDPE) surfaces by a single sand particle (simulated by a 300 nm tip) under environmentally relevant load, sliding motion, and sand size. For virgin LDPE, we found plowing as the dominant wear mechanism (i.e., deformed material pushed around the perimeter of scratch). After UVA-weathering, the wear mechanism of LDPE distinctively shifted to cutting wear (i.e., deformed material detached and pushed to the end of scratch). The shift in the mechanism was quantitatively described by a new parameter, which can be incorporated into calculating the NP release rate. We determined a 10-fold higher wear rate due to UV weathering. We also observed an unexpected resistance to initiate wear for UV-aged LDPE, likely due to nanohardness increase induced by UV. For the first time, we report 0.4-4 × 10-3 µm3/µm sliding distance/µN applied load as an initial approximate nanoplastic release rate for LDPE. Our novel findings reveal nanoplastic release mechanisms in the environment, enabling physics-based prediction of the global environmental inventory of nanoplastics.


Assuntos
Polietileno , Polietileno/química , Raios Ultravioleta , Propriedades de Superfície
2.
Nano Lett ; 23(19): 8842-8849, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37729549

RESUMO

Wear of sliding contacts causes device failure and energy costs; however, the microscopic principle in activating wear of the interfaces under stress is still open. Here, the typical nanoscale wear, in the case of silicon against silicon dioxide, is investigated by single-asperity wear experiments and density functional theory calculations. The tests demonstrate that the wear rate of silicon in ambient air increases exponentially with stress and does not obey classical Archard's law. Series calculations of atomistic wear reactions generally reveal that the mechanical stress linearly drives the electron transfer to activate the sequential formation and rupture of interfacial bonds in the atomistic wear process. The atomistic wear model is thus resolved by combining the present stress-driven electron transfer model with Maxwell-Boltzmann statistics. This work may advance electronic insights into the law of nanoscale wear for understanding and controlling wear and manufacturing of material surfaces.

3.
Adv Sci (Weinh) ; 8(2): 2002827, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33511015

RESUMO

Wear of contact materials results in energy loss and device failure. Conventionally, wear is described by empirical laws such as the Archard's law; however, the fundamental physical and chemical origins of the empirical law have long been elusive, and moreover empirical wear laws do not always hold for nanoscale contact, collaboratively hindering the development of high-durable tribosystems. Here, a non-empirical and robustly applicable wear law for nanoscale contact situations is proposed. The proposed wear law successfully unveils why the nanoscale wear behaviors do not obey the description by Archard's law in all cases although still obey it in certain experiments. The robustness and applicability of the proposed wear law is validated by atomistic simulations. This work affords a way to calculate wear at nanoscale contact robustly and theoretically, and will contribute to developing design principles for wear reduction.

4.
ACS Appl Mater Interfaces ; 11(43): 40734-40748, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31498997

RESUMO

Nanoindentation and sliding experiments using single-crystal silicon atomic force microscope probes in contact with diamond substrates in vacuum were carried out in situ with a transmission electron microscope (TEM). After sliding, the experimentally measured works of adhesion were significantly larger than values estimated for pure van der Waals (vdW) interactions. Furthermore, the works of adhesion increased with both the normal stress and speed during the sliding, indicating that applied stress played a central role in the reactivity of the interface. Complementary molecular dynamics (MD) simulations were used to lend insight into the atomic-level processes that occur during these experiments. Simulations using crystalline silicon tips with varying degrees of roughness and diamond substrates with different amounts of hydrogen termination demonstrated two relevant phenomena. First, covalent bonds formed across the interface, where the number of bonds formed was affected by the hydrogen termination of the substrate, the tip roughness, the applied stress, and the stochastic nature of bond formation. Second, for initially rough tips, the sliding motion and the associated application of shear stress produced an increase in irreversible atomic-scale plasticity that tended to smoothen the tips' surfaces, which resulted in a concomitant increase in adhesion. In contrast, for initially smooth tips, sliding roughened some of these tips. In the limit of low applied stress, the experimentally determined works of adhesion match the intrinsic (van der Waals) work of adhesion for an atomically smooth silicon-diamond interface obtained from MD simulations. The results provide mechanistic interpretations of sliding-induced changes and interfacial adhesion and may help inform applications involving adhesive interfaces that are subject to applied shear forces and displacements.

5.
ACS Appl Mater Interfaces ; 9(2): 1929-1940, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27997110

RESUMO

Nanoscale, single-asperity wear of single-crystal silicon carbide (sc-SiC) and nanocrystalline silicon carbide (nc-SiC) is investigated using single-crystal diamond nanoindenter tips and nanocrystalline diamond atomic force microscopy (AFM) tips under dry conditions, and the wear behavior is compared to that of single-crystal silicon with both thin and thick native oxide layers. We discovered a transition in the relative wear resistance of the SiC samples compared to that of Si as a function of contact size. With larger nanoindenter tips (tip radius ≈ 370 nm), the wear resistances of both sc-SiC and nc-SiC are higher than that of Si. This result is expected from the Archard's equation because SiC is harder than Si. However, with the smaller AFM tips (tip radius ≈ 20 nm), the wear resistances of sc-SiC and nc-SiC are lower than that of Si, despite the fact that the contact pressures are comparable to those applied with the nanoindenter tips, and the plastic zones are well-developed in both sets of wear experiments. We attribute the decrease in the relative wear resistance of SiC compared to that of Si to a transition from a wear regime dominated by the materials' resistance to plastic deformation (i.e., hardness) to a regime dominated by the materials' resistance to interfacial shear. This conclusion is supported by our AFM studies of wearless friction, which reveal that the interfacial shear strength of SiC is higher than that of Si. The contributions of surface roughness and surface chemistry to differences in interfacial shear strength are also discussed.

6.
ACS Appl Mater Interfaces ; 9(40): 35341-35348, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28960949

RESUMO

Nanoscale wear is a critical issue that limits the performance of tip-based nanomanufacturing and nanometrology processes based on atomic force microscopy (AFM). Yet, a full scientific understanding of nanoscale wear processes remains in its infancy. It is therefore important to quantitatively understand the wear behavior of AFM tips. Tip wear is complex to understand due to adhesive forces and contact stresses that change substantially as the contact geometry evolves due to wear. Here, we present systematic characterization of the wear of commercial Si AFM tips coated with thin diamond-like carbon (DLC) coatings. Wear of DLC was measured as a function of external loading and sliding distance. Transmission electron microscopy imaging, AFM-based adhesion measurements, and tip geometry estimation via inverse imaging were used to assess nanoscale wear and the contact conditions over the course of the wear tests. Gradual wear of DLC with sliding was observed in the experiments, and the tips evolved from initial paraboloidal shapes to flattened geometries. The wear rate is observed to increase with the average contact stress, but does not follow the classical wear law of Archard. A wear model based on the transition state theory, which gives an Arrhenius relationship between wear rate and normal stress, fits the experimental data well for low mean contact stresses (<0.3 GPa), yet it fails to describe the wear at higher stresses. The wear behavior over the full range of stresses is well described by a recently proposed multibond wear model that exhibits a change from Archard-like behavior at high stresses to a transition state theory description at lower stresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA