Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Geriatr Psychiatry Neurol ; 34(4): 253-262, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34219519

RESUMO

The gut microbiota is known to play a role in various disease states through inflammatory, immune and endocrinologic response. Parkinson's Disease is of particular interest as gastrointestinal involvement is one of the earlier features seen in this disease. This paper examines the relationship between gut microbiota and Parkinson's Disease, which has a growing body of literature. Inflammation caused by gut dysbiosis is thought to increase a-synuclein aggregation and worsen motor and neurologic symptoms of Parkinson's disease. We discuss potential treatment and supplementation to modify the microbiota. Some of these treatments require further research before recommendations can be made, such as cord blood transplant, antibiotic use, immunomodulation and fecal microbiota transplant. Other interventions, such as increasing dietary fiber, polyphenol and fermented food intake, can be made with few risks and may have some benefit for symptom relief and speed of disease progression.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Progressão da Doença , Disbiose , Humanos , Inflamação
2.
Int J Mol Sci ; 19(8)2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065237

RESUMO

It is widely known that vitamin D receptors have been found in neurons and glial cells, and their highest expression is in the hippocampus, hypothalamus, thalamus and subcortical grey nuclei, and substantia nigra. Vitamin D helps the regulation of neurotrophin, neural differentiation, and maturation, through the control operation of growing factors synthesis (i.e., neural growth factor [NGF] and glial cell line-derived growth factor (GDNF), the trafficking of the septohippocampal pathway, and the control of the synthesis process of different neuromodulators (such as acetylcholine [Ach], dopamine [DA], and gamma-aminobutyric [GABA]). Based on these assumptions, we have written this review to summarize the potential role of vitamin D in neurological pathologies. This work could be titanic and the results might have been very fuzzy and even incoherent had we not conjectured to taper our first intentions and devoted our interests towards three mainstreams, demyelinating pathologies, vascular syndromes, and neurodegeneration. As a result of the lack of useful therapeutic options, apart from the disease-modifying strategies, the role of different risk factors should be investigated in neurology, as their correction may lead to the improvement of the cerebral conditions. We have explored the relationships between the gene-environmental influence and long-term vitamin D deficiency, as a risk factor for the development of different types of neurological disorders, along with the role and the rationale of therapeutic trials with vitamin D implementation.


Assuntos
Doenças Vasculares/metabolismo , Doenças Vasculares/patologia , Vitamina D/metabolismo , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Doenças do Sistema Nervoso , Receptores de Calcitriol/metabolismo
3.
Pathophysiology ; 24(3): 123-131, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28629694

RESUMO

Interleukin-6 (IL-6) is a multifunctional cytokine that affects a variety of cells in the body such as osteoclasts, hepatocytes, endothelial cells, epithelial cells, white and red blood cells and etc. Elevated levels of IL-6 have been detected in many ocular diseases. Studies show that IL-6 has a major role in the pathology of glaucoma, CRVO, macular edema, ocular neovascularization, posterior capsule opacity formation, keratitis, dry eye disease, allergic eye disease, ocular autoimmune disease, corneal chemical burn, ocular inflammation and so on. IL-6 does its effects through the classic or trans-signal pathways in cells. Blocking of IL-6 signal pathways via Tocilizumab or other chemicals and therapeutics will help to overcome complications related to ocular diseases.

4.
Geriatr Nurs ; 38(4): 302-314, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28041638

RESUMO

Parkinson's disease, a progressive neuro-degeneration of multiple systems damaging motor and non-motor functions, affects individual and societal dimensions negatively. In addition to standard treatments, complementary and alternative medicine has been adopted, in which acupuncture, a traditional Chinese medical practice by needle penetration at specific stimulation points (acupoints) along the body, indicates positive outcomes in this illness. Apart from offering an overview of using acupuncture in Parkinson's disease, this literature review analyses the effects of acupuncture on Parkinson's-induced physical symptoms and mental problems such as slow movements, stiffness, constipation, and sleep disorders. In light of the 35 reviewed research projects in mainland China, Japan, Korea, Taiwan, and the United States of America, this study reveals the optimization of this approach through combined therapy and its preventive contribution using acupuncture alone. It also suggests research and practical implications that hint at enhancements in medical applications.


Assuntos
Terapia por Acupuntura/métodos , Medicina Tradicional Chinesa , Doença de Parkinson/terapia , Pontos de Acupuntura , Saúde Global , Humanos , Transtornos do Sono-Vigília/terapia
5.
Crit Rev Biotechnol ; 36(6): 1131-1142, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26514091

RESUMO

Alzheimer's disease (AD) and cardiovascular diseases (CVD) share common etiology and preventive strategies. As the population of old-aged people is increasing worldwide, AD complications tend to afflict global healthcare budget and economy heavily. CVD is the prime cause of global mortality and remains a grave threat to both the developed and the developing nations. Mushroom bio-components may be promising in controlling both diseases. Based mainly on in vitro, ex vivo, cell line and animal studies, this review interprets the polypharmaceutic role of mushrooms treating AD and CVD.


Assuntos
Agaricales , Doença de Alzheimer/terapia , Cardiotônicos/uso terapêutico , Doenças Cardiovasculares/terapia , Fármacos Neuroprotetores/uso terapêutico , Animais , Humanos
6.
BMC Neurol ; 16(1): 236, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27875990

RESUMO

BACKGROUND: The AD etiology is yet not properly known. Interactions among environmental factors, multiple susceptibility genes and aging, contribute to AD. This study investigates the factors that play role in causing AD and how changes in cellular pathways contribute to AD. METHODS: PUBMED database, MEDLINE database and Google Scholar were searched with no date restrictions for published articles involving cellular pathways with roles in cancers, cell survival, growth, proliferation, development, aging, and also contributing to Alzheimer's disease. This research explores inverse relationship between AD and cancer, also investigates other factors behind AD using several already published research literature to find the etiology of AD. RESULTS: Cancer and Alzheimer's disease have inverse relationship in many aspects such as P53, estrogen, neurotrophins and growth factors, growth and proliferation, cAMP, EGFR, Bcl-2, apoptosis pathways, IGF-1, HSV, TDP-43, APOE variants, notch signals and presenilins, NCAM, TNF alpha, PI3K/AKT/MTOR pathway, telomerase, ROS, ACE levels. AD occurs when brain neurons have weakened growth, cell survival responses, maintenance mechanisms, weakened anti-stress responses such as Vimentin, Carbonic anhydrases, HSPs, SAPK. In cancer, these responses are upregulated and maintained. Evolutionarily conserved responses and maintenance mechanisms such as FOXO are impaired in AD. Countermeasures or compensatory mechanisms by AD affected neurons such as Tau, Beta Amyloid, S100, are last attempts for survival which may be protective for certain time, or can speed up AD in Alzheimer's microenvironment via C-ABL activation, GSK3, neuro-inflammation. CONCLUSIONS: Alzheimer's disease and Cancer have inverse relationship; many factors that are upregulated in any cancer to sustain growth and survival are downregulated in Alzheimer's disease contributing to neuro-degeneration. When aged neurons or genetically susceptible neurons have weakened growth, cell survival and anti-stress responses, age related gene expression changes, altered regulation of cell death and maintenance mechanisms, they contribute to Alzheimer's disease. Countermeasures by AD neurons such as Beta Amyloid Plaques, NFTs, S100, are last attempts for survival and this provides neuroprotection for certain time and ultimately may become pathological and speed up AD. This study may contribute in developing new potential diagnostic tests, interventions and treatments.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Neoplasias/metabolismo , Humanos
7.
J Pak Med Assoc ; 66(6): 677-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27339568

RESUMO

OBJECTIVE: To investigate whether there is a relationship between chronic migraine and heat shock protein-70. METHODS: The case-control progressive study was conducted at Ankara Numune Teaching and Research Hospital, Ankara, Turkey, from January to June 2013, and comprised patients over 18 years of age who were diagnosed with chronic migraine and did not have any other known neurological illness. Age and gender-matched volunteers with no history of headache or neurological illness were included as controls. In order to exclude other central nervous system diseases, computed tomography and/or magnetic resonance imaging was carried out. Blood samples to evaluate serum heat shock protein-70 levels were obtained from the patients during headache-free periods and from the controls following 8 hours of fasting. The samples were interpreted using the enzyme-linked immunosorbent assay reader. RESULTS: There were 40 controls and an equal number of cases in the study. Mean heat shock protein-70 levels were higher in the cases 2.37±1.91ng/dl compared to thecontrols1.81±1.30 ng/dl, but the difference was not statistically significant (p=0.12). Serum heat shock protein-70 levels were also compared in terms of the duration of migraine disease, frequency of migraine attacks, Visual Analogue Scale score, migraine attack duration and the presence of aura, but no statistically significant difference was found (p=0.13, p=0.17, p=0.90, p=0.68, p=0.95 respectively). CONCLUSIONS: Heat shock protein-70 was not a reliable chronic migraine biomarker.


Assuntos
Biomarcadores/análise , Proteínas de Choque Térmico HSP70/análise , Transtornos de Enxaqueca/fisiopatologia , Adulto , Estudos de Casos e Controles , Progressão da Doença , Epilepsia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Turquia
8.
Neuroimage ; 98: 405-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24791746

RESUMO

Automated analysis of structural magnetic resonance images is a promising way to improve early detection of neurodegenerative brain diseases. Clinical applications of such methods involve multiple scanners with potentially different hardware and/or acquisition sequences and demographically heterogeneous groups. To improve classification performance, we propose to correct effects of subject-specific covariates (such as age, total intracranial volume, and sex) as well as effects of scanner by using a non-linear Gaussian process model. To test the efficacy of the correction, we performed classification of carriers of the genetic mutation leading to Huntington's disease (HD) versus healthy controls. Half of the HD carriers were free of typical HD symptoms and had an estimated 5 to 20years before onset of clinical symptoms, thus providing a model for preclinical diagnosis of a neurodegenerative disease. Structural magnetic resonance brain images were acquired at four sites with pairs of sites which had the identical scanner type, equipment, and acquisition parameters. For automatic classification, we used spatially normalized probabilistic maps of gray matter, then removed confounding effects by Gaussian process regression, and then performed classification with a support vector machine. Voxel-based morphometry of gray matter maps showed disease effects that were spatially wider spread than effects of scanner, but no significant interactions between scanner and disease were found. A model trained with data from a single scanner generalized well to data from a different scanner. When confounding diagnostics groups and scanner during training, e.g. by using controls from one scanner and gene carriers from another, classification accuracy dropped significantly in many cases. By regressing out confounds with Gaussian process regression, the performance levels were comparable to those obtained in scenarios without confound. We conclude that models trained on data acquired with a single scanner generalized well to data acquired with a different same-generation scanner even when the vendor differed. When confounding grouping and scanner during training is unavoidable to gather training data, regressing out inter-scanner and between-subject variability can reduce the loss in accuracy due to the confound.


Assuntos
Encéfalo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/patologia , Adulto , Feminino , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/patologia , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Máquina de Vetores de Suporte
9.
Life Sci ; 331: 122032, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604353

RESUMO

Menthol is a small bioactive compound able to cause several physiological changes and has multiple molecular targets. Therefore, cellular response against menthol is complex, and still poorly understood. In this work, we used a human osteosarcoma cell line (Saos-2) and analysed the effect of menthol, especially in terms of cellular, subcellular and molecular aspects. We demonstrate that menthol causes increased mitochondrial Ca2+ in a complex manner, which is mainly contributed by intracellular sources, including ER. Menthol also changes the Ca2+-load of individual mitochondrial particles in different conditions. Menthol increases ER-mito contact points, causes mitochondrial morphological changes, and increases mitochondrial ATP, cardiolipin, mitochondrial ROS and reduces mitochondrial membrane potential (ΔΨm). Menthol also prevents the mitochondrial quality damaged by sub-lethal and lethal doses of CCCP. In addition, menthol lowers the mitochondrial temperature within cell and also serves as a cooling agent for the isolated mitochondria in a cell free system too. Notably, menthol-induced reduction of mitochondrial temperature is observed in diverse types of cells, including neuronal, immune and cancer cells. As the higher mitochondrial temperature is a hallmark of several inflammatory, metabolic, disease and age-related disorders, we propose that menthol can serve as an active anti-aging compound against all these disorders. These findings may have relevance in case of several pharmacological and clinical applications of menthol. SIGNIFICANCE STATEMENT: Menthol is a plant-derived bioactive compound that is widely used for several physiological, behavioural, addictive, and medicinal purposes. It is a well-established "cooling and analgesic agent". However, the exact cellular and sub-cellular responses of menthol is poorly understood. In this work, we have characterized the effects of menthol on mitochondrial metabolism. Menthol regulates mitochondrial Ca2+, ATP, superoxides, cardiolipin, membrane-potential, and ER-mito contact sites. Moreover, the cooling agent menthol also cools down mitochondria and protects mitochondrial damage by certain toxins. These findings may promote use of menthol as a useful supplementary agent for anti-aging, anti-cancer, anti-inflammatory purposes where higher mitochondrial temperature is prevalent.


Assuntos
Cardiolipinas , Mentol , Humanos , Mentol/farmacologia , Mentol/metabolismo , Cardiolipinas/metabolismo , Mitocôndrias/metabolismo , Relação Estrutura-Atividade , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo
10.
Exp Neurobiol ; 31(3): 173-195, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35786640

RESUMO

Traumatic brain injury is the greatest cause of disability and death in young adults in the developed world. The outcome for a TBI patient is determined by the severity of the injury, not only from the initial insult but, especially, as a product of the secondary injury. It is proposed that this secondary injury is directly linked to neuro-inflammation, with the production of pro-inflammatory mediators, activation of resident glial cells and infiltration of peripheral immune cells. In this context, anti-inflammatory treatments are one of the most promising therapies to dampen the inflammatory response associated with TBI and to reduce secondary injury. In this sense, the main objective of the present study is to elucidate the effect of local production of IL-10 in the neurological outcome after TBI. For this purpose, a cryogenic lesion was caused in transgenic animals overproducing IL-10 under the GFAP promoter on astrocytes (GFAP-IL10Tg mice) and the neuro-protection, microglial activation and leukocyte recruitment were evaluated. Our results showed a protective effect of IL-10 on neurons at early time-points after TBI, in correlation with a shift in the microglial activation profile towards a down-regulating phenotype and lower production of pro-inflammatory cytokines. Concomitantly, we observed a reduction in the BBB leakage together with modifications in leukocyte infiltration into the affected area. In conclusion, local IL-10 production modifies the neuro-inflammatory response after TBI, shifting it to anti-inflammatory and neuro-protective conditions. These results point to IL-10 as a promising candidate to improve neuro-inflammation associated with TBI.

11.
Cureus ; 14(6): e26186, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35911285

RESUMO

Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the nervous system with incredibly intricate etiopathogenesis involving numerous genetic, epigenetic, and environmental risk factors. Major environmental risk factors include ultraviolet (UV) radiation, vitamin D, Epstein-Barr virus (EBV) infection, smoking, and high body mass index (BMI). Vitamin D, in particular, can be viewed as one piece of this puzzle, with various tabs and pockets, occupying a sequential site. In this article, we have briefly discussed the neuroimmunology of MS and the role of vitamin D in regulating immune responses. Various observational studies and clinical trials were reviewed and discussed according to stages of disease activity and course of the disease. The data reviewed in this article implied that serum vitamin D levels greatly influence the risk of developing MS and disease activity. Long-term follow-up studies indicated that low serum vitamin D levels correlate with worse disability outcomes. Since clinical trials did not provide significant evidence, the role of vitamin D in controlling disease activity remains unresolved. Larger clinical trials are needed to support the findings of observational studies and provide significant evidence in favour of vitamin D.

12.
AIMS Neurosci ; 9(4): 479-490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36660077

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease, however, besides the motor symptoms, such as rest tremor, hypokinesia, postural instability and rigidity, PD patients have also non-motor symptoms, namely neuropsychiatric disorders. Apart from the required motor symptoms, psychopathological symptoms are very common and include mood disorders, anxiety disorders, hallucinations, psychosis, cognitive deterioration and dementia. The underlying pathophysiological process in PD is mainly due to the loss of dopaminergic neural cells and thereby causes the shortage of nigrostriatal dopamine content in them. In addition, it may involve other neurotransmitter systems such as the noradrenergic, serotonergic, cholinergic and noradrenergic systems as well. Depression can result from any unhealthy conditions making the diagnosis a challenging task. The manifestation of depression associated with or without PD is inadequate. The co-occurrence of depression and PD often leads to the conceptual discussion on whether depressive symptoms appear before or after PD develops. This paper will discuss the conceptual mechanism of PD and depression. Keep in mind both conditions belong to two separate entities but share some similar aspects in their pathophysiology.

13.
ASN Neuro ; 14: 17590914221112352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35791633

RESUMO

Although over 20 disease modifying therapies are approved to treat Multiple Sclerosis (MS), these do not increase remyelination of demyelinated axons or mitigate axon damage. Previous studies showed that lanthionine ketenamine ethyl ester (LKE) reduces clinical signs in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS and increased maturation of oligodendrocyte (OL) progenitor cells (OPCs) in vitro. In the current study, we used the cuprizone (CPZ) demyelination model of MS to test if LKE could increase remyelination. The corpus callosum (CC) and somatosensory cortex was examined by immunohistochemistry (IHC), electron microscopy and for mRNA expression changes in mice provided 5 weeks of CPZ diet followed by 2 weeks of normal diet in the presence of LKE or vehicle. A significant increase in the number of myelinated axons, and increased myelin thickness was observed in the CC of LKE-treated groups compared to vehicle-treated groups. LKE also increased myelin basic protein and proteolipid protein expression in the CC and cortex, and increased the number of mature OLs in the cortex. In contrast, LKE did not increase the percentage of proliferating OPCs suggesting effects on OPC survival and differentiation but not proliferation. The effects of LKE on OL maturation and remyelination were supported by similar changes in their relative mRNA levels. Interestingly, LKE did not have significant effects on GFAP or Iba1 immunostaining or mRNA levels. These findings suggest that remyelinating actions of LKE can potentially be formulated to induce remyelination in neurological diseases associated with demyelination including MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Remielinização , Aminoácidos Sulfúricos , Animais , Cuprizona/toxicidade , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Ésteres/farmacologia , Camundongos , Esclerose Múltipla/tratamento farmacológico , RNA Mensageiro
14.
ASN Neuro ; 14: 17590914221118502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938615

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) leading to demyelination and neurodegeneration. Life expectancy and age of onset in MS patients have been rising over the last decades, and previous studies have shown that age affects disease progression. Therefore, age appears as one of the most important factors in accumulating disability in MS patients. Indeed, the degeneration of oligodendrocytes (OGDs) and OGD precursors (OPCs) increases with age, in association with increased inflammatory activity of astrocytes and microglia. Similarly, age-related neuronal changes such as mitochondrial alterations, an increase in oxidative stress, and disrupted paranodal junctions can impact myelin integrity. Conversely, once myelination is complete, the long-term integrity of axons depends on OGD supply of energy. These alterations determine pathological myelin changes consisting of myelin outfolding, splitting, and accumulation of multilamellar fragments. Overall, these data demonstrate that old mature OGDs lose their ability to produce and maintain healthy myelin over time, to induce de novo myelination, and to remodel pre-existing myelinated axons that contribute to neural plasticity in the CNS. Furthermore, as observed in other tissues, aging induces a general decline in regenerative processes and, not surprisingly, progressively hinders remyelination in MS. In this context, this review will provide an overview of the current knowledge of age-related changes occurring in cells of the oligodendroglial lineage and how they impact myelin synthesis, axonal degeneration, and remyelination efficiency.


Assuntos
Esclerose Múltipla , Remielinização , Axônios , Humanos , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Oligodendroglia/patologia , Remielinização/fisiologia
15.
Elife ; 102021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33825682

RESUMO

Aggregation of Cu-Zn superoxide dismutase (SOD1) is implicated in the motor neuron disease, amyotrophic lateral sclerosis (ALS). Although more than 140 disease mutations of SOD1 are available, their stability or aggregation behaviors in membrane environment are not correlated with disease pathophysiology. Here, we use multiple mutational variants of SOD1 to show that the absence of Zn, and not Cu, significantly impacts membrane attachment of SOD1 through two loop regions facilitating aggregation driven by lipid-induced conformational changes. These loop regions influence both the primary (through Cu intake) and the gain of function (through aggregation) of SOD1 presumably through a shared conformational landscape. Combining experimental and theoretical frameworks using representative ALS disease mutants, we develop a 'co-factor derived membrane association model' wherein mutational stress closer to the Zn (but not to the Cu) pocket is responsible for membrane association-mediated toxic aggregation and survival time scale after ALS diagnosis.


Amyotrophic lateral sclerosis, or ALS, is an incurable neurodegenerative disease in which a person slowly loses specialized nerve cells that control voluntary movement. It is not fully understood what causes this fatal disease. However, it is suspected that clumps, or aggregates, of a protein called SOD1 in nerve cells may play a crucial role. More than 140 mutations in the gene for SOD1 have been linked to ALS, with varying degrees of severity. But it is still unclear how these mutations cause SOD1 aggregation or how different mutations influence the survival rate of the disease. The protein SOD1 contains a copper ion and a zinc ion, and it is possible that mutations that affect how these two ions bind to SOD1 influences the severity of the disease. To investigate this, Sannigrahi, Chowdhury, Das et al. genetically engineered mutants of the SOD1 protein which each contain only one metal ion. Experiments on these mutated proteins showed that the copper ion is responsible for the protein's role in neutralizing harmful reactive molecules, while the zinc ion stabilizes the protein against aggregation. Sannigrahi et al. found that when the zinc ion was removed, the SOD1 protein attached to a structure inside the cell called the mitochondria and formed toxic aggregates. Sannigrahi et al. then used these observations to build a computational model that incorporated different mutations that have been previously associated with ALS. The model suggests that mutations close to the site where zinc binds to the SOD1 protein increase disease severity and shorten survival time after diagnosis. This model was then experimentally validated using two disease variants of ALS that have mutations close to the sites where zinc or copper binds. These findings still need to be tested in animals and humans to see if these mechanisms hold true in a multicellular organism. This discovery could help design new ALS treatments that target the zinc binding site on SOD1 or disrupt the protein's interactions with the mitochondria.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Membrana Celular/enzimologia , Neurônios/enzimologia , Superóxido Dismutase-1/metabolismo , Zinco/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Sítios de Ligação , Linhagem Celular Tumoral , Membrana Celular/patologia , Cobre/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Neurônios/patologia , Agregados Proteicos , Agregação Patológica de Proteínas , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Superóxido Dismutase-1/genética
16.
Iran J Basic Med Sci ; 24(9): 1190-1195, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35083005

RESUMO

OBJECTIVES: Infantile neuroaxonal degeneration (INAD) is a rare subgroup of neurodegeneration with brain iron accumulation (NBIA) disorders. This progressive disorder may develop during the early years of life. Affected individuals mostly manifest developmental delay and/or psychomotor regression as well as other neurological deficits. In the present study, we discussed 3 INAD patients diagnosed before the age of 10 by using Whole-Exome Sequencing (WES). MATERIALS AND METHODS: We evaluated 3 pediatric patients with clinical phenotypes of INAD who underwent WES. Sanger sequencing was performed for co-segregation analysis of the variants in the families. An in-silico study was conducted for identification of the molecular function of the identified genetic variants in the PLA2G6 gene. RESULTS: We detected three novel genetic variants in the PLA2G6 gene including a homozygous missense (NM_003560.2; c.1949T>C; p.Phe650Ser), a splicing (NM_001349864; c.1266-1G>A) and a frameshift variant (NM_003560.4; c.1547_1548dupCG; p.Gly517ArgfsTer29). Since the variants were not previously reported in literature or population databases, we performed in-silico studies for these variants and demonstrated their potential pathogenicity. CONCLUSION: The current study reports novel genetic variants in the PLA2G6 gene in the Iranian population, emphasizing the importance of high-throughput genetic testing in rare diseases.

17.
G3 (Bethesda) ; 10(8): 2851-2861, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32580938

RESUMO

Genetic and epidemiological studies have found that variations in the amyloid precursor protein (APP) and the apoliopoprotein E (APOE) genes represent major modifiers of the progressive neurodegeneration in Alzheimer's disease (AD). An extra copy of or gain-of-function mutations in APP correlate with early onset AD. Compared to the other variants (APOE2 and APOE3), the ε4 allele of APOE (APOE4) hastens and exacerbates early and late onset forms of AD. Convenient in vivo models to study how APP and APOE4 interact at the cellular and molecular level to influence neurodegeneration are lacking. Here, we show that the nematode C. elegans can model important aspects of AD including age-related, patterned neurodegeneration that is exacerbated by APOE4 Specifically, we found that APOE4, but not APOE3, acts with APP to hasten and expand the pattern of cholinergic neurodegeneration caused by APP Molecular mechanisms underlying how APP and APOE4 synergize to kill some neurons while leaving others unaffected may be uncovered using this convenient worm model of neurodegeneration.


Assuntos
Precursor de Proteína beta-Amiloide , Apolipoproteína E4 , Precursor de Proteína beta-Amiloide/genética , Animais , Apolipoproteína E2 , Apolipoproteína E3 , Apolipoproteína E4/genética , Caenorhabditis elegans/genética , Humanos
18.
Ann Clin Lab Sci ; 50(5): 567-577, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33067202

RESUMO

A century ago a fat-soluble vitamin from leafy vegetables, later named vitamin E, was discovered to enhance fertility in animals. Vitamin E consists of 8 isomers of tocopherols and tocotrienols, each containing chromanol groups that confer antioxidant properties and differ only in the 15-carbon saturated phytyl poly-isoprenoid side chain of tocopherols and the 15-carbon unsaturated farnesyl poly-isoprenoid side chain of tocotrienols. Although tocotrienol was first isolated from rubber plants in 1964, its importance in multiple disease processes was not recognized until two decades later, when the cholesterol-lowering and anti-cancer effects were first reported. Tocotrienol (T3) protects against radiation injury and mitochondrial dysfunction by preventing opening of the mitochondrial permeability transition pore, thereby inhibiting loss of the active site for oxidative phosphorylation, thioretinaco ozonide oxygen ATP, from mitochondria by complex formation with the active site, TR2CoO3O2NAD+H2PO4 -T3. The preventive effects of tocotrienol on vascular disease, cancer, neurodegeneration and aging are attributed to its effects on cellular apoptosis and senescence. Geranylgeraniol is an important intermediate in the biosynthesis of cholesterol, and cholesterol auxotrophy of lymphoma cell lines and primary tumors is attributed to loss of squalene monooxygenase and accumulation of intracellular squalene. Geranylgeraniol and tocotrienol have synergistic inhibitory effects on growth and HMG CoA reductase activity, accompanied by reduction of membrane KRAS protein of cultured human prostate carcinoma cells. Since cholesterol inhibits opening of the mPTP pore of mitochondria, inhibition of cholesterol biosynthesis by these effects of tocotrienol and geranylgeraniol produces increased mitochondrial dysfunction and apoptosis from loss of the active site of oxidative phosphorylation from mitochondria.


Assuntos
Diterpenos/metabolismo , Homocisteína/metabolismo , Tocotrienóis/metabolismo , Envelhecimento/fisiologia , Animais , Arteriosclerose/metabolismo , Colesterol/metabolismo , Homocisteína/análogos & derivados , Humanos , Mitocôndrias/metabolismo , NAD/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Esqualeno/metabolismo , Esqualeno/farmacologia , Tocotrienóis/farmacologia , Vitamina B 12/análogos & derivados
19.
ASN Neuro ; 11: 1759091419833502, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30862176

RESUMO

ATP- and adenosine-mediated signaling are prominent types of glia-glia and glia-neuron interaction, with an imbalance of ATP/adenosine ratio leading to altered states of excitability, as seen in epileptic seizures. Pannexin1 (Panx1), a member of the gap junction family, is an ATP release channel that is expressed in astrocytes and neurons. Previous studies provided evidence supporting a role for purinergic-mediated signaling via Panx1 channels in seizures; using mice with global deletion of Panx1, it was shown that these channels contribute in maintenance of seizures by releasing ATP. However, nothing is known about the extent to which astrocyte and neuronal Panx1 might differently contribute to seizures. We here show that targeted deletion of Panx1 in astrocytes or neurons has opposing effects on acute seizures induced by kainic acid. The absence of Panx1 in astrocytes potentiates while the absence of Panx1 in neurons attenuates seizure manifestation. Immunohistochemical analysis performed in brains of these mice, revealed that adenosine kinase (ADK), an enzyme that regulates extracellular levels of adenosine, was increased only in seized GFAP-Cre:Panx1f/f mice. Pretreating mice with the ADK inhibitor, idotubercidin, improved seizure outcome and prevented the increase in ADK immunoreactivity. Together, these data suggest that the worsening of seizures seen in mice lacking astrocyte Panx1 is likely related to low levels of extracellular adenosine due to the increased ADK levels in astrocytes. Our study not only reveals an unexpected link between Panx1 channels and ADK but also highlights the important role played by astrocyte Panx1 channels in controlling neuronal activity.


Assuntos
Astrócitos/metabolismo , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Convulsões/metabolismo , Adenosina Quinase/antagonistas & inibidores , Adenosina Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Conexinas/genética , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Ácido Caínico , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Convulsões/tratamento farmacológico
20.
Front Cell Neurosci ; 12: 193, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042661

RESUMO

Astrocytes, which are five-fold more numerous than neurons in the central nervous system (CNS), are traditionally viewed to provide simple structural and nutritional supports for neurons and to participate in the composition of the blood brain barrier (BBB). In recent years, the active roles of astrocytes in regulating cerebral blood flow (CBF) and in maintaining the homeostasis of the tripartite synapse have attracted increasing attention. More importantly, astrocytes have been associated with the pathogenesis of Alzheimer's disease (AD), a major cause of dementia in the elderly. Although microglia-induced inflammation is considered important in the development and progression of AD, inflammation attributable to astrogliosis may also play crucial roles. A1 reactive astrocytes induced by inflammatory stimuli might be harmful by up-regulating several classical complement cascade genes thereby leading to chronic inflammation, while A2 induced by ischemia might be protective by up-regulating several neurotrophic factors. Here we provide a concise review of the emerging roles of astrocytes in the homeostasis maintenance of the neuro-vascular unit (NVU) and the tripartite synapse with emphasis on reactive astrogliosis in the context of AD, so as to pave the way for further research in this area, and to search for potential therapeutic targets of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA