Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2309054121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466840

RESUMO

COVID-19 forced students to rely on online learning using multimedia tools, and multimedia learning continues to impact education beyond the pandemic. In this study, we combined behavioral, eye-tracking, and neuroimaging paradigms to identify multimedia learning processes and outcomes. College students viewed four video lectures including slides with either an onscreen human instructor, an animated instructor, or no onscreen instructor. Brain activity was recorded via fMRI, visual attention was recorded via eye-tracking, and learning outcome was assessed via post-tests. Onscreen presence of instructor, compared with no instructor presence, resulted in superior post-test performance, less visual attention on the slide, more synchronized eye movements during learning, and higher neural synchronization in cortical networks associated with socio-emotional processing and working memory. Individual variation in cognitive and socio-emotional abilities and intersubject neural synchronization revealed different levels of cognitive and socio-emotional processing in different learning conditions. The instructor-present condition evoked increased synchronization, likely reflecting extra processing demands in attentional control, working memory engagement, and socio-emotional processing. Although human instructors and animated instructors led to comparable learning outcomes, the effects were due to the dynamic interplay of information processing vs. attentional distraction. These findings reflect a benefit-cost trade-off where multimedia learning outcome is enhanced only when the cognitive benefits motivated by the social presence of onscreen instructor outweigh the cognitive costs brought about by concurrent attentional distraction unrelated to learning.


Assuntos
Aprendizagem , Multimídia , Humanos , Cognição/fisiologia , Memória de Curto Prazo/fisiologia , Estudantes
2.
Proc Natl Acad Sci U S A ; 120(37): e2308762120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669394

RESUMO

The medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) are involved in the regulation of defensive behavior under threat, but their engagement in flexible behavior shifts remains unclear. Here, we report the oscillatory activities of mPFC-BLA circuit in reaction to a naturalistic threat, created by a predatory robot in mice. Specifically, we found dynamic frequency tuning among two different theta rhythms (~5 or ~10 Hz) was accompanied by agile changes of two different defensive behaviors (freeze-or-flight). By analyzing flight trajectories, we also found that high beta (~30 Hz) is engaged in the top-down process for goal-directed flights and accompanied by a reduction in fast gamma (60 to 120 Hz, peak near 70 Hz). The elevated beta nested the fast gamma activity by its phase more strongly. Our results suggest that the mPFC-BLA circuit has a potential role in oscillatory gear shifting allowing flexible information routing for behavior switches.


Assuntos
Tonsila do Cerebelo , Complexo Nuclear Basolateral da Amígdala , Animais , Camundongos , Córtex Pré-Frontal , Citoplasma , Raios gama
3.
J Neurosci ; 44(9)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38316561

RESUMO

Hostile attribution bias refers to the tendency to interpret social situations as intentionally hostile. While previous research has focused on its developmental origins and behavioral consequences, the underlying neural mechanisms remain underexplored. Here, we employed functional near-infrared spectroscopy (fNIRS) to investigate the neural correlates of hostile attribution bias. While undergoing fNIRS, male and female participants listened to and provided attribution ratings for 21 hypothetical scenarios where a character's actions resulted in a negative outcome for the listener. Ratings of hostile intentions were averaged to measure hostile attribution bias. Using intersubject representational similarity analysis, we found that participants with similar levels of hostile attribution bias exhibited higher levels of neural synchrony during narrative listening, suggesting shared interpretations of the scenarios. This effect was localized to the left ventromedial prefrontal cortex (VMPFC) and was particularly prominent in scenarios where the character's intentions were highly ambiguous. We then grouped participants into high and low bias groups based on a median split of their hostile attribution bias scores. A similarity-based classifier trained on the neural data classified participants as having high or low bias with 75% accuracy, indicating that the neural time courses during narrative listening was systematically different between the two groups. Furthermore, hostile attribution bias correlated negatively with attributional complexity, a measure of one's tendency to consider multifaceted causes when explaining behavior. Our study sheds light on the neural mechanisms underlying hostile attribution bias and highlights the potential of using fNIRS to develop nonintrusive and cost-effective neural markers of this sociocognitive bias.


Assuntos
Agressão , Hostilidade , Humanos , Masculino , Feminino , Córtex Pré-Frontal/diagnóstico por imagem , Intenção , Percepção Social
4.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38220574

RESUMO

Parent-child interaction is crucial for children's cognitive and affective development. While bio-synchrony models propose that parenting influences interbrain synchrony during interpersonal interaction, the brain-to-brain mechanisms underlying real-time parent-child interactions remain largely understudied. Using functional near-infrared spectroscopy, we investigated interbrain synchrony in 88 parent-child dyads (Mage children = 8.07, 42.0% girls) during a collaborative task (the Etch-a-Sketch, a joint drawing task). Our findings revealed increased interbrain synchrony in the dorsolateral prefrontal cortex and temporo-parietal areas during interactive, collaborative sessions compared to non-interactive, resting sessions. Linear regression analysis demonstrated that interbrain synchrony in the left temporoparietal junction was associated with enhanced dyadic collaboration, shared positive affect, parental autonomy support, and parental emotional warmth. These associations remained significant after controlling for demographic variables including child age, child gender, and parent gender. Additionally, differences between fathers and mothers were observed. These results highlight the significant association between brain-to-brain synchrony in parent-child dyads, the quality of the parent-child relationship, and supportive parenting behaviors. Interbrain synchrony may serve as a neurobiological marker of real-time parent-child interaction, potentially underscoring the pivotal role of supportive parenting in shaping these interbrain synchrony mechanisms.


Assuntos
Poder Familiar , Espectroscopia de Luz Próxima ao Infravermelho , Feminino , Humanos , Masculino , Poder Familiar/psicologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Relações Pais-Filho , Encéfalo/diagnóstico por imagem , Diencéfalo
5.
Neuroimage ; 297: 120736, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009247

RESUMO

Interpersonal neural synchrony (INS) between mothers and children responds to the temporal similarity of brain signals in joint behavior between dyadic partners and is considered an important neural indicator of the formation of adaptive social interaction bonds. Parent-child interactions are particularly important for the development and maintenance of oppositional defiant disorder (ODD) in children, but the underlying neurocognitive mechanisms are unknown. Therefore, in the current study we measured INS between mothers and children in interactions by using simultaneous functional Near-infrared Spectroscopy (fNIRS), and explored its association with ODD symptoms in children. Seventy-two mother-child dyads were recruited to participate in the study, including 35 children with ODD and 37 healthy children to be used as a control. Each mother-child dyad was measured for neural activity in frontal, parietal, and temporal lobe regions while completing free-play as well as positive, and negative topic discussion tasks. We used Phase-locked value to calculate the synchrony strength and then used the K-means algorithm and k-space based alignment tests to confirm the specific patterns of parent-child synchrony in different brain areas. The results showed that, in free-play (right MFG and bilateral SFG), positive (left TPJ and bilateral SFGdor), and negative (bilateral SFGmed, right ANG, and left MFG) topic discussions, the mother-child pairs showed different patterns of INS. These specific INS patterns were significantly lower in the ODD group compared to the control group and were negatively associated with ODD symptoms in children. Network analyses showed that these INS patterns were connected to different nodes in the ODD symptom network. Our findings suggest that ODD mother-child dyads exhibit lower neural synchrony across a wide range of parent-child interactions. Neural synchrony in the context of interpersonal interactions provides new insights into understanding the neural mechanisms of ODD and can be used as an indicator of neural and socio-environmental factors in the network of psychological disorder symptoms.

6.
Eur J Neurosci ; 59(6): 1386-1403, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38155106

RESUMO

Successful social interactions between mothers and children are hypothesised to play a significant role in a child's social, cognitive and language development. Earlier research has confirmed, through structured experimental paradigms, that these interactions could be underpinned by coordinated neural activity. Nevertheless, the extent of neural synchrony during real-life, ecologically valid interactions between mothers and their children remains largely unexplored. In this study, we investigated mother-child inter-brain synchrony using a naturalistic free-play paradigm. We also examined the relationship between neural synchrony, verbal communication patterns and personality traits to further understand the underpinnings of brain synchrony. Twelve children aged between 3 and 5 years old and their mothers participated in this study. Neural synchrony in mother-child dyads were measured bilaterally over frontal and temporal areas using functional Near Infra-red Spectroscopy (fNIRS) whilst the dyads were asked to play with child-friendly toys together (interactive condition) and separately (independent condition). Communication patterns were captured via video recordings and conversational turns were coded. Compared to the independent condition, mother-child dyads showed increased neural synchrony in the interactive condition across the prefrontal cortex and temporo-parietal junction. There was no significant relationship found between neural synchrony and turn-taking and between neural synchrony and the personality traits of each member of the dyad. Overall, we demonstrate the feasibility of measuring inter-brain synchrony between mothers and children in a naturalistic environment. These findings can inform future study designs to assess inter-brain synchrony between parents and pre-lingual children and/or children with communication needs.


Assuntos
Encéfalo , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Pré-Escolar , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Córtex Pré-Frontal , Mapeamento Encefálico/métodos , Relações Mãe-Filho/psicologia
7.
Dev Sci ; : e13504, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523055

RESUMO

It is a central tenet of attachment theory that individual differences in attachment representations organize behavior during social interactions. Secure attachment representations also facilitate behavioral synchrony, a key component of adaptive parent-child interactions. Yet, the dynamic neural processes underlying these interactions and the potential role of attachment representations remain largely unknown. A growing body of research indicates that interpersonal neural synchrony (INS) could be a potential neurobiological correlate of high interaction and relationship quality. In this study, we examined whether interpersonal neural and behavioral synchrony during parent-child interaction is associated with parent and child attachment representations. In total, 140 parents (74 mothers and 66 fathers) and their children (age 5-6 years; 60 girls and 80 boys) engaged in cooperative versus individual problem-solving. INS in frontal and temporal regions was assessed with functional near-infrared spectroscopy hyperscanning. Attachment representations were ascertained by means of the Adult Attachment Interview in parents and a story-completion task in children, alongside video-coded behavioral synchrony. Findings revealed increased INS during cooperative versus individual problem solving across all dyads (𝛸2(2) = 9.37, p = 0.009). Remarkably, individual differences in attachment representations were associated with INS but not behavioral synchrony (p > 0.159) during cooperation. More specifically, insecure maternal attachment representations were related to higher mother-child INS in frontal regions (𝛸2(3) = 9.18, p = 0.027). Conversely, secure daughter attachment representations were related to higher daughter-parent INS within temporal regions (𝛸2(3) = 12.58, p = 0.006). Our data thus provide further indication for INS as a promising correlate to probe the neurobiological underpinnings of attachment representations in the context of early parent-child interactions. RESEARCH HIGHLIGHTS: We assessed attachment representations using narrative measures and interpersonal neural synchrony (INS) during parent-child problem-solving. Dyads including mothers with insecure attachment representations showed higher INS in left prefrontal regions. Dyads including daughters with secure attachment representations showed higher INS in right temporo-parietal regions. INS is a promising correlate to probe the neurobiological underpinnings of attachment representations in the context of parent-child interactions, especially within the mutual prediction framework.

8.
Adv Exp Med Biol ; 1437: 91-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38270855

RESUMO

Crossmodal associations between stimuli from different sensory modalities could emerge in non-synesthetic people and be stored in working memory to guide goal-directed behaviors. This chapter reviews a plethora of studies in this field to summarize where, when, and how crossmodal associations and working memory are processed. It has been found that in those brain regions that are traditionally considered as unimodal primary sensory areas, neural activity could be influenced by crossmodal sensory signals at temporally very early stage of information processing. This phenomenon could not be due to feedback projections from higher level associative areas. Sequentially, neural processes would then occur in associative cortical areas including the posterior parietal cortex and prefrontal cortex. Neural oscillations in multiple frequency bands may reflect brain activity in crossmodal associations, and it is likely that neural synchrony is related to potential neural mechanisms underlying these processes. Primary sensory areas and associative areas coordinate together through neural synchrony to fulfil crossmodal associations and to guide working memory performance.


Assuntos
Encéfalo , Memória de Curto Prazo , Humanos , Cognição , Córtex Pré-Frontal , Córtex Cerebral
9.
Synapse ; 77(5): e22277, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37279942

RESUMO

Addiction is a global concern with a high relapse rate and without effective therapeutic options. Developing new effective therapeutic strategies is impossible without discovering the disease's neurobiological basis. The present systematic review aimed to comprehensively recognize and discuss the role of local field potentials from brain areas essential in forming and storing context-drug/food associations following the conditioned place preference (CPP) paradigm as a popular animal model of reward and addiction. Qualified studies were incorporated by a broad search of four databases, including Web of Science, Medline/PubMed, Embase, and ScienceDirect, in July 2022, and they were evaluated via appropriate methodological quality assessment tools. The current study found that drug-seeking behavior in different stages of the CPP paradigm is accompanied by alterations in neural oscillatory activity and adaptations in connectivity among various areas such as the hippocampus, nucleus accumbens, basolateral amygdala, and prelimbic area, intensely engaged in reward-related behaviors. These findings need to be extended by more future advanced studies to finally recognize the altered oscillatory activity patterns of large groups of cells in regions involved in reward-context associations to improve clinical strategies such as neuromodulation approaches to modify the abnormal electrical activity of these critical brain regions and their connections for treating addiction and preventing drug/food relapse in abstinent patients. DEFINITIONS: Power is the amount of energy in a frequency band and is the squared amplitude of the oscillation. Cross-frequency coupling refers to a statistical relationship between activities in two different frequency bands. Phase-amplitude coupling is perhaps the most commonly used method of computing cross-frequency coupling. Phase-amplitude coupling involves testing for a relationship between the phase of one frequency band and the power of another, typically relatively higher, frequency band. Thus, within phase-amplitude coupling, you refer to the "frequency for phase" and the "frequency for power." Spectral coherence has been frequently used to detect and quantify coupling between oscillatory signals of two or more brain areas. Spectral coherence estimates the linear phase-consistency between two frequency-decomposed signals over time windows (or trials).


Assuntos
Encéfalo , Núcleo Accumbens , Animais , Hipocampo
10.
J Neurosci ; 41(7): 1516-1528, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33310756

RESUMO

In recent years, several hierarchical extensions of well-known learning algorithms have been proposed. For example, when stimulus-action mappings vary across time or context, the brain may learn two or more stimulus-action mappings in separate modules, and additionally (at a hierarchically higher level) learn to appropriately switch between those modules. However, how the brain mechanistically coordinates neural communication to implement such hierarchical learning remains unknown. Therefore, the current study tests a recent computational model that proposed how midfrontal theta oscillations implement such hierarchical learning via the principle of binding by synchrony (Sync model). More specifically, the Sync model uses bursts at theta frequency to flexibly bind appropriate task modules by synchrony. The 64-channel EEG signal was recorded while 27 human subjects (female: 21, male: 6) performed a probabilistic reversal learning task. In line with the Sync model, postfeedback theta power showed a linear relationship with negative prediction errors, but not with positive prediction errors. This relationship was especially pronounced for subjects with better behavioral fit (measured via Akaike information criterion) of the Sync model. Also consistent with Sync model simulations, theta phase-coupling between midfrontal electrodes and temporoparietal electrodes was stronger after negative feedback. Our data suggest that the brain uses theta power and synchronization for flexibly switching between task rule modules, as is useful, for example, when multiple stimulus-action mappings must be retained and used.SIGNIFICANCE STATEMENT Everyday life requires flexibility in switching between several rules. A key question in understanding this ability is how the brain mechanistically coordinates such switches. The current study tests a recent computational framework (Sync model) that proposed how midfrontal theta oscillations coordinate activity in hierarchically lower task-related areas. In line with predictions of this Sync model, midfrontal theta power was stronger when rule switches were most likely (strong negative prediction error), especially in subjects who obtained a better model fit. Additionally, also theta phase connectivity between midfrontal and task-related areas was increased after negative feedback. Thus, the data provided support for the hypothesis that the brain uses theta power and synchronization for flexibly switching between rules.


Assuntos
Aprendizagem/fisiologia , Ritmo Teta/fisiologia , Adulto , Algoritmos , Cognição/fisiologia , Simulação por Computador , Eletroencefalografia , Retroalimentação Psicológica/fisiologia , Feminino , Lobo Frontal/fisiologia , Humanos , Masculino , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Reversão de Aprendizagem/fisiologia , Adulto Jovem
11.
J Neurosci ; 41(50): 10293-10304, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34753738

RESUMO

A common complaint of older adults is difficulty understanding speech, particularly in challenging listening conditions. Accumulating evidence suggests that these difficulties may reflect a loss and/or dysfunction of auditory nerve (AN) fibers. We used a novel approach to study age-related changes in AN structure and several measures of AN function, including neural synchrony, in 58 older adults and 42 younger adults. AN activity was measured in response to an auditory click (compound action potential; CAP), presented at stimulus levels ranging from 70 to 110 dB pSPL. Poorer AN function was observed for older than younger adults across CAP measures at higher but not lower stimulus levels. Associations across metrics and stimulus levels were consistent with age-related AN disengagement and AN dyssynchrony. High-resolution T2-weighted structural imaging revealed age-related differences in the density of cranial nerve VIII, with lower density in older adults with poorer neural synchrony. Individual differences in neural synchrony were the strongest predictor of speech recognition, such that poorer synchrony predicted poorer recognition of time-compressed speech and poorer speech recognition in noise for both younger and older adults. These results have broad clinical implications and are consistent with an interpretation that age-related atrophy at the level of the AN contributes to poorer neural synchrony and may explain some of the perceptual difficulties of older adults.SIGNIFICANCE STATEMENT Differences in auditory nerve (AN) pathophysiology may contribute to the large variations in hearing and communication abilities of older adults. However, current diagnostics focus largely on the increase in detection thresholds, which is likely because of the absence of indirect measures of AN function in standard clinical test batteries. Using novel metrics of AN function, combined with estimates of AN structure and auditory function, we identified age-related differences across measures that we interpret to represent age-related reductions in AN engagement and poorer neural synchrony. Structure-function associations are consistent with an explanation of AN deficits that arise from age-related atrophy of the AN. Associations between neural synchrony and speech recognition suggest that individual and age-related deficits in neural synchrony contribute to speech recognition deficits.


Assuntos
Nervo Coclear/fisiopatologia , Presbiacusia/fisiopatologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Audiometria , Limiar Auditivo/fisiologia , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
12.
Neurobiol Dis ; 173: 105841, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988873

RESUMO

Stimulating lifestyles have powerful effects on cognitive abilities, especially when they are experienced early in life. Cognitive therapies are widely used to improve cognitive impairment due to intellectual disability, aging, and neurodegeneration, however the underlying neural mechanisms are poorly understood. We investigated the neural correlates of memory amelioration produced by postnatal environmental enrichment (EE) in diploid mice and the Ts65Dn mouse model of Down syndrome (trisomy 21). We recorded neural activities in brain structures key for memory processing, the hippocampus and the prefrontal cortex, during rest, sleep and memory performance in mice reared in non-enriched or enriched environments. Enriched wild-type animals exhibited enhanced neural synchrony in the hippocampus across different brain states (increased gamma oscillations, theta-gamma coupling, sleep ripples). Trisomic females showed increased theta and gamma rhythms in the hippocampus and prefrontal cortex across different brain states along with enlarged ripples and disrupted circuit gamma signals that were associated with memory deficits. These pathological activities were attenuated in their trisomic EE-reared peers. Our results suggest distinct neural mechanisms for the generation and rescue of healthy and pathological brain synchrony, respectively, by EE and put forward hippocampal-prefrontal hypersynchrony and miscommunication as major targets underlying the beneficial effects of EE in intellectual disability.


Assuntos
Síndrome de Down , Deficiência Intelectual , Animais , Feminino , Ritmo Gama , Hipocampo , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal
13.
Dev Psychobiol ; 64(3): e22221, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312051

RESUMO

Healthy interaction between parent and child is foundational for the child's socioemotional development. Recently, an innovative paradigm shift in electroencephalography (EEG) research has enabled the simultaneous measurement of neural activity in caregiver and child. This dual-EEG or hyperscanning approach, termed parent-child dual-EEG, combines the strength of both behavioral observations and EEG methods. In this review, we aim to inform on the potential of dual-EEG in parents and children (0-6 years) for developmental researchers. We first provide a general overview of the dual-EEG technique and continue by reviewing the first empirical work on the emerging field of parent-child dual-EEG, discussing the limited but fascinating findings on parent-child brain-to-behavior and brain-to-brain synchrony. We then continue by providing an overview of dual-EEG analysis techniques, including the technical challenges and solutions one may encounter. We finish by discussing the potential of parent-child dual-EEG for the future of developmental research. The analysis of multiple EEG data is technical and challenging, but when performed well, parent-child EEG may transform the way we understand how caregiver and child connect on a neurobiological level. Importantly, studying objective physiological measures of parent-child interactions could lead to the identification of novel brain-to-brain synchrony markers of interaction quality.


Assuntos
Encéfalo , Eletroencefalografia , Encéfalo/fisiologia , Eletroencefalografia/métodos , Humanos , Relações Pais-Filho , Pais/psicologia
14.
J Integr Neurosci ; 21(4): 112, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35864764

RESUMO

The cellular, molecular and physiological basis of cognition has proved elusive until emerging studies on astrocytes. The appearance of a deliberate aggregating element in cellular neurophysiology was difficult to satisfy computationally with excitatory and inhibitory neuron physiology alone. Similarly, the complex behavioral outputs of cognition are challenging to test experimentally. Astrocytic reception and control of synaptic communication has provided the possibility for study of the missing element. The advancement of genetic and neurophysiological techniques have now demonstrated astrocytes respond to neural input and subsequently provide the ability for neural synchronization and assembly at multiple and single synaptic levels. Considering the most recent evidence, it is becoming clear that astrocytes contribute to cognition. Is it possible then that our cognitive experience is essentially the domain of astrocyte physiology, ruminating on neural input, and controlling neural output? Although the molecular and cellular complexities of cognition in the human nervous system cannot be overstated, in order to gain a better understanding of the current evidence, an astrocyte centric basis of cognition will be considered from a philosophical, biological and computational perspective.


Assuntos
Astrócitos , Neurônios , Astrócitos/fisiologia , Cognição , Humanos , Neurônios/fisiologia , Sinapses/fisiologia
15.
Neuroimage ; 245: 118638, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624502

RESUMO

An open challenge in consciousness research is understanding how neural functions are altered by pathological loss of consciousness. To maintain consciousness, the brain needs synchronized communication of information across brain regions, and sufficient complexity in neural activity. Coordination of brain activity, typically indexed through measures of neural synchrony, has been shown to decrease when consciousness is lost and to reflect the clinical state of patients with disorders of consciousness. Moreover, when consciousness is lost, neural activity loses complexity, while the levels of neural noise, indexed by the slope of the electroencephalography (EEG) spectral exponent decrease. Although these properties have been well investigated in resting state activity, it remains unknown whether the sensory processing network, which has been shown to be preserved in coma, suffers from a loss of synchronization or information content. Here, we focused on acute coma and hypothesized that neural synchrony in response to auditory stimuli would reflect coma severity, while complexity, or neural noise, would reflect the presence or loss of consciousness. Results showed that neural synchrony of EEG signals was stronger for survivors than non-survivors and predictive of patients' outcome, but indistinguishable between survivors and healthy controls. Measures of neural complexity and neural noise were not informative of patients' outcome and had high or low values for patients compared to controls. Our results suggest different roles for neural synchrony and complexity in acute coma. Synchrony represents a precondition for consciousness, while complexity needs an equilibrium between high or low values to support conscious cognition.


Assuntos
Estimulação Acústica , Coma/fisiopatologia , Estudos de Casos e Controles , Coma/etiologia , Coma/mortalidade , Eletroencefalografia/métodos , Feminino , Parada Cardíaca/complicações , Humanos , Masculino , Projetos Piloto , Prognóstico
16.
Dev Psychopathol ; : 1-13, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34521492

RESUMO

While substantial research supports the role of parent-child interactions on the emergence of psychiatric symptoms, few studies have explored biological mechanisms for this association. The current study explored behavioral and neural parent-child synchronization during frustration and play as predictors of internalizing and externalizing behaviors across a span of 1.5 years. Parent-child dyads first came to the laboratory when the child was 4-5 years old and completed the Disruptive Behavior Diagnostic Observation Schedule: Biological Synchrony (DB-DOS: BioSync) task while functional near-infrared spectroscopy (fNIRS) data were recorded. Parents reported on their child's internalizing and externalizing behaviors using the Child Behavior Checklist (CBCL) four times over 1.5 years. Latent growth curve (LGC) modeling was conducted to assess neural and behavioral synchrony as predictors of internalizing and externalizing trajectories. Consistent with previous investigations in this age range, on average, internalizing and externalizing behaviors decreased over the four time points. Parent-child neural synchrony during a period of play predicted rate of change in internalizing but not externalizing behaviors such that higher parent-child neural synchrony was associated with a more rapid decrease in internalizing behaviors. Our results suggest that a parent-child dyad's ability to coordinate neural activation during positive interactions might serve as a protective mechanism in the context of internalizing behaviors.

17.
J Child Psychol Psychiatry ; 61(11): 1213-1223, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31769511

RESUMO

BACKGROUND: Research to date has largely conceptualized irritability in terms of intraindividual differences. However, the role of interpersonal dyadic processes has received little consideration. Nevertheless, difficulties in how parent-child dyads synchronize during interactions may be an important correlate of irritably in early childhood. Innovations in developmentally sensitive neuroimaging methods now enable the use of measures of neural synchrony to quantify synchronous responses in parent-child dyads and can help clarify the neural underpinnings of these difficulties. We introduce the Disruptive Behavior Diagnostic Observation Schedule: Biological Synchrony (DB-DOS:BioSync) as a paradigm for exploring parent-child neural synchrony as a potential biological mechanism for interpersonal difficulties in preschool psychopathology. METHODS: Using functional near-infrared spectroscopy (fNIRS) 4- to 5-year-olds (N = 116) and their mothers completed the DB-DOS:BioSync while assessing neural synchrony during mild frustration and recovery. Child irritability was measured using a latent irritability factor that was calculated from four developmentally sensitive indicators. RESULTS: Both the mild frustration and the recovery contexts resulted in neural synchrony. However, less neural synchrony during the recovery context only was associated with more child irritability. CONCLUSIONS: Our results suggest that recovering after a frustrating period might be particularly challenging for children high in irritability and offer support for the use of the DB-DOS:BioSync task to elucidate interpersonal neural mechanisms of developmental psychopathology.


Assuntos
Frustração , Humor Irritável , Relações Pais-Filho , Pré-Escolar , Feminino , Humanos , Masculino , Espectroscopia de Luz Próxima ao Infravermelho
18.
J Neurophysiol ; 121(6): 2364-2378, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30995166

RESUMO

It is generally thought that apart from receptive field differences, such as preferred orientation and spatial frequency selectivity, primary visual cortex neurons are functionally similar to each other. However, the genetic diversity of cortical neurons plus the existence of inputs additional to those required to explain known receptive field properties might suggest otherwise. Here we report the existence of desynchronized states in anesthetized cat area 17 lasting up to 45 min, characterized by variable narrow-band local field potential (LFP) oscillations in the range 2-100 Hz and the absence of a synchronized 1/f frequency spectrum. During these periods, spontaneously active neurons phase-locked to variable subsets of LFP oscillations. Individual neurons often ignored frequencies that others phase-locked to. We suggest that these desynchronized periods may correspond to REM sleep-like episodes occurring under anesthesia. Frequency-selective codes may be used for signaling during these periods. Hence frequency-selective combination and frequency-labeled pathways may represent a previously unsuspected dimension of cortical organization. NEW & NOTEWORTHY We investigated spontaneous neuronal firing during periods of desynchronized local field potential (LFP) activity, resembling REM sleep, in anesthetized cats. During these periods, neurons synchronized their spikes to specific phases of multiple LFP frequency components, with some neurons ignoring frequencies that others were synchronized to. Some neurons fired at phase alignments of frequency pairs, thereby acting as phase coincidence detectors. These results suggest that internal brain signaling may use frequency combination codes to generate temporally structured spike trains.


Assuntos
Potenciais de Ação/fisiologia , Sincronização Cortical/fisiologia , Eletrocorticografia , Neurônios/fisiologia , Córtex Visual/fisiologia , Animais , Gatos , Feminino , Masculino
19.
J Neurosci ; 37(36): 8595-8611, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28751459

RESUMO

Changes in synaptic strength and connectivity are thought to be a major mechanism through which many gene variants cause neurological disease. Hyperactivation of the PI3K-mTOR signaling network, via loss of function of repressors such as PTEN, causes epilepsy in humans and animal models, and altered mTOR signaling may contribute to a broad range of neurological diseases. Changes in synaptic transmission have been reported in animal models of PTEN loss; however, the full extent of these changes, and their effect on network function, is still unknown. To better understand the scope of these changes, we recorded from pairs of mouse hippocampal neurons cultured in a two-neuron microcircuit configuration that allowed us to characterize all four major connection types within the hippocampus. Loss of PTEN caused changes in excitatory and inhibitory connectivity, and these changes were postsynaptic, presynaptic, and transynaptic, suggesting that disruption of PTEN has the potential to affect most connection types in the hippocampal circuit. Given the complexity of the changes at the synaptic level, we measured changes in network behavior after deleting Pten from neurons in an organotypic hippocampal slice network. Slices containing Pten-deleted neurons showed increased recruitment of neurons into network bursts. Importantly, these changes were not confined to Pten-deleted neurons, but involved the entire network, suggesting that the extensive changes in synaptic connectivity rewire the entire network in such a way that promotes a widespread increase in functional connectivity.SIGNIFICANCE STATEMENT Homozygous deletion of the Pten gene in neuronal subpopulations in the mouse serves as a valuable model of epilepsy caused by mTOR hyperactivation. To better understand how gene deletions lead to altered neuronal activity, we investigated the synaptic and network effects that occur 1 week after Pten deletion. PTEN loss increased the connectivity of all four types of hippocampal synaptic connections, including two forms of increased inhibition of inhibition, and increased network functional connectivity. These data suggest that single gene mutations that cause neurological diseases such as epilepsy may affect a surprising range of connection types. Moreover, given the robustness of homeostatic plasticity, these diverse effects on connection types may be necessary to cause network phenotypes such as increased synchrony.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/crescimento & desenvolvimento , Rede Nervosa/crescimento & desenvolvimento , Neurônios/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Transmissão Sináptica/fisiologia , Animais , Feminino , Hipocampo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/citologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , PTEN Fosfo-Hidrolase/genética
20.
J Neurosci ; 37(34): 8227-8238, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28743724

RESUMO

Cognition is compromised by white matter (WM) injury but the neurophysiological alterations linking them remain unclear. We hypothesized that reduced neural synchronization caused by disruption of neural signal propagation is involved. To test this, we evaluated group differences in: diffusion tensor WM microstructure measures within the optic radiations, primary visual area (V1), and cuneus; neural phase synchrony to a visual attention cue during visual-motor task; and reaction time to a response cue during the same task between 26 pediatric patients (17/9: male/female) treated with cranial radiation treatment for a brain tumor (12.67 ± 2.76 years), and 26 healthy children (16/10: male/female; 12.01 ± 3.9 years). We corroborated our findings using a corticocortical computational model representing perturbed signal conduction from myelin. Patients show delayed reaction time, WM compromise, and reduced phase synchrony during visual attention compared with healthy children. Notably, using partial least-squares-path modeling we found that WM insult within the optic radiations, V1, and cuneus is a strong predictor of the slower reaction times via disruption of neural synchrony in visual cortex. Observed changes in synchronization were reproduced in a computational model of WM injury. These findings provide new evidence linking cognition with WM via the reliance of neural synchronization on propagation of neural signals.SIGNIFICANCE STATEMENT By comparing brain tumor patients to healthy children, we establish that changes in the microstructure of the optic radiations and neural synchrony during visual attention predict reaction time. Furthermore, by testing the directionality of these links through statistical modeling and verifying our findings with computational modeling, we infer a causal relationship, namely that changes in white matter microstructure impact cognition in part by disturbing the ability of neural assemblies to synchronize. Together, our human imaging data and computer simulations show a fundamental connection between WM microstructure and neural synchronization that is critical for cognitive processing.


Assuntos
Ondas Encefálicas/fisiologia , Cognição/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adolescente , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Criança , Simulação por Computador , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA