RESUMO
In Western industrialized countries, prostate cancer (PCa) is the second most common malignant disease and prevalent cause of death for men. Epidemiological studies have shown that curcumin (CUR) either prevents PCa initiation or delays its progression to a more aggressive and treatment-refractory form, thus reducing related mortality. Our previous studies have proven the anticancer, antioxidant, and anti-inflammatory properties of CUR on PCa cells. However, there are few reports of the effect of CUR on energy and lipid pathways in PCa. Herein, we show that CUR can modulate the two metabolic energy pathways, increasing glycolytic reserve and reducing oxidative phosphorylation. Moreover, through the regulation of key enzymes and proteins, CUR affected the lipid pathway in PC-3 to a greater extent compared to the healthy PNT-2 cells. According to molecular docking investigations, the CUR activity in PCa may be mediated by the direct binding to the pyruvate dehydrogenase (PDHA1) enzyme, which is essential for regulating the appropriate mitochondrial activity. Taken together, our results shed light on the mechanism of action of CUR in the PCa cell metabolism and provide evidence of its potential value as an anticancer metabolic modulator, paving opportunities for novel therapeutic strategies.
RESUMO
Glioma is difficult-to-treat because of its infiltrative nature and the presence of the blood-brain barrier. Temozolomide is the only FDA-approved drug for its management. Therefore, finding a novel chemotherapeutic agent for glioma is of utmost importance. Magnolol, a neolignan, has been known for its apoptotic role in glioma. In this work, we have explored a novel anti-glioma mechanism of Magnolol associated with its role in autophagy modulation. We found increased expression levels of Beclin-1, Atg5-Atg12, and LC3-II and lower p62 expression in Magnolol-treated glioma cells. PI3K/AKT/mTOR pathway proteins were also downregulated in Magnolol-treated glioma cells. Next, we treated the glioma cells with Insulin, a stimulator of PI3K/AKT/mTOR signaling, to confirm that Magnolol induced autophagy by inhibiting this pathway. Insulin reversed the effect on Magnolol-mediated autophagy induction. We also established the same in in vivo glioma model where Magnolol showed an anti-glioma effect by inducing autophagy. To confirm the cytotoxic effect of Magnolol-induced autophagy, we used Chloroquine, a late-stage autophagy inhibitor. Chloroquine efficiently reversed the anti-glioma effects of Magnolol both in vitro and in vivo. Our study revealed the cytotoxic effect of Magnolol-induced autophagy in glioma, which was not previously reported. Additionally, Magnolol showed no toxicity in non-cancerous cell lines as well as rat organs. Thus, we concluded that Magnolol is an excellent candidate for developing new therapeutic strategies for glioma management.
Assuntos
Antineoplásicos , Glioma , Insulinas , Lignanas , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Antineoplásicos/farmacologia , Lignanas/farmacologia , Lignanas/uso terapêutico , Glioma/tratamento farmacológico , Glioma/metabolismo , Autofagia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Insulinas/farmacologia , Insulinas/uso terapêutico , Linhagem Celular Tumoral , ApoptoseRESUMO
Extracellular regulated protein kinases 1/2 (ERK1/2) are key members of multiple signaling pathways, including the ErbB axis. Ectopic ERK1/2 activation contributes to various types of cancer, especially drug resistance to inhibitors of RTK, RAF and MEK, and specific ERK1/2 inhibitors are scarce. In this study, we identified a potential novel covalent ERK inhibitor, Laxiflorin B, which is a herbal compound with anticancer activity. However, Laxiflorin B is present at low levels in herbs; therefore, we adopted a semi-synthetic process for the efficient production of Laxiflorin B to improve the yield. Laxiflorin B induced mitochondria-mediated apoptosis via BAD activation in non-small-cell lung cancer (NSCLC) cells, especially in EGFR mutant subtypes. Transcriptomic analysis suggested that Laxiflorin B inhibits amphiregulin (AREG) and epiregulin (EREG) expression through ERK inhibition, and suppressed the activation of their receptors, ErbBs, via a positive feedback loop. Moreover, mass spectrometry analysis combined with computer simulation revealed that Laxiflorin B binds covalently to Cys-183 in the ATP-binding pocket of ERK1 via the D-ring, and Cys-178 of ERK1 through non-inhibitory binding of the A-ring. In a NSCLC tumor xenograft model in nude mice, Laxiflorin B also exhibited strong tumor suppressive effects with low toxicity and AREG and EREG were identified as biomarkers of Laxiflorin B efficacy. Finally, Laxiflorin B-4, a C-6 analog of Laxiflorin B, exhibited higher binding affinity for ERK1/2 and stronger tumor suppression. These findings provide a new approach to tumor inhibition using natural anticancer compounds.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Sistema de Sinalização das MAP Quinases , Camundongos Nus , Simulação por Computador , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mutação , Linhagem Celular TumoralRESUMO
OBJECTIVE: An imbalance between the generation of reactive oxygen species (ROS) and the body's antioxidant defense mechanisms is believed to be a critical factor in the development of schizophrenia (SCZ) like neurological illnesses. Understanding the roles of ROS in the development of SCZ and the potential activity of natural antioxidants against SCZ could lead to more effective therapeutic options for the prevention and treatment of the illness. METHODS: SCZ is a mental disorder characterised by progressive impairments in working memory, attention, and executive functioning. In present investigation, we summarized the experimental findings for understanding the role of oxidative stress (OS) in the development of SCZ and the potential neuroprotective effects of natural antioxidants in the treatment of SCZ. RESULTS: Current study supports the use of the mentioned antioxidant natural compounds as a potential therapeutic candidates for the treatment of OS mediated neurodegeneration in SCZ. DISCUSSION: Elevated levels of harmful ROS and reduced antioxidant defense mechanisms are indicative of increased oxidative stress (OS), which is associated with SCZ. Previous research has shown that individuals with SCZ, including non-medicated, medicated, first-episode, and chronic patients, exhibit decreased levels of total antioxidants and GSH. Additionally, they have reduced antioxidant enzyme levels such as catalase (CAT), glutathione (GPx), and, superoxide dismutase (SOD) and lower serum levels of brain-derived neurotrophic factor (BDNF) in their brain tissue. The mentioned natural antioxidants may assist in reducing oxidative damage in individuals with SCZ and increasing BDNF expression in the brain, potentially improving cognitive function and learning ability.
RESUMO
The rise of vancomycin-resistant enterococci (VRE) due to antibiotic overuse poses a significant threat to long-term care patients and those with impaired immune systems. Therefore, it is imperative to seek alternatives to overcome multidrug resistance. This study aimed to evaluate totarol, a natural compound derived from Podocarpus totara, for its antibacterial activity against vancomycin-resistant Enterococcus faecalis (VREF). Totarol exhibited potent antibacterial activity at a very low concentration of 0.25 µg/mL and demonstrated antibiofilm effects through biofilm inhibitory concentration and biofilm eradication concentration assays. Confocal laser scanning microscopy confirmed that totarol inhibited not only biofilm mass but also bacterial cell viability. The combinatorial use of sublethal concentrations of totarol and vancomycin showed antibacterial activity, as observed in the time-kill assay. Quantitative polymerase chain reaction assays revealed a concentration-dependent downregulation of key virulence genes (vanA, ace, asa, efaA, and esp) in VREF when exposed to totarol. In summary, totarol emerges as a promising adjuvant with vancomycin for inhibiting VREF, addressing vancomycin resistance and biofilm formation-critical challenges associated with VRE infection. Since this was an in vitro study, the role of totarol in the clinical implications of VREF treatment remains to be demonstrated.
Assuntos
Antibacterianos , Biofilmes , Enterococcus faecalis , Enterococos Resistentes à Vancomicina , Vancomicina , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Humanos , Sinergismo Farmacológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Resistência a Vancomicina , Fatores de Virulência/genéticaRESUMO
Glutamate is one of the predominant excitatory neurotransmitters released from the central nervous system; however, at high concentrations, this substance may induce excitotoxicity. This phenomenon is involved in numerous neuropathologies. At present, clinically available pharmacotherapeutic agents to counteract glutamatergic excitotoxicity are not completely effective; therefore, research to develop novel compounds is necessary. In this study, the main objective was to determine the pharmacotherapeutic potential of the hydroalcoholic extract of Psidium guajava (PG) in a model of oxidative stress-induced by exposure to glutamate utilizing Danio rerio larvae (zebrafish) as a model. Data showed that treatment with glutamate produced a significant increase in oxidative stress, chromatin damage, apoptosis, and locomotor dysfunction. All these effects were attenuated by pre-treatment with the classical antioxidant N-acetylcysteine (NAC). Treatment with PG inhibited oxidative stress responsible for cellular damage induced by glutamate. However, exposure to PG failed to prevent glutamate-initiated locomotor damage. Our findings suggest that under conditions of oxidative stress, PG can be considered as a promising candidate for treatment of glutamatergic excitotoxicity and consequent neurodegenerative diseases.
Assuntos
Psidium , Peixe-Zebra , Animais , Glutamatos/toxicidade , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de PlantaRESUMO
TRAF6 is an E3 ubiquitin ligase that plays a crucial role in cell signaling. It is known that MMP is involved in tumor metastasis, and TRAF6 induces MMP-9 expression by binding to BSG. However, inhibiting TRAF6's ubiquitinase activity without disrupting the RING domain is a challenge that requires further research. To address this, we conducted computer-based drug screening to identify potential TRAF6 inhibitors. Using a ligand-receptor complex pharmacophore based on the inhibitor EGCG, known for its anti-tumor properties, we screened 52,765 marine compounds. After the molecular docking of 405 molecules with TRAF6, six compounds were selected for further analysis. By replacing fragments of non-binding compounds and conducting second docking, we identified two promising molecules, CMNPD9212-16 and CMNPD12791-8, with strong binding activity and favorable pharmacological properties. ADME and toxicity predictions confirmed their potential as TRAF6 inhibitors. Molecular dynamics simulations showed that CMNPD12791-8 maintained a stable structure with the target protein, comparable to EGCG. Therefore, CMNPD12791-8 holds promise as a potential inhibitor of TRAF6 for inhibiting tumor growth and metastasis.
Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fator 6 Associado a Receptor de TNF , Humanos , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/metabolismo , Organismos Aquáticos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Farmacóforo , Peptídeos e Proteínas de Sinalização IntracelularRESUMO
The search for anticancer drugs that target ferroptosis is a promising avenue of research. SLC7A11, a key protein involved in ferroptosis, has been identified as a potential target for drug development. Through screening efforts, novel inhibitors of SLC7A11 have been designed with the aim of promoting ferroptosis and ultimately eliminating cancer cells. We initially screened 563 small molecules using pharmacophore and 2D-QSAR models. Molecular docking and ADMET toxicity predictions, with Erastin as a positive control, identified the small molecules 42711 and 27363 as lead compounds with strong inhibitory activity against SLC7A11. Further optimization resulted in the development of a new inhibitor structure (42711_11). Molecular docking and ADMET re-screening demonstrated successful fragment substitution for this small molecule. Final molecular dynamics simulations also confirmed its stable interaction with the protein. These findings represent a significant step towards the development of new therapeutic strategies for ferroptosis-related diseases.
Assuntos
Sistema y+ de Transporte de Aminoácidos , Antineoplásicos , Ferroptose , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Humanos , Ferroptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Sistema y+ de Transporte de Aminoácidos/metabolismo , Organismos Aquáticos , AnimaisRESUMO
Leishmania braziliensis (L. braziliensis) causes cutaneous leishmaniasis (CL) in the New World. The costs and the side effects of current treatments render imperative the development of new therapies that are affordable and easy to administer. Topical treatment would be the ideal option for the treatment of CL. This underscores the urgent need for affordable and effective treatments, with natural compounds being explored as potential solutions. The alkaloid piperine (PIP), the polyphenol curcumin (CUR), and the flavonoid quercetin (QUE), known for their diverse biological properties, are promising candidates to address these parasitic diseases. Initially, the in vitro cytotoxicity activity of the compounds was evaluated using U-937 cells, followed by the assessment of the leishmanicidal activity of these compounds against amastigotes of L. braziliensis. Subsequently, a golden hamster model with stationary-phase L. braziliensis promastigote infections was employed. Once the ulcer appeared, hamsters were treated with QUE, PIP, or CUR formulations and compared to the control group treated with meglumine antimoniate administered intralesionally. We observed that the three organic compounds showed high in vitro leishmanicidal activity with effective concentrations of less than 50 mM, with PIP having the highest activity at a concentration of 8 mM. None of the compounds showed cytotoxic activity for U937 macrophages with values between 500 and 700 mM. In vivo, topical treatment with QUE daily for 15 days produced cured in 100% of hamsters while the effectiveness of CUR and PIP was 83% and 67%, respectively. No failures were observed with QUE. Collectively, our data suggest that topical formulations mainly for QUE but also for CUR and PIP could be a promising topical treatment for CL. Not only the ease of obtaining or synthesizing the organic compounds evaluated in this work but also their commercial availability eliminates one of the most important barriers or bottlenecks in drug development, thus facilitating the roadmap for the development of a topical drug for the management of CL caused by L. braziliensis.
Assuntos
Alcaloides , Antiprotozoários , Benzodioxóis , Curcumina , Leishmania braziliensis , Leishmaniose Cutânea , Piperidinas , Alcamidas Poli-Insaturadas , Cricetinae , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Curcumina/farmacologia , Leishmaniose Cutânea/parasitologia , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Mesocricetus , Antiprotozoários/farmacologiaRESUMO
Although berberine (BBR) is well known as a traditional medicine used in treatment of gastrointestinal diseases, its potent against viral gastroenteritis has not been specifically reported. This study aims to investigate the antiviral activity of BBR against rotavirus and evaluate its cytotoxicity and pharmacological efficacies, including antioxidant and anti-inflammatory activities in vitro. Using ultraviolet-visible absorption spectroscopy, the saturation concentration of BBR was determined as 2261 µg/mL, indicating that BBR is a poor water-soluble compound. The inhibition rate of NO production of BBR solution at a concentration of 238 µg/mL was similar to that of Cardamonin 0.3 µM with a cell viability of 92,46±0.35%, revealing the anti-inflammatory activity of BBR. The cytotoxicity of BBR solution depended on its concentration, whereby the 50% cytotoxicity concentration (CC50) of BBR after 96 h exposure was 664 µg/mL. Investigation of cytopathic effects (CPE) of MA104 cells treated with BBR and BBR-incubated rotavirus indicates that BBR could effectively inhibit the replication of rotavirus. CPEs were not observed in the cells inoculated with rotavirus (100TCID50) which was pre-incubated with BBR for 96 hours at BBR concentration of 283 µg/mL. Therefore, the study provides reliable results to demonstrate the ability of BBR to inhibit the replication of rotavirus.
RESUMO
Coronavirus can cause various diseases, from mild symptoms to the recent severe COVID-19. The coronavirus RNA genome is frequently mutated due to its RNA nature, resulting in many pathogenic and drug-resistant variants. Therefore, many medicines should be prepared to respond to the various coronavirus variants. In this report, we demonstrated that Forsythia viridissima fruit ethanol extract (FVFE) effectively reduces coronavirus replication. We attempted to identify the active compounds and found that actigenin from FVFE effectively reduces human coronavirus replication. Arctigenin treatment can reduce coronavirus protein expression and coronavirus-induced cytotoxicity. These results collectively suggest that arctigenin is a potent natural compound that prevents coronavirus replication.
Assuntos
Forsythia , Frutas , Furanos , Lignanas , Extratos Vegetais , Replicação Viral , Forsythia/química , Lignanas/farmacologia , Replicação Viral/efeitos dos fármacos , Furanos/farmacologia , Humanos , Frutas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Antivirais/farmacologia , Antivirais/química , Animais , Chlorocebus aethiops , Células VeroRESUMO
The process of adipocyte browning has recently emerged as a novel therapeutic target for combating obesity and obesity-related diseases. Non-shivering thermogenesis is the process of biological heat production in mammals and is primarily mediated via brown adipose tissue (BAT). The recruitment and activation of BAT can be induced through chemical drugs and nutrients, with subsequent beneficial health effects through the utilization of carbohydrates and fats to generate heat to maintain body temperature. However, since potent drugs may show adverse side effects, nutritional or natural substances could be safe and effective as potential adipocyte browning agents. This review aims to provide an extensive overview of the natural food compounds that have been shown to activate brown adipocytes in humans, animals, and in cultured cells. In addition, some key genetic and molecular targets and the mechanisms of action of these natural compounds reported to have therapeutic potential to combat obesity are discussed.
Assuntos
Tecido Adiposo Marrom , Produtos Biológicos , Obesidade , Termogênese , Termogênese/efeitos dos fármacos , Humanos , Animais , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Marrons/efeitos dos fármacosRESUMO
Olive leaf contains plenty of phenolic compounds, among which oleuropein (OP) is the main component and belongs to the group of secoiridoids. Additionally, phenolic compounds such as oleocanthal (OL) and oleacein (OC), which share a structural similarity with OP and two aldehyde groups, are also present in olive leaves. These compounds have been studied for several health benefits, such as anti-cancer and antioxidant effects. However, their impact on the skin remains unknown. Therefore, this study aims to compare the effects of these three compounds on melanogenesis using B16F10 cells and human epidermal cells. Thousands of gene expressions were measured by global gene expression profiling with B16F10 cells. We found that glutaraldehyde compounds derived from olive leaves have a potential effect on the activation of the melanogenesis pathway and inducing differentiation in B16F10 cells. Accordingly, the pro-melanogenesis effect was investigated by means of melanin quantification, mRNA, and protein expression using human epidermal melanocytes (HEM). This study suggests that secoiridoid and its derivates have an impact on skin protection by promoting melanin production in both human and mouse cell lines.
Assuntos
Glucosídeos Iridoides , Melaninas , Melanócitos , Olea , Fenóis , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Olea/química , Animais , Melaninas/biossíntese , Melaninas/metabolismo , Camundongos , Fenóis/farmacologia , Glucosídeos Iridoides/farmacologia , Iridoides/farmacologia , Aldeídos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Monoterpenos Ciclopentânicos , Células Epidérmicas/metabolismo , Células Epidérmicas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Epiderme/metabolismo , Epiderme/efeitos dos fármacos , Linhagem Celular Tumoral , Folhas de Planta/química , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , MelanogêneseRESUMO
Emphysema is one of the major components of chronic obstructive pulmonary disease (COPD), which is characterised by the destruction and enlargement of air spaces, leading to airflow limitation and dyspnoea, finally progressing to oxygen dependency. The alveolar wall destruction is due to chronic inflammation, oxidative stress, apoptosis, and proteinase/anti-proteinase imbalance. So far, there has been no effective therapy for patients with COPD. We evaluated the therapeutic efficacy of tannic acid (TA), a naturally occurring plant-derived polyphenol in the murine emphysema model. In C57BL/6 J mice, we established emphysema by intratracheal instillation of elastase (EL). Then, mice were treated with TA and evaluated 1 and 21 days post-EL instillation. After 24 h, TA treatment significantly reduced EL-induced histopathological alterations, infiltrating leukocytes, and gene expression of markers of inflammation and apoptosis. Similarly, after 21 days, TA treatment suppressed the mean linear intercept, gene expression of proteinases, and increased elastic fiber contents in the lungs when compared to the EL-alone group. Furthermore, EL induced the activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa light chain enhancer of activated B cells (NF-kB) p65 pathways in the lungs was suppressed by TA treatment. In summary, TA has the potential to mitigate EL-induced inflammation, apoptosis, proteinase/anti-proteinase imbalance, and subsequent emphysema in mice.
Assuntos
Enfisema , Pneumonia , Polifenóis , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Elastase Pancreática , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Inflamação/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Peptídeo HidrolasesRESUMO
Burns are a global health problem and can be caused by several factors, including ultraviolet (UV) radiation. Exposure to UVB radiation can cause sunburn and a consequent inflammatory response characterised by pain, oedema, inflammatory cell infiltration, and erythema. Pharmacological treatments available to treat burns and the pain caused by them include nonsteroidal anti-inflammatory drugs (NSAIDs), opioids, antimicrobials and glucocorticoids, which are associated with adverse effects. Therefore, the search for new therapeutic alternatives is needed. Diosmetin, an aglycone of the flavonoid diosmin, has antinociceptive, antioxidant and anti-inflammatory properties. Thus, we evaluated the antinociceptive and anti-inflammatory effects of topical diosmetin (0.01, 0.1 and 1%) in a UVB radiation-induced sunburn model in mice. The right hind paw of the anaesthetised mice was exposed only once to UVB radiation (0.75 J/cm2) and immediately treated with diosmetin once a day for 5 days. The diosmetin antinociceptive effect was evaluated by mechanical allodynia and pain affective-motivational behaviour, while its anti-inflammatory activity was assessed by measuring paw oedema and polymorphonuclear cell infiltration. Mice exposed to UVB radiation presented mechanical allodynia, increased pain affective-motivational behaviour, paw oedema and polymorphonuclear cell infiltration into the paw tissue. Topical Pemulen® TR2 1% diosmetin reduced the mechanical allodynia, the pain affective-motivational behaviour, the paw oedema and the number of polymorphonuclear cells in the mice's paw tissue similar to that presented by Pemulen® TR2 0.1% dexamethasone. These findings indicate that diosmetin has therapeutic potential and may be a promising strategy for treating patients experiencing inflammatory pain, especially those associated with sunburn.
Assuntos
Anti-Inflamatórios , Modelos Animais de Doenças , Flavonoides , Inflamação , Nociceptividade , Queimadura Solar , Raios Ultravioleta , Animais , Queimadura Solar/tratamento farmacológico , Queimadura Solar/patologia , Camundongos , Raios Ultravioleta/efeitos adversos , Inflamação/tratamento farmacológico , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Flavonoides/farmacologia , Flavonoides/administração & dosagem , Nociceptividade/efeitos dos fármacos , Administração Tópica , Analgésicos/farmacologia , Analgésicos/administração & dosagem , Edema/tratamento farmacológico , Hiperalgesia/tratamento farmacológicoRESUMO
Quercetin is a natural flavonoid that is widely found in fruits and vegetables. As an important flavonoid, it exhibits a wide range of biological activities, including antioxidant, anti-inflammatory, antiviral, immunomodulatory, and analgesic activities. Quercetin exerts powerful antioxidant activity by regulating glutathione, enzyme activity, and the production of reactive oxygen species (ROS). Quercetin exerts powerful anti-inflammatory effects by acting on the Nod-like receptor protein 3 (NLRP3) inflammasome. In diabetes, quercetin has been shown to improve insulin sensitivity and reduce high blood sugar level, while, in neurological diseases, it potentially prevents neuronal degeneration and cognitive decline by regulating neuroinflammation. In addition, in liver diseases, quercetin may improve liver inflammation and fibrosis by regulating the NLRP3 activity. In addition, quercetin may improve inflammation in other diseases based on the NLRP3 inflammasome. With this background, in this review, we have discussed the progress in the study on the mechanism of quercetin toward improving inflammation via NLRP3 inflammasome in the past decade. In addition, from the perspective of quercetin glycoside derivatives, the anti-inflammatory mechanism of hyperoside, rutin, and isoquercetin based on NLRP3 inflammasome has been discussed. Moreover, we have discussed the pharmacokinetics of quercetin and its nanoformulation application, with the aim to provide new ideas for further research on the anti-inflammatory effect of quercetin and its glycoside derivatives based on NLRP3 inflammasome, as well as in drug development and application.
RESUMO
Natural flavonoids exert many potential health benefits, including anti-hyperglycaemic effects. However, the effects of gossypetin (GTIN) on glucose homeostasis in pre-diabetes have not yet been investigated. This study examined the effects of GTIN on key markers of glucose homeostasis in a diet-induced pre-diabetic rat model. Pre-diabetes was induced by allowing the animals to feed on a high-fat high-carbohydrate (HFHC) diet supplemented with 15% fructose water for 20 weeks. Following pre-diabetes induction, the pre-diabetic animals were sub-divided into five groups (n = 6), where they were either orally treated with GTIN (15 mg/kg) or metformin (MET) (500 mg/kg), both with and without dietary intervention, over a 12-week period. The results demonstrated that animals in the untreated pre-diabetic (PD) control group exhibited significantly higher fasting and postprandial blood glucose levels, as well as elevated plasma insulin concentrations and increased homeostatic model assessment for insulin resistance (HOMA2-IR) index, relative to the non-pre-diabetic (NPD) group. Similarly, increased caloric intake, body weight and plasma ghrelin levels were observed in the PD control group. Notably, these parameters were significantly reduced in the PD animals receiving GTIN treatment. Additionally, glycogen levels in the liver and skeletal muscle, which were disturbed in the PD control group, showed significant improvement in both GTIN-treated groups. These findings may suggest that GTIN administration, with or without dietary modifications, may offer therapeutic benefits in ameliorating glucose homeostasis disturbances associated with the PD state.
Assuntos
Glicemia , Flavonoides , Homeostase , Estado Pré-Diabético , Animais , Ratos , Homeostase/efeitos dos fármacos , Glicemia/metabolismo , Masculino , Flavonoides/farmacologia , Estado Pré-Diabético/tratamento farmacológico , Estado Pré-Diabético/metabolismo , Resistência à Insulina , Dieta Hiperlipídica/efeitos adversos , Hipoglicemiantes/farmacologia , Glicogênio/metabolismo , Metformina/farmacologia , Insulina/sangue , Insulina/metabolismo , Glucose/metabolismo , Peso Corporal/efeitos dos fármacosRESUMO
The increase of antibiotic-resistant bacterial pathogens has created challenges in treatment and warranted the design of antibiotics against comparatively less exploited targets. The peptidoglycan (PG) biosynthesis delineates unique pathways for the design and development of a novel class of drugs. Mur ligases are an essential component of bacterial cell wall synthesis that play a pivotal role in PG biosynthesis to maintain internal osmotic pressure and cell shape. Inhibition of these enzymes can interrupt bacterial replication and hence, form attractive targets for drug discovery. In the present work, we focused on the PG biosynthesis pathway enzyme, UDP-N-acetylpyruvylglucosamine reductase, from Salmonella enterica serovar Typhi (stMurB). Biophysical characterization of purified StMurB was performed to gauge the molecular interactions and estimate thermodynamic stability for determination of attributes for possible therapeutic intervention. The thermal melting profile of MurB was monitored by circular dichroism and validated through differential scanning calorimetry experiment. Frequently used chemical denaturants, GdmCl and urea, were employed to study the chemical-induced denaturation of stMurB. In the search for natural compound-based inhibitors, against this important drug target, an in silico virtual screening based investigation was conducted with modeled stMurB structure. The three top hits (quercetin, berberine, and scopoletin) returned were validated for complex stability through molecular dynamics simulation. Further, fluorescence binding studies were undertaken for the selected natural compounds with stMurB alone and with NADPH bound form. The compounds scopoletin and berberine, displayed lesser binding to stMurB whereas quercetin exhibited stronger binding affinity than NADPH. This study suggests that quercetin can be evolved as an inhibitor of stMurB enzyme.
Assuntos
Berberina , Salmonella typhi , NADP , Quercetina , Escopoletina , Antibacterianos/farmacologiaRESUMO
Triple-negative breast cancer (TNBC), accounting for about 15â¼18% of all breast cancers, is notorious for its poor prognosis, high rate of relapse and short overall survival. Because of lacking effective therapeutic targets or drugs, treatment of TNBC in clinical encounters great obstacle. Siegesbeckiaorientalis L. have been used as a traditional Chinese medicine "Xi-Xian-Cao" for centuries with multiple medicinal benefits including cancerous treatment. We have reported the isolation of twenty-seven germacranolides including So-2 from the aerial parts of S. orientalis with potent cytotoxicity against breast cancer cells. The studyaims to verified the anti-TNBC function of the natural compound So-2 both in vitro and vivo and uncover the underlying mechanism. The results showed that So-2 caused cell cycle arrest and suppress TNBC cell proliferation and migration. Also, So-2 was first identified to be a bona fide ferroptosis inducer in TNBC cells. So-2 effectively suppressed tumor growth of TNBC by using an orthotopic transplantation tumor model. We also characterized the oncogenic role of the transcription factor E2F7 in TNBC. E2F7 was demonstrated to be involved in the ferroptosis-inducing and tumor suppression effect of So-2. Altogether, So-2 exhibits inhibitory effect on TNBC both in vitro and vivo by inducing TNBC ferroptosis via downregulating the expression of E2F7. These findings provide valuable insight into the pathogenesis of TNBC. The natural compound So-2, isolated from Chinese traditional medicine, might be a prospective drug candidate in TNBC therapy.
Assuntos
Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Fator de Transcrição E2F7 , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas/tratamento farmacológicoRESUMO
BACKGROUND: The bacterial secondary metabolite prodigiosin has been shown to exert anticancer, antimalarial, antibacterial and immunomodulatory properties. With regard to cancer, it has been reported to affect cancer cells but not non-malignant cells, rendering prodigiosin a promising lead compound for anticancer drug discovery. However, a direct protein target has not yet been experimentally identified. METHODS: We used mass spectrometry-based thermal proteome profiling in order to identify target proteins of prodigiosin. For target validation, we employed a genetic knockout approach and electron microscopy. RESULTS: We identified the Golgi stacking protein GRASP55 as target protein of prodigiosin. We show that prodigiosin treatment severely affects Golgi morphology and functionality, and that prodigiosin-dependent cytotoxicity is partially reduced in GRASP55 knockout cells. We also found that prodigiosin treatment results in decreased cathepsin activity and overall blocks autophagic flux, whereas co-localization of the autophagosomal marker LC3 and the lysosomal marker LAMP1 is clearly promoted. Finally, we observed that autophagosomes accumulate at GRASP55-positive structures, pointing towards an involvement of an altered Golgi function in the autophagy-inhibitory effect of this natural compound. CONCLUSION: Taken together, we propose that prodigiosin affects autophagy and Golgi apparatus integrity in an interlinked mode of action involving the regulation of organelle alkalization and the Golgi stacking protein GRASP55. Video Abstract.