Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000477

RESUMO

The appearance of new respiratory virus infections in humans with epidemic or pandemic potential has underscored the urgent need for effective broad-spectrum antivirals (BSAs). Bioactive compounds derived from plants may provide a natural source of new BSA candidates. Here, we investigated the novel phytocomplex formulation SP4™ as a candidate direct-acting BSA against major current human respiratory viruses, including coronaviruses and influenza viruses. SP4™ inhibited the in vitro replication of SARS-CoV-2, hCoV-OC43, hCoV-229E, Influenza A and B viruses, and respiratory syncytial virus in the low-microgram range. Using hCoV-OC43 as a representative respiratory virus, most of the antiviral activity of SP4™ was observed to stem primarily from its dimeric A-type proanthocyanidin (PAC-A) component. Further investigations of the mechanistic mode of action showed SP4™ and its PAC-A-rich fraction to prevent hCoV-OC43 from attaching to target cells and exert virucidal activity. This occurred through their interaction with the spike protein of hCoV-OC43 and SARS-CoV-2, thereby interfering with spike functions and leading to the loss of virion infectivity. Overall, these findings support the further development of SP4™ as a candidate BSA of a natural origin for the prevention of human respiratory virus infections.


Assuntos
Antivirais , Coronavirus Humano OC43 , Proantocianidinas , SARS-CoV-2 , Replicação Viral , Proantocianidinas/farmacologia , Proantocianidinas/química , Antivirais/farmacologia , Antivirais/química , Humanos , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Coronavirus Humano OC43/efeitos dos fármacos , Animais , Cães , Vírus da Influenza A/efeitos dos fármacos , Coronavirus Humano 229E/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Chlorocebus aethiops
2.
Molecules ; 27(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35335228

RESUMO

This study focused on the biological evaluation and chemical characterisation of Ficus sur Forssk. (F. sur) (Family: Moraceae). The methanolic and aqueous extracts' phytochemical profile, antioxidant, and enzyme inhibitory properties were investigated. The aqueous stem bark extract yielded the highest phenolic content (115.51 ± 1.60 mg gallic acid equivalent/g extract), while the methanolic leaves extract possessed the highest flavonoid content (27.47 ± 0.28 mg Rutin equivalent/g extract). In total, 118 compounds were identified in the tested extracts. The methanolic stem bark extract exhibited the most potent radical scavenging potential against 2,2-diphenyl-1 picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (475.79 ± 6.83 and 804.31 ± 4.52 mg Trolox equivalent/g extract, respectively) and the highest reducing Cu2+ capacity (937.86 ± 14.44 mg Trolox equivalent/g extract). The methanolic stem bark extract substantially depressed tyrosinase (69.84 ± 0.35 mg kojic acid equivalent/g extract), α-amylase (0.77 ± 0.01 mmol acarbose equivalent/g extract), acetylcholinesterase and butyrylcholinesterase (2.91 ± 0.07 and 6.56 ± 0.34 mg galantamine equivalent/g extract, respectively) enzymes. F. sur extracts were tested for anticancer properties and antiviral activity towards human herpes virus type 1 (HHV-1). Stem bark infusion and methanolic extract showed antineoplastic activity against cervical adenocarcinoma and colon cancer cell lines, whereas leaf methanolic extract exerted moderate antiviral activity towards HHV-1. This investigation yielded important scientific data on F. sur which might be used to generate innovative phytopharmaceuticals.


Assuntos
Ficus , Acetilcolinesterase , Butirilcolinesterase , Humanos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
3.
Phytother Res ; 32(5): 811-822, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29356205

RESUMO

Viral infections are being managed therapeutically through available antiviral regimens with unsatisfactory clinical outcomes. The refractory viral infections resistant to available antiviral drugs are alarming threats and a serious health concern. For viral hepatitis, the interferon and vaccine therapies solely are not ultimate solutions due to recurrence of hepatitis C virus. Owing to the growing incidences of viral infections and especially of resistant viral strains, the available therapeutic modalities need to be improved, complemented with the discovery of novel antiviral agents to combat refractory viral infections. It is widely accepted that medicinal plant heritage is nature gifted, precious, and fueled with the valuable resources for treatment of metabolic and infectious disorders. The aims of this review are to assemble the facts and to conclude the therapeutic potential of medicinal plants in the eradication and management of various viral diseases such as influenza, human immunodeficiency virus (HIV), herpes simplex virus (HSV), hepatitis, and coxsackievirus infections, which have been proven in diverse clinical studies. The articles, published in the English language since 1982 to 2017, were included from Web of Science, Cochrane Library, AMED, CISCOM, EMBASE, MEDLINE, Scopus, and PubMed by using relevant keywords including plants possessing antiviral activity, the antiviral effects of plants, and plants used in viral disorders. The scientific literature mainly focusing on plant extracts and herbal products with therapeutic efficacies against experimental models of influenza, HIV, HSV, hepatitis, and coxsackievirus were included in the study. Pure compounds possessing antiviral activity were excluded, and plants possessing activity against viruses other than viruses in inclusion criteria were excluded. Hundreds of plant extracts with antiviral effect were recognized. However, the data from only 36 families investigated through in vitro and in vivo studies met the inclusion criteria of this review. The inferences from scientific literature review, focusing on potential therapeutic consequences of medicinal plants on experimental models of HIV, HSV, influenza, hepatitis, and coxsackievirus have ascertained the curative antiviral potential of plants. Fifty-four medicinal plants belonging to 36 different families having antiviral potential were documented. Out of 54 plants, 27 individually belong to particular plant families. On the basis of the work of several independent research groups, the therapeutic potential of medicinal plants against listed common viral diseases in the region has been proclaimed. In this context, the herbal formulations as alternative medicine may contribute to the eradication of complicated viral infection significantly. The current review consolidates the data of the various medicinal plants, those are Sambucus nigra, Caesalpinia pulcherrima, and Hypericum connatum, holding promising specific antiviral activities scientifically proven through studies on experimental animal models. Consequently, the original research addressing the development of novel nutraceuticals based on listed medicinal plants is highly recommended for the management of viral disorders.


Assuntos
Antivirais/uso terapêutico , Infecções por Coxsackievirus/tratamento farmacológico , Infecções por HIV/tratamento farmacológico , Hepatite/tratamento farmacológico , Herpes Simples/tratamento farmacológico , Influenza Humana/tratamento farmacológico , Plantas Medicinais/fisiologia , Animais , Antivirais/farmacologia , Infecções por Coxsackievirus/epidemiologia , HIV/efeitos dos fármacos , Infecções por HIV/epidemiologia , Hepatite/epidemiologia , Herpes Simples/epidemiologia , Humanos , Influenza Humana/epidemiologia , Fitoterapia/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Simplexvirus/efeitos dos fármacos
4.
Viruses ; 16(1)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257824

RESUMO

Epstein-Barr (EBV) is a human γ-herpesvirus that undergoes both a productive (lytic) cycle and a non-productive (latent) phase. The virus establishes enduring latent infection in B lymphocytes and productive infection in the oral mucosal epithelium. Like other herpesviruses, EBV expresses its genes in a coordinated pattern during acute infection. Unlike others, it replicates its DNA during latency to maintain the viral genome in an expanding pool of B lymphocytes, which are stimulated to divide upon infection. The reactivation from the latent state is associated with a productive gene expression pattern mediated by virus-encoded transcriptional activators BZLF-1 and BRLF-1. EBV is a highly transforming virus that contributes to the development of human lymphomas. Though viral vectors and mRNA platforms have been used to develop an EBV prophylactic vaccine, currently, there are no vaccines or antiviral drugs for the prophylaxis or treatment of EBV infection and EBV-associated cancers. Natural products and bioactive compounds are widely studied for their antiviral potential and capability to modulate intracellular signaling pathways. This review was intended to collect information on plant-derived products showing their antiviral activity against EBV and evaluate their feasibility as an alternative or adjuvant therapy against EBV infections and correlated oncogenesis in humans.


Assuntos
Produtos Biológicos , Infecções por Vírus Epstein-Barr , Magnoliopsida , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Linfócitos B , Carcinogênese , Antivirais
5.
Viruses ; 15(8)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37631995

RESUMO

The search for alternative clinical treatments to fight resistance and find alternative antiviral treatments for the herpes simplex virus (HSV) is of great interest. Plants are rich sources of novel antiviral, pharmacologically active agents that provide several advantages, including reduced side effects, less resistance, low toxicity, and different mechanisms of action. In the present work, the antiviral activity of Californian natural raw (NRRE) and roasted unsalted (RURE) pistachio polyphenols-rich extracts was evaluated against HSV-1 using VERO cells. Two different extraction methods, with or without n-hexane, were used. Results showed that n-hexane-extracted NRRE and RURE exerted an antiviral effect against HSV-1, blocking virus binding on the cell surface, affecting viral DNA synthesis as well as accumulation of ICP0, UL42, and Us11 viral proteins. Additionally, the identification and quantification of phenolic compounds by RP-HPLC-DAD confirmed that extraction with n-hexane exclusively accumulated tocopherols, carotenoids, and xanthophylls. Amongst these, zeaxanthin exhibited strong antiviral activity against HSV-1 (CC50: 16.1 µM, EC50 4.08 µM, SI 3.96), affecting both the viral attachment and penetration and viral DNA synthesis. Zeaxanthin is a dietary carotenoid that accumulates in the retina as a macular pigment. The use of pistachio extracts and derivates should be encouraged for the topical treatment of ocular herpetic infections.


Assuntos
Herpesvirus Humano 1 , Pistacia , Chlorocebus aethiops , Animais , Zeaxantinas/farmacologia , DNA Viral , Células Vero , Antivirais/farmacologia , Carotenoides , Extratos Vegetais/farmacologia
6.
Biomolecules ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38254643

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has provoked a global health crisis due to the absence of a specific therapeutic agent. 3CLpro (also known as the main protease or Mpro) and PLpro are chymotrypsin-like proteases encoded by the SARS-CoV-2 genome, and play essential roles during the virus lifecycle. Therefore, they are recognized as a prospective therapeutic target in drug discovery against SARS-CoV-2 infection. Thus, this work aims to collectively present potential natural 3CLpro and PLpro inhibitors by in silico simulations and in vitro entry pseudotype-entry models. We screened luteolin-7-O-glucuronide (L7OG), cynarin (CY), folic acid (FA), and rosmarinic acid (RA) molecules against PLpro and 3CLpro through a luminogenic substrate assay. We only reported moderate inhibitory activity on the recombinant 3CLpro and PLpro by L7OG and FA. Afterward, the entry inhibitory activity of L7OG and FA was tested in cell lines transduced with the two different SARS-CoV-2 pseudotypes harboring alpha (α) and omicron (o) spike (S) protein. The results showed that both compounds have a consistent inhibitory activity on the entry for both variants. However, L7OG showed a greater degree of entry inhibition against α-SARS-CoV-2. Molecular modeling studies were used to determine the inhibitory mechanism of the candidate molecules by focusing on their interactions with residues recognized by the protease active site and receptor-binding domain (RBD) of spike SARS-CoV-2. This work allowed us to identify the binding sites of FA and L7OG within the RBD domain in the alpha and omicron variants, demonstrating how FA is active in both variants. We have confidence that future in vivo studies testing the safety and effectiveness of these natural compounds are warranted, given that they are effective against a variant of concerns.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Produtos Biológicos/farmacologia , Quimases , Ácido Fólico
7.
Viruses ; 15(12)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38140581

RESUMO

The herpes simplex virus (HSV) is a double-stranded DNA human virus that causes persistent infections with recurrent outbreaks. HSV exists in two forms: HSV-1, responsible for oral herpes, and HSV-2, primarily causing genital herpes. Both types can lead to significant complications, including neurological issues. Conventional treatment, involving acyclovir and its derivatives, faces challenges due to drug resistance. This underscores the imperative for continual research and development of new drugs, with a particular emphasis on exploring the potential of natural antivirals. Flavonoids have demonstrated promise in combating various viruses, including those within the herpesvirus family. This review, delving into recent studies, reveals the intricate mechanisms by which flavonoids decode their antiviral capabilities against HSV. By disrupting key stages of the viral life cycle, such as attachment to host cells, entry, DNA replication, latency, and reactivation, flavonoids emerge as formidable contenders in the ongoing battle against HSV infections.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/fisiologia , Estágios do Ciclo de Vida
8.
Indian J Pharmacol ; 53(5): 403-411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34854411

RESUMO

Viral infections are posing a great threat to humanity for the last few years. Among these, Chikungunya which is a mosquito-borne viral infection has produced enormous epidemics around the world after been rebounded. Although this infection shows a low mortality rate, patients suffer from fever, arthralgia, and maculopapular rashes, which reduce the quality of life for several weeks to years. The currently available treatments only provide symptomatic relief based on analgesics, antipyretics, and anti-inflammatory drugs which are nonspecific without satisfactory results. Medicinal plants are a widely accepted source of new molecules for the treatment of infectious diseases including viral infections. The scientific reports, primarily focusing on the anti-chikungunya activity of plant extracts, natural origin pure compounds, and their synthetic analog published from 2011 to 2021, were selected from PubMed, Google Scholar, and Scopus by using related keywords like anti-chikungunya plants, natural antivirals for Chikungunya. The present review decodes scientific reports on medicinal plants against chikungunya virus (CHIKV) infection and demystifies the potential phytoconstituents which reveals that the screening of flavonoids containing plants and phytochemicals showing efficacy against other arbovirus infections, may prove as a potential lead for drug development against CHIKV. The present article also outlines pathogenesis, clinical aspects, molecular virology, and diagnostic approaches of CHIKV infection.


Assuntos
Antivirais/farmacologia , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antivirais/uso terapêutico , Humanos , Fitoterapia , Extratos Vegetais/uso terapêutico , Plantas Medicinais
9.
Antibiotics (Basel) ; 10(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34439061

RESUMO

The SARS CoV-2 pandemic has affected millions of people around the globe. Despite many efforts to find some effective medicines against SARS CoV-2, no established therapeutics are available yet. The use of phytochemicals as antiviral agents provides hope against the proliferation of SARS-CoV-2. Several natural compounds were analyzed by virtual screening against six SARS CoV-2 protein targets using molecular docking simulations in the present study. More than a hundred plant-derived secondary metabolites have been docked, including alkaloids, flavonoids, coumarins, and steroids. SARS CoV-2 protein targets include Main protease (MPro), Papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), Spike glycoprotein (S), Helicase (Nsp13), and E-Channel protein. Phytochemicals were evaluated by molecular docking, and MD simulations were performed using the YASARA structure using a modified genetic algorithm and AMBER03 force field. Binding energies and dissociation constants allowed the identification of potentially active compounds. Ligand-protein interactions provide an insight into the mechanism and potential of identified compounds. Glycyrrhizin and its metabolite 18-ß-glycyrrhetinic acid have shown a strong binding affinity for MPro, helicase, RdRp, spike, and E-channel proteins, while a flavonoid Baicalin also strongly binds against PLpro and RdRp. The use of identified phytochemicals may help to speed up the drug development and provide natural protection against SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA