Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 696
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Arch Virol ; 169(5): 107, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647708

RESUMO

African swine fever (ASF) is a highly fatal and contagious viral disease caused by African swine fever virus (ASFV). It has caused significant economic losses to the swine industry and poses a serious threat to food security worldwide. Diagnostic tests with high sensitivity are essential for the effective management of ASF. Here, we describe a single-tube nested PCR (STN-PCR) assay for the detection of ASFV in which two consecutive amplification steps are carried out within a single tube. Two pairs of primers (outer and inner) were designed to target the p72 gene of ASFV. The primer concentrations, annealing temperatures, and number of amplification cycles were optimized to ensure the consecutive utilization of outer and inner primer pairs during amplification while minimizing the likelihood of amplicon contamination. In comparison with two conventional endpoint PCR assays (one of which is recommended by the World Organization for Animal Health), the newly developed STN-PCR assay demonstrated a 100-fold improvement in the limit of detection (LOD), detecting 100 copies of ASFV genomic DNA, whereas the endpoint PCR assays could detect no fewer than 10,000 copies. The clinical performance of the STN-PCR assay was validated using 95 tissue samples suspected of being positive for ASFV, and the assay showed 100% specificity. A Cohen's kappa value of 0.91 indicated perfect agreement between the assays. This new STN-PCR assay is a potentially valuable tool that will facilitate the control of ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Animais , Febre Suína Africana/diagnóstico , Febre Suína Africana/virologia , Suínos , Reação em Cadeia da Polimerase/métodos , Primers do DNA/genética , DNA Viral/genética , Limite de Detecção
2.
Epidemiol Infect ; 152: e83, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705586

RESUMO

The mycosis histoplasmosis is also considered a zoonosis that affects humans and other mammalian species worldwide. Among the wild mammals predisposed to be infected with the etiologic agent of histoplasmosis, bats are relevant because they are reservoir of Histoplasma species, and they play a fundamental role in maintaining and spreading fungal propagules in the environments since the infective mycelial phase of Histoplasma grows in their accumulated guano. In this study, we detected the fungal presence in organ samples of bats randomly captured in urban areas of Araraquara City, São Paulo, Brazil. Fungal detection was performed using a nested polymerase chain reaction to amplify a molecular marker (Hcp100) unique to H. capsulatum, which revealed the pathogen presence in organ samples from 15 out of 37 captured bats, indicating 40.5% of infection. Out of 22 Hcp100-amplicons generated, 41% corresponded to lung and trachea samples and 59% to spleen, liver, and kidney samples. Data from these last three organs suggest that bats develop disseminated infections. Considering that infected bats create environments with a high risk of infection, it is important to register the percentage of infected bats living in urban areas to avoid risks of infection to humans, domestic animals, and wildlife.


Assuntos
Quirópteros , Histoplasma , Histoplasmose , Animais , Quirópteros/microbiologia , Brasil/epidemiologia , Histoplasma/genética , Histoplasma/isolamento & purificação , Histoplasmose/epidemiologia , Histoplasmose/veterinária , Histoplasmose/microbiologia , Reação em Cadeia da Polimerase/veterinária
3.
BMC Vet Res ; 20(1): 195, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741095

RESUMO

Small ruminant lentiviruses (SRLVs) are widespread and infect goats and sheep. Several reports also suggest that SRLVs can infect wild ruminants. The presence of specific antibodies against SRLVs has been identified in wild ruminants from Poland, but no studies have been conducted to detect proviral DNA of SRLVs in these animals. Therefore, the purpose of this study was to examine samples from Polish wild ruminants to determine whether these animals can serve as reservoirs of SRLVs under natural conditions. A total of 314 samples were tested from red deer (n = 255), roe deer (n = 52) and fallow deer (n = 7) using nested real-time PCR. DNA from positive real-time PCR samples was subsequently used to amplify a CA fragment (625 bp) of the gag gene, a 1.2 kb fragment of the pol gene and an LTR-gag fragment. Three samples (0.95%) were positive according to nested real-time PCR using primers and probe specific for CAEV (SRLV group B). All the samples were negative for the primers and probe specific for MVV (SRLV A group). Only SRLV LTR-gag sequences were obtained from two red deer. Phylogenetic analysis revealed that these sequences were more closely related to CAEV than to MVV. Our results revealed that deer can carry SRLV proviral sequences and therefore may play a role in the epidemiology of SRLVs. To our knowledge, this is the first study describing SRLV sequences from red deer.


Assuntos
DNA Viral , Cervos , Infecções por Lentivirus , Provírus , Animais , Cervos/virologia , Polônia/epidemiologia , Provírus/genética , Infecções por Lentivirus/veterinária , Infecções por Lentivirus/virologia , Infecções por Lentivirus/epidemiologia , DNA Viral/genética , Lentivirus/isolamento & purificação , Lentivirus/genética , Lentivirus/classificação , Filogenia , Reação em Cadeia da Polimerase em Tempo Real/veterinária
4.
Malar J ; 22(1): 211, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468917

RESUMO

BACKGROUND: Malaria is a major public health problem, particularly in the tropical regions of America, Africa and Asia. Plasmodium falciparum is not only the most widespread but also the most deadly species. The share of Plasmodium infections caused by the other species (Plasmodium ovale and Plasmodium malariae) is clearly underestimated. The objective of the study was to determine the molecular epidemiology of plasmodial infection due to P. malariae and P. ovale in Côte d'Ivoire. METHODS: The study was cross-sectional. The study participants were recruited from Abengourou, San Pedro and Grand-Bassam. Sample collection took place from May 2015 to April 2016. Questionnaires were administered and filter paper blood samples were collected for parasite DNA extraction. The molecular analysis was carried out from February to March 2021. A nested PCR was used for species diagnosis. The data was presented in frequencies and proportions. RESULTS: A total of 360 patients were recruited, including 179 men (49,7%) for 181 women (50,3%). The overall Plasmodium positive rate was 72.5% (261/360). The specific index was 77.4% and 1.5% for P. falciparum and P. malariae in mono-infection, respectively. There was also 15% P. falciparum and P. malariae co-infection, 3.4% P. falciparum and P. ovale co-infection and 2.3% P. falciparum, P. malariae and P. ovale triple-infection. Typing of P. ovale subspecies showed a significant predominance of P. ovale curtisi (81.2% of cases). CONCLUSION: Plasmodium falciparum remains the most prevalent malaria species in Côte d'Ivoire, but P. malariae and P. ovale are also endemic mostly in co-infection. Malaria elimination requires a better understanding of the specific epidemiological characteristics of P. malariae and P. ovale with a particular emphasis on the identification of asymptomatic carriers.


Assuntos
Coinfecção , Malária Falciparum , Malária , Plasmodium ovale , Masculino , Humanos , Feminino , Plasmodium falciparum/genética , Côte d'Ivoire/epidemiologia , Epidemiologia Molecular , Coinfecção/epidemiologia , Coinfecção/parasitologia , Estudos Transversais , Prevalência , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária/epidemiologia , Malária/parasitologia , Plasmodium ovale/genética , Plasmodium malariae/genética
5.
Malar J ; 22(1): 110, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978056

RESUMO

BACKGROUND: Malaria remains a main parasitic disease of humans. Although the largest number of cases is reported in the African region, there are still endemic foci in the Americas. Central America reported 36,000 malaria cases in 2020, which represents 5.5% of cases in the Americas and 0.015% of cases globally. Most malaria infections in Central America are reported in La Moskitia, shared by Honduras and Nicaragua. In the Honduran Moskitia, less than 800 cases were registered in 2020, considering it an area of low endemicity. In low endemicity settings, the number of submicroscopic and asymptomatic infections tends to increase, leaving many cases undetected and untreated. These reservoirs challenge national malaria elimination programmes. This study aimed to assess the diagnostic performance of Light Microscopy (LM), a nested PCR test and a photoinduced electron transfer polymerase chain reaction (PET-PCR) in a population of febrile patients from La Moskitia. METHODS: A total of 309 febrile participants were recruited using a passive surveillance approach at the Puerto Lempira hospital. Blood samples were analysed by LM, nested PCR, and PET-PCR. Diagnostic performance including sensitivity, specificity, negative and positive predictive values, kappa index, accuracy, and ROC analysis was evaluated. The parasitaemia of the positive samples was quantified by both LM and PET-PCR. RESULTS: The overall prevalence of malaria was 19.1% by LM, 27.8% by nPCR, and 31.1% by PET-PCR. The sensitivity of LM was 67.4% compared to nPCR, and the sensitivity of LM and nPCR was 59.6% and 80.8%, respectively, compared to PET-PCR. LM showed a kappa index of 0.67, with a moderate level of agreement. Forty positive cases by PET-PCR were not detected by LM. CONCLUSIONS: This study demonstrated that LM is unable to detect parasitaemia at low levels and that there is a high degree of submicroscopic infections in the Honduran Moskitia.


Assuntos
Malária Falciparum , Malária , Humanos , Malária/epidemiologia , Malária/diagnóstico , Reação em Cadeia da Polimerase , Técnicas de Amplificação de Ácido Nucleico , Parasitemia/epidemiologia , Tomografia por Emissão de Pósitrons , Malária Falciparum/parasitologia , Sensibilidade e Especificidade , Plasmodium falciparum/genética
6.
Xenotransplantation ; 30(4): e12803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37120823

RESUMO

Porcine cytomegalovirus (PCMV) is widely distributed in pigs and difficult to detect due to latency. PCMV infection of source pigs was associated with early graft failure after cardiac and renal xenotransplantation into nonhuman primates. Importantly, PCMV infection of the first genetically modified pig heart into a human may have contributed to the reduced survival of the patient. Sensitive and reliable assays for detection of latent PCMV infection are thus indispensable. Here, we report the development of five peptide-induced rabbit antisera specific for PCMV glycoprotein B (gB) and their validation for detection of PCMV in infected pig fallopian tube (PFT) cells by immunofluorescence and electron microscopy (EM). The anti-gB antibodies were also used for detection by Western blot analysis of PCMV purified from the supernatant of infected PFT cells. Sera of infected versus non-infected pigs have been compared. In parallel, PCMV viral load in blood samples of the animals was quantified by a novel highly sensitive nested-PCR and qPCR assay. A combination of four partly overlapping peptides from the gB C-terminus was used to establish a diagnostic ELISA for PCMV gB specific pig antibodies which is able to differentiate infected from non-infected animals and to quantify maternal antibodies in neonates. The combination of a highly sensitive nested PCR for direct virus detection with a sensitive peptide-based ELISA detecting anti-PCMV gB-antibodies, supplemented by Western blot analysis and/or immunohistochemistry for virus detection will reliably differentiate pigs with active infection, latently infected pigs, and non-infected pigs. It may significantly improve the virologic safety of xenotransplantation.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Feminino , Animais , Suínos , Humanos , Coelhos , Citomegalovirus/genética , Transplante Heterólogo , Infecções por Citomegalovirus/diagnóstico , Reação em Cadeia da Polimerase , Peptídeos
7.
BMC Vet Res ; 19(1): 213, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853405

RESUMO

Anaplasmosis is a highly prevalent tick-borne intracellular bacterial disease that affects various host species globally, particularly ruminants in tropical and subtropical regions. However, information regarding the distribution and epidemiology of anaplasmosis in small and large ruminants on Hainan Isalnd is limited. To address this knowledge gap, the present study aimed to assess the occurrence of Anaplasma spp. infections in goats (N = 731) and cattle (N = 176) blood samples using nested PCR and conventional PCR based assays. The results revealed an overall prevalence of 30.1% in goats and 14.8% in cattle. The infection rates of A. bovis, A. phagocytophilum, A. ovis and A. capra in goat samples were 22.7%, 13.8%, 2.0% and 3.4%, respectively, while the infection rates of A. bovis, A. phagocytophilum and A. marginale in cattle samples were 11.4%, 6.3% and 5.7%, respectively. A. bovis exhibited the highest prevalence among the Anaplasma spp. in both goat and cattle samples. In addition, the most frequent co-infection was the one with A. phagocytophilum and A. bovis. It was found that the age, sex and feeding habits of cattle and goats were considered to be important risk factors. Evaluation of the risk factor relating to the rearing system showed that the infection rate for the free-range goats and cattle was significantly higher when compared with stall-feeding system.This study represents one of the largest investigations on the distribution, prevalence, and risk factors associated with Anaplasma infection in ruminants on Hainan Island, highlighting a higher circulation of the infection in the region than previously anticipated. Further reasesrch is necessary to investigate tick vectors, reservoir animals, and the zoonotic potential of the Anaplasma spp. in this endemic region of Hainan Island.


Assuntos
Anaplasmose , Doenças dos Bovinos , Doenças das Cabras , Doenças dos Ovinos , Doenças Transmitidas por Carrapatos , Animais , Bovinos , Ovinos , Anaplasma/genética , Anaplasmose/epidemiologia , Anaplasmose/microbiologia , Cabras/microbiologia , Ruminantes/microbiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , China/epidemiologia , Variação Genética , Filogenia , Doenças das Cabras/epidemiologia , Doenças das Cabras/microbiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Ovinos/epidemiologia
8.
Exp Parasitol ; 247: 108494, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36849051

RESUMO

Echinococcosis is a serious zoonotic life-threatening parasitic disease caused by metacestodes of Echinococcus spp., and appropriate sensitive diagnosis and genotyping techniques are required to detect infections and study the genetic characterization of Echinococcus spp. isolates. In this study, a single-tube nested PCR (STNPCR) method was developed and evaluated for the detection of Echinococcus spp. DNA based on the COI gene. STNPCR was 100 times more sensitive than conventional PCR and showed the same sensitivity to common nested PCR (NPCR); but with a lower risk of cross-contamination. The limit of detection of the developed STNPCR method was estimated to be 10 copies/µL of the recombinant standard plasmids of Echinococcus spp. COI gene. In clinical application, 8 cyst tissue samples and 12 calcification tissue samples were analysed by conventional PCR with outer and inner primers and resulted in 100.00% (8/8) and 8.33% (1/12), 100.00% (8/8) and 16.67% (2/12) positive reactions, respectively, while STNPCR and NPCR were all able to identify the presence of genomic DNA in 100.00% (8/8) and 83.33% (10/12) of the same samples. Due to its high sensitivity combined with the potential for the elimination of cross-contamination, the STNPCR method was suitable for epidemiological investigations and characteristic genetic studies of Echinococcus spp. tissue samples. The STNPCR method can effectively amplify low concentrations of genomic DNA from calcification samples and cyst residues infected with Echinococcus spp. Subsequently, the sequences of positive PCR products were obtained, which were useful for haplotype analysis, genetic diversity, and evolution studies of Echinococcus spp., and understanding of Echinococcus spp. dissemination and transmission among the hosts.


Assuntos
Equinococose , Echinococcus , Animais , Humanos , Echinococcus/genética , Reação em Cadeia da Polimerase/métodos , Equinococose/diagnóstico , Plasmídeos
9.
Tohoku J Exp Med ; 261(1): 35-41, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37316278

RESUMO

Recently, the relationship between Helicobacter cinaedi (H. cinaedi) infection and several diseases, including cardiovascular and central nervous system disorders, bone and soft tissue disorders, and infectious abdominal aortic aneurysms (AAAs), has been reported. Moreover, H. cinaedi may be associated with arteriosclerosis. In the present study, we investigated the association between H. cinaedi infection and clinically uninfected AAAs. Genetic detection of H. cinaedi in the abdominal aneurysm wall was attempted in 39 patients with AAA undergoing elective open surgery between June 2019 and June 2020. DNA samples extracted from the arterial wall obtained during surgery were analyzed using nested polymerase chain reaction (PCR). The target gene region was the H. cinaedi-specific cytolethal distending toxin subunit B (cdtB). Nine (23.1%) of 39 patients showed positive bands corresponding to H. cinaedi, and further sequencing analyses demonstrated the presence of H. cinaedi DNAs in their aneurysm walls. In contrast, all the non-aneurysm arterial walls in our patients were negative for H. cinaedi. In conclusion, this is the first report of the detection of H. cinaedi in the walls of a clinically non-infectious AAA.


Assuntos
Aterosclerose , Infecções por Helicobacter , Helicobacter , Humanos , Helicobacter/genética , Aterosclerose/complicações , Infecções por Helicobacter/complicações
10.
Plant Dis ; 107(12): 3763-3772, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37386702

RESUMO

Iris severe mosaic virus (ISMV, Potyviridae) can threaten the sustainability of iris production and the marketability of the plants. Effective intervention and control strategies require rapid and early detection of viral infections. The wide range of viral symptoms, from asymptomatic to severe chlorosis of the leaves, renders diagnosis solely based on visual indicators ineffective. A nested PCR-based diagnostic assay was developed for the reliable detection of ISMV in iris leaves and in rhizomes. Considering the genetic variability of ISMV, two primer pairs were designed to detect the highly conserved 3' untranslated region (UTR) of the viral genomic RNA. The specificity of the primer pairs was confirmed against four other potyviruses. The sensitivity of detection was enhanced by one order of magnitude using diluted cDNA and a nested approach. Nested PCR facilitated detecting ISMV on field-grown samples beyond the capabilities of a currently available immunological test and in iris rhizome, which would facilitate ensuring clean stock is planted. This approach dramatically improves the detection threshold of ISMV on potentially low virus titer samples. The study provides a practical, accurate, and sensitive tool for the early detection of a deleterious virus that infects a popular ornamental and landscape plant.


Assuntos
Potyvirus , Regiões 3' não Traduzidas/genética , Prevalência , Potyvirus/genética , Reação em Cadeia da Polimerase , RNA Viral/genética , Plantas
11.
J Vector Borne Dis ; 60(2): 200-206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37417170

RESUMO

BACKGROUND & OBJECTIVES: The highly sensitive method for a true understanding of malaria prevalence is of utmost importance for India's elimination strategy. The PCR reaction type with rapid detection, cost-effectiveness, and less workforce should be preferable. Multiplex PCR type accomplishes the present requirement by saving time and resources to find true surveillance data for malaria, especially in low-parasitemia/asymptomatic groups or populations. METHODS: The present study focuses on designing multiplex PCR (mPCR) to detect simultaneously Plasmodium genus (PAN) and two common Plasmodium species found in India. It is compared to standard nested PCR on 195 clinical samples to diagnose malaria. The mPCR was designed with a minimum number of primers, leading to less clogging and effective and enhanced detection. It contains one common reverse primer and three forward primers amplifying three targeted genes corresponding to P. falciparum, P. vivax, and Plasmodium genus. RESULTS: The sensitivity and specificity for mPCR were 94.06 and 95.74, respectively. The limit of detection for mPCR was 0.1 parasites/µl. The study has shown a ROC curve area for the mPCR of 0.949 for Plasmodium genus and P. falciparum and 0.897 for P. vivax with standard nPCR. INTERPRETATION & CONCLUSION: The mPCR is rapid in detecting species together, cost-effective, and requires fewer human resources than the standard nPCR. Therefore, the mPCR can be used as an alternative technique for the higher sensitive detection of the malaria parasite. It could also become a vital tool for determining malaria prevalence, facilitating the application of the most effective measures.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Plasmodium , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Plasmodium falciparum/genética , Plasmodium vivax/genética , Malária/diagnóstico , Malária/epidemiologia , Malária/parasitologia , Malária Falciparum/diagnóstico , Malária Vivax/diagnóstico , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Plasmodium/genética , Sensibilidade e Especificidade
12.
Mol Biol (Mosk) ; 57(4): 709-712, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37528792

RESUMO

Recently, there have been growing concerns over the integration of recombinant adeno-associated virus (rAAV) used in gene therapy. Wild-type adeno-associated virus (AAV) site specifically integrates into AAVS1 site of human genome, while rAAV randomly integrates into host chromosomes at low frequencies. This research aims to study the random integration events of rAAV6-EGFP packaged in Sf9 insect cells. Baculo-Sf9 manufacturing platform has the advantages of high-density suspension culture of Sf9 insect cells and large-scale production of rAAV vectors. In this study, we used different doses of Baculo-Sf9 produced rAAV6-EGFP to transduce HEK293T cells and A549-implanted tumors in vitro and in vivo. Using flow cytometry and fluorescence microscopy, we studied their EGFP gene expression efficiencies and EGFP fluorescence intensities. Using inverse nested PCR and DNA sequencing, random integration sites of rAAV6-EGFP genome into human chromosomes were identified. In vitro results showed that gene expression efficiencies became stable after 20 days and random integration frequencies were 0.2-4.2%. Both in vitro and in vivo results indicated that random integration of Baculo-Sf9 rAAV6 was dose-dependent. Sequencing results showed two random integration sites, which were on human chromosomes 8 and 12. The findings suggest that we should use as low dose of rAAV vector as possible for safe gene therapy.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Dependovirus/metabolismo , Vetores Genéticos/genética , Células HEK293 , Insetos/genética , Células Sf9
13.
Trop Anim Health Prod ; 55(2): 91, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36808565

RESUMO

Babesia microti (Apicomplexa: Piroplasmida) causes a medically important tick-borne zoonotic protozoan disease. Egyptian camels are susceptible to Babesia infection; however, just a few cases have been documented. This study aimed to identify Babesia species, specifically Babesia microti, and their genetic diversity in dromedary camels in Egypt and associated hard ticks. Blood and hard tick samples were taken from 133 infested dromedary camels slaughtered in Cairo and Giza abattoirs. The study was conducted from February to November 2021. The 18S rRNA gene was amplified by polymerase chain reaction (PCR) to identify Babesia species. Nested PCR targeting the ß-tubulin gene was used to identify B. microti. The PCR results were confirmed by DNA sequencing. Phylogenetic analysis based on the ß-tubulin gene was used to detect and genotype B. microti. Three tick genera were identified in infested camels (Hyalomma, Rhipicephalus, and Amblyomma). Babesia species were detected in 3 out of 133 blood samples (2.3%), while Babesia spp. were not detected in hard ticks by using the 18S rRNA gene. B. microti was identified in 9 out of 133 blood samples (6.8%) and isolated from Rhipicephalus annulatus and Amblyomma cohaerens by the ß-tubulin gene. The phylogenetic analysis of the ß-tubulin gene revealed that USA-type B. microti was prevalent in Egyptian camels. The results of this study suggested that the Egyptian camels may be infected with Babesia spp. and the zoonotic B. microti strains, which pose a potential risk to public health.


Assuntos
Babesia microti , Babesia , Babesiose , Ixodidae , Rhipicephalus , Animais , Babesia microti/genética , Camelus/genética , Egito , Filogenia , Tubulina (Proteína)/genética , Babesia/genética , Ixodidae/genética , RNA Ribossômico 18S/genética
14.
Curr Issues Mol Biol ; 44(8): 3648-3665, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36005146

RESUMO

Breast cancer is the leading cause of cancer death among women worldwide. Multiple extrinsic and intrinsic factors are associated with this disease's development. Various research groups worldwide have reported the presence of human papillomavirus (HPV) DNA in samples of malignant breast tumors. Although its role in mammary carcinogenesis is not fully understood, it is known that the HPV genome, once inserted into host cells, has oncogenic capabilities. The present study aimed to detect the presence of HPV DNA in 116 breast tissue biopsies and classify them according to their histology. It was found that 50.9% of the breast biopsies analyzed were malignant neoplasms, of which 74.6% were histologically classified as infiltrating ductal carcinoma. In biopsies with non-malignant breast disease, fibroadenoma was the most common benign neoplasm (39.1%). Detection of HPV DNA was performed through nested PCR using the external primer MY09/11 and the internal primer GP5+/6+. A hybridization assay genotyped HPV. HPV DNA was identified in 20.3% (12/59) of malignant neoplasms and 35% non-malignant breast disease (16/46). It was also detected in 27.3% (3/11) of breast tissue biopsies without alteration. However, there are no statistically significant differences between these groups and the existence of HPV DNA (p = 0.2521). Its presence was more frequent in non-malignant alterations than in malignant neoplasias. The most frequent genotypes in the HPV-positive samples were low-risk (LR) HPV-42 followed by high-risk (HR) HPV-31.

15.
Biochem Biophys Res Commun ; 606: 128-134, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35349821

RESUMO

High-resolution melting (HRM) analysis was performed to detect G339D and D796Y variations in the SARS-CoV-2 Omicron variant spike protein. We employed two-step PCR consisting of the first RT-PCR and the second nested PCR to prepare the amplicon for HRM analysis. The melting temperatures (Tm) of the amplicon from the cDNA of the Omicron variant receptor binding domain (RBD) were 73.1 °C (G339D variation) and 75.1 °C (D796Y variation), respectively. These Tm values were clearly distinct from those of SARS-CoV-2 isolate Wuhan-Hu-1. HRM analysis after the two-step PCR was conducted on Omicron variant-positive specimens. The HRM curve and Tm value obtained with the Omicron variant-positive specimen were coincident with those of the amplicon from cDNA of the Omicron variant RBD. Our study demonstrates the utility of HRM analysis after two-step PCR for the detection of mutations in SARS-CoV-2 gene.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , DNA Complementar , Reação em Cadeia da Polimerase , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
16.
Microb Pathog ; 169: 105596, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35654382

RESUMO

Cucumber mosaic virus (CMV) has broad host range by infecting major stable food crops and causes heavy loss especially in brinjal. In major brinjal growing tracts of Tamil Nadu, Krishnagiri recorded the highest combined infection of CMV and Candidatus Phytoplasma australasia (Ca. P. australasia) with 26%. The symptoms ranged from mild to severe mosaic, mottling, filiformity of leaves and little leaf. The virus was successfully transmitted to cowpea cv. CO7 and ridge gourd through mechanical inoculation and the presence of virus was detected both by DAC-ELISA and RT-PCR. Electron microscopy of CMV exemplified isometric particles with 28-35 nm under TEM and phytoplasma with 700-820 nm in SEM analysis. Among the different test hosts, Luffa acutangula was found to be the best indicator host for brinjal CMV isolate as it requires shorter period (4-5DPI) to express symptoms with good virus titer (A405nm 2.318). The genome characterization of CMV TNB isolate revealed that the RNA1, RNA2 and RNA3 have 97, 96 and 99% homology with other 1B sub group CMV isolates, respectively. Recombination analysis of RNA2 of CMV TNB has tomato Egyptian isolate (KT921315) as major parent and black pepper Indian isolate (KU947030) as minor parent at the conserved region (52-805nt). The characterization of phytoplasma using iphy classifier reveled Ca. P. australasia belonging to 16SrIID subgroup was present along with CMV infection. In addition, the Solanum torvum grown in and around brinjal ecosystem showed severe mosaic and exhibited 99% nucleotide identity with CMV TNB isolate and these plants also act as inoculum source during the on and off cropping season in India. To our knowledge this is the first record of mixed infection of CMV and Ca. P. australasia in brinjal and first record of CMV infection in S. torvum in India.


Assuntos
Coinfecção , Cucumovirus , Infecções por Citomegalovirus , Phytoplasma , Solanum melongena , Cucumovirus/genética , Ecossistema , Índia , Filogenia , Phytoplasma/genética , Doenças das Plantas
17.
Trop Med Int Health ; 27(8): 686-695, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653502

RESUMO

OBJECTIVES: Loa loa and Mansonella perstans are two very common filarial species in Africa. Although microscopy is the traditional diagnostic method for human filariasis, several polymerase chain reaction (PCR) methods have emerged as an alternative approach for identifying filarial parasites. The aim of this study is to compare three molecular methods and decide which is the most suitable for diagnosing human loiasis and mansonellosis in non-endemic regions using dried blood spot (DBS) as a medium for sample collection and storage. METHODS: A total of 100 DBS samples, with their corresponding thin and thick blood smears, were selected for this study. Microscopy was used as the reference method to diagnose and calculate the microfilaraemia. Filarial DNA was extracted using the saponin/Chelex method and the DNA isolated was assayed by Filaria-real time-PCR, filaria-nested PCR, and cytochrome oxidase I PCR. All PCR products were subsequently purified and sequenced. The statistical values for each molecular test were calculated and compared. RESULTS: Overall, 64 samples were identified as negative by all tests and a further 36 samples were positive by at least one of the methods used. The sensitivity and specificity were similar for the different molecular methods, all of which demonstrated good agreement with microscopy. CONCLUSIONS: Based on this study, and from a practical point of view (single and short amplification round), the optimal technique for diagnosing filarial infection in non-endemic regions is filaria-real time-PCR, which presents high sensitivity and specificity and is also able to detect a wide range of human filariae.


Assuntos
Loíase , Mansonelose , Animais , Humanos , Loa/genética , Loíase/diagnóstico , Loíase/parasitologia , Mansonella/genética , Mansonelose/diagnóstico , Mansonelose/parasitologia , Reação em Cadeia da Polimerase
18.
Malar J ; 21(1): 399, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585690

RESUMO

BACKGROUND: Anopheles maculatus, Anopheles minimus and Anopheles dirus are the major vectors of malaria transmission in the Greater Mekong Subregion (GMS). The malaria burden in this region has decreased significantly in recent years as all GMS countries progress towards malaria elimination. It is necessary to investigate the Anopheles diversity and abundance status and assess the Plasmodium infection rates to understand the malaria transmission potential of these vector species in GMS countries to guide the development of up-to-date vector control strategies and interventions. METHODS: A survey of mosquitoes was conducted in Stung Treng, Sainyabuli and Phongsaly Provinces on the Cambodia-Laos, Thailand-Laos and China-Laos borders, respectively. Mosquito collection was done by overnight trapping at sentinel sites in each province. After morphological identification, the 18S rRNA-based nested-PCR was performed to detect malaria parasites in the captured Anopheles mosquitoes. RESULTS: A total of 18 965 mosquitoes comprising of 35 species of 2 subgenera (Subgenus Anopheles and Subgenus Cellia) and 4 tribes (Tribes Culicini, Aedini, Armigerini and Mansoniini) were captured. Tribe Culicini accounted for 85.66% of captures, followed by Subgenus Anopheles (8.15%). Anopheles sinensis dominated the Subgenus Anopheles by 99.81%. Plasmodium-infection was found in 25 out of the 1 683 individual or pooled samples of Anopheles. Among the 25 positive samples, 19, 5 and 1 were collected from Loum, Pangkhom and Siem Pang village, respectively. Eight Anopheles species were found infected with Plasmodium, i.e., An. sinensis, Anopheles kochi, Anopheles vagus, An. minimus, Anopheles annularis, Anopheles philippinensis, Anopheles tessellatus and An. dirus. The infection rates of Plasmodium falciparum, Plasmodium vivax and mixture of Plasmodium parasite species were 0.12% (2/1 683), 1.31% (22/1 683) and 0.06% (1/1 683), respectively. CONCLUSIONS: Overall, this survey re-confirmed that multiple Anopheles species carry malaria parasites in the international border areas of the GMS countries. Anopheles sinensis dominated the Anopheles collections and as carriers of malaria parasites, therefore may play a significant role in malaria transmission. More extensive investigations of malaria vectors are required to reveal the detailed vector biology, ecology, behaviour, and genetics in GMS regions in order to assist with the planning and implementation of improved malaria control strategies.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Malária/prevenção & controle , Anopheles/parasitologia , Tailândia/epidemiologia , Laos , Camboja , Insetos Vetores/parasitologia , Mosquitos Vetores , China
19.
Microbiol Immunol ; 66(8): 386-393, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35661243

RESUMO

Occult hepatitis B infection (OBI) is defined by the persistence of the hepatitis B virus (HBV) genome in the liver of individuals testing negative for hepatitis B surface antigen (HBsAg). Hepatitis B core antibody (anti-HBc) is the serological marker that indicates HBV exposure. The impact of anti-HBc and OBI on patients with chronic hepatitis C remains unclear. The aim of the present study was to determine the prevalence of anti-HBc and OBI and to evaluate their impact on the clinical and pathological outcomes of patients with chronic hepatitis C. The study included 59 HBsAg-negative chronic hepatitis C patients who underwent a liver parenchymal biopsy. The presence of HBV DNA was investigated using an in-house nested PCR method. OBI was detected in 16 (27.1%) of the 59 cases and also in 10 (62.5%) of 22 (37.3%) anti-HBc-positive patients. None of the patients had positive serum HBV DNA. OBI was associated with the presence of anti-HBV antibodies (P < 0.05). There was also an association between anti-HBc positivity and the activity grades and fibrosis stages of the liver and also a prevalence of liver steatosis (P < 0.05). Positive anti-HBc results may predict OBI and may also be associated with the progression of liver injury in HBsAg-negative patients with chronic hepatitis C. Therefore, it is suggested that patients with chronic hepatitis C should be screened for anti-HBc positivity, and anti-HBc-positive patients should be carefully evaluated for disease progression.


Assuntos
Hepatite B Crônica , Hepatite B , Hepatite C Crônica , DNA Viral/análise , Hepatite B/epidemiologia , Anticorpos Anti-Hepatite B , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B/genética , Hepatite B Crônica/epidemiologia , Hepatite C Crônica/epidemiologia , Humanos , Prevalência
20.
BMC Vet Res ; 18(1): 335, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068568

RESUMO

BACKGROUND: Toxoplasma is an obligate intracellular protozoan that causes an important zoonotic disease with a worldwide distribution. Felids are the definitive hosts of this parasite, while virtually all warm-blooded animals, including birds, serve as intermediate hosts. Four ring-tailed lemurs (Lemur catta) in the Taipei Zoo died of acute Toxoplasma infection in June 2019. Since then, Toxoplasma has occasionally been identified in this Zoo during necropsy of dead animals and PCR of animal blood samples. Therefore, a general survey of Toxoplasma infection in animals in the Zoo seems to be needed. METHODS AND RESULTS: An indirect multispecies ELISA was used for the first time to screen for Toxoplasma infection in 326 serum samples collected from 75 species of animals. The infection rate of Toxoplasma was 27% (88/326). A commercial latex agglutination (LAT) assay was used to re-examine the samples with doubtful and uncertain ELISA results (151 samples from 42 species). The infection rate increased to 36.2% (118/326), and the indirect multispecies ELISA appeared to be applicable to 31 of 75 species animals included in this study. Nested PCR assays targeting the dense granule protein 7 (GRA7) gene and B1 gene were also used to detect Toxoplasma in DNA samples extracted from 10 liver or blood specimens from 8 animals. GRA7 gene fragments were amplified from 8 samples from 7 animals, while B1 gene fragments were amplified from only 4 samples from 4 animals. From the B1 nested PCR and the sequence data of GRA7 fragments amplified from infectious specimens, the animals in the Zoo were speculated to have been infected by at least three different Toxoplasma variants. CONCLUSIONS: According to the serological investigation, we speculated that over one-third (36.2%) of animals in Taipei Zoo presented the infection of Toxoplasma, and the indirect multispecies ELISA we used can be applied to detect Toxoplasma infection in 31 animal species included in this study. Sequence analysis revealed that at least three Toxoplasma variants were infecting the animals of Taipei Zoo.


Assuntos
Felidae , Toxoplasma , Toxoplasmose Animal , Animais , Animais de Zoológico , Anticorpos Antiprotozoários , Antígenos de Protozoários/genética , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Reação em Cadeia da Polimerase/veterinária , Proteínas de Protozoários/genética , Sensibilidade e Especificidade , Toxoplasma/genética , Toxoplasmose Animal/diagnóstico , Toxoplasmose Animal/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA