Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 583
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(5): 1158-1171.e19, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30057110

RESUMO

Characterizing cell surface receptors mediating viral infection is critical for understanding viral tropism and developing antiviral therapies. Nevertheless, due to challenges associated with detecting protein interactions on the cell surface, the host receptors of many human pathogens remain unknown. Here, we build a library consisting of most single transmembrane human receptors and implement a workflow for unbiased and high-sensitivity detection of receptor-ligand interactions. We apply this technology to elucidate the long-sought receptor of human cytomegalovirus (HCMV), the leading viral cause of congenital birth defects. We identify neuropilin-2 (Nrp2) as the receptor for HCMV-pentamer infection in epithelial/endothelial cells and uncover additional HCMV interactors. Using a combination of biochemistry, cell-based assays, and electron microscopy, we characterize the pentamer-Nrp2 interaction and determine the architecture of the pentamer-Nrp2 complex. This work represents an important approach to the study of host-pathogen interactions and provides a framework for understanding HCMV infection, neutralization, and the development of novel anti-HCMV therapies.


Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Neuropilina-2/metabolismo , Receptores Virais/metabolismo , Anticorpos Neutralizantes/química , Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Mapeamento de Epitopos , Feminino , Células HEK293 , Humanos , Conformação Proteica , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
2.
Cell ; 169(6): 1130-1141.e11, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552348

RESUMO

Regulatory T cells (Tregs) are a barrier to anti-tumor immunity. Neuropilin-1 (Nrp1) is required to maintain intratumoral Treg stability and function but is dispensable for peripheral immune tolerance. Treg-restricted Nrp1 deletion results in profound tumor resistance due to Treg functional fragility. Thus, identifying the basis for Nrp1 dependency and the key drivers of Treg fragility could help to improve immunotherapy for human cancer. We show that a high percentage of intratumoral NRP1+ Tregs correlates with poor prognosis in melanoma and head and neck squamous cell carcinoma. Using a mouse model of melanoma where Nrp1-deficient (Nrp1-/-) and wild-type (Nrp1+/+) Tregs can be assessed in a competitive environment, we find that a high proportion of intratumoral Nrp1-/- Tregs produce interferon-γ (IFNγ), which drives the fragility of surrounding wild-type Tregs, boosts anti-tumor immunity, and facilitates tumor clearance. We also show that IFNγ-induced Treg fragility is required for response to anti-PD1, suggesting that cancer therapies promoting Treg fragility may be efficacious.


Assuntos
Carcinoma de Células Escamosas/imunologia , Neoplasias de Cabeça e Pescoço/imunologia , Interferon gama/imunologia , Melanoma/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Fatores de Transcrição Forkhead , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neuropilina-1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Microambiente Tumoral , Receptor de Interferon gama
3.
EMBO J ; 41(10): e109622, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35178710

RESUMO

Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS-CoV-2 infection is critical for developing treatments for severe COVID-19. Here, we find decreasing number of circulating plasmacytoid dendritic cells (pDCs) in COVID-19 patients early after symptom onset, correlating with disease severity. pDC depletion is transient and coincides with decreased expression of antiviral type I IFNα and of systemic inflammatory cytokines CXCL10 and IL-6. Using an in vitro stem cell-based human pDC model, we further demonstrate that pDCs, while not supporting SARS-CoV-2 replication, directly sense the virus and in response produce multiple antiviral (interferons: IFNα and IFNλ1) and inflammatory (IL-6, IL-8, CXCL10) cytokines that protect epithelial cells from de novo SARS-CoV-2 infection. Via targeted deletion of virus-recognition innate immune pathways, we identify TLR7-MyD88 signaling as crucial for production of antiviral interferons (IFNs), whereas Toll-like receptor (TLR)2 is responsible for the inflammatory IL-6 response. We further show that SARS-CoV-2 engages the receptor neuropilin-1 on pDCs to selectively mitigate the antiviral interferon response, but not the IL-6 response, suggesting neuropilin-1 as potential therapeutic target for stimulation of TLR7-mediated antiviral protection.


Assuntos
COVID-19 , Células Dendríticas , Receptor 2 Toll-Like , Receptor 7 Toll-Like , COVID-19/imunologia , COVID-19/patologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/patologia , Humanos , Interferon Tipo I/imunologia , Interferon-alfa/imunologia , Interleucina-6/imunologia , Neuropilina-1/imunologia , SARS-CoV-2 , Receptor 2 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologia
4.
Eur J Immunol ; 54(6): e2350619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532599

RESUMO

This study sought to compare the behavior of Treg subsets displaying different coexpression patterns of Neuropilin-1 (Nrp1) and Helios, under the influence of gut stress unrelated to hematopoietic stem cell transplantation, pretransplantation conditioning, and posttransplant gastrointestinal acute graft versus host disease (GI-aGvHD). Host CD4+/CD25hi/Foxp3+ Treg cells, identified by flow cytometry, were isolated from various tissues of mice affected by these stressors. Expression of CD25, CTLA-4, CD39, OX40, integrin-ß7, LAG3, TGFß/LAP, granzyme-A, -B, and interleukin-10 was compared in four Treg subsets displaying Helios or Nrp1 only, both or none. Fluorescence-activated cell sorter-sorted Treg subsets, displaying markers affected in a conditioning- and GI-aGVHD-restricted manner, were further investigated by transcriptome profiling and T-cell suppression assays. We found that conditioning by irradiation greatly diminished the relative frequency of Helios+/Nrp1+ Treg, shifting the balance toward Helios-/Nrp1- Treg in the host. Upregulation of integrin-ß7 and OX40 occurred in GI-aGvHD-dependent manner in Helios+/Nrp1+ cells but not in Helios-/Nrp1- Treg. Sorted Treg subsets, confirmed to overexpress Nrp1, Helios, OX40, or integrin-ß7, displayed superior immunosuppressive activity and enrichment in activation-related messenger RNA transcripts. Our data suggest that conditioning-induced shrinkage of the Nrp1+/Helios+ Treg subset may contribute to the development of GI-GvHD by impairing gut homing and decreasing the efficiency of Treg-mediated immunosuppression.


Assuntos
Doença Enxerto-Hospedeiro , Cadeias beta de Integrinas , Neuropilina-1 , Linfócitos T Reguladores , Animais , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Linfócitos T Reguladores/imunologia , Camundongos , Neuropilina-1/metabolismo , Neuropilina-1/genética , Cadeias beta de Integrinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Condicionamento Pré-Transplante/métodos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos Endogâmicos C57BL , Gastroenteropatias/imunologia , Camundongos Endogâmicos BALB C , Receptores OX40/metabolismo , Doença Aguda , Transplante de Células-Tronco Hematopoéticas , Feminino , Ligante OX40
5.
J Pathol ; 262(2): 175-188, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37946610

RESUMO

Neuropilin-2 (NRP2) is a multifunctional protein engaged in the regulation of angiogenesis, lymphangiogenesis, axon guidance, and tumor metastasis, but its function in colitis remains unclear. Here, we found that NRP2 was an inflammation-sensing protein rapidly and dramatically induced in myeloid cells, especially in macrophages, under inflammatory contexts. NRP2 deficiency in myeloid cells exacerbated dextran sulfate sodium salt-induced experimental colitis by promoting polarization of M1 macrophages and colon injury. Mechanistically, NRP2 could be induced via NF-κB activation by TNF-α in macrophages, but exerted an inhibitory effect on NF-κB signaling, forming a negative feedback loop with NF-κB to sense and alleviate inflammation. Deletion of NRP2 in macrophages broke this negative feedback circuit, leading to NF-κB overactivation, inflammatory exacerbation, and more severe colitis. Collectively, these findings reveal inflammation restriction as a role for NRP2 in macrophages under inflammation contexts and suggest that NRP2 in macrophages may relieve inflammation in inflammatory bowel disease. © 2023 The Pathological Society of Great Britain and Ireland.


Assuntos
Colite , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Neuropilina-2/genética , Neuropilina-2/metabolismo , Colite/patologia , Inflamação/patologia , Macrófagos/patologia , Sulfato de Dextrana/toxicidade , Sulfato de Dextrana/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
6.
Proc Natl Acad Sci U S A ; 119(28): e2200183119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35771944

RESUMO

The term "molecular ZIP (or area) codes" refers to an originally hypothetical system of cell adhesion molecules that would control cell trafficking in the body. Subsequent discovery of the integrins, cadherins, and other cell adhesion molecules confirmed this hypothesis. The recognition system encompassing integrins and their ligands came particularly close to fulfilling the original ZIP code hypothesis, as multiple integrins with closely related specificities mediate cell adhesion by binding to an RGD or related sequence in various extracellular matrix proteins. Diseased tissues have their own molecular addresses that, although not necessarily involved in cell trafficking, can be made use of in targeted drug delivery. This article discusses the molecular basis of ZIP codes and the extensive effort under way to harness them for drug delivery purposes.


Assuntos
Moléculas de Adesão Celular , Sistemas de Liberação de Medicamentos , Integrinas , Animais , Caderinas/química , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Humanos , Integrinas/química , Integrinas/genética , Integrinas/metabolismo , Ligantes , Oligopeptídeos/química , Oligopeptídeos/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(25): e2201980119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696571

RESUMO

Endosomal sorting maintains cellular homeostasis by recycling transmembrane proteins and associated proteins and lipids (termed "cargoes") from the endosomal network to multiple subcellular destinations, including retrograde traffic to the trans-Golgi network (TGN). Viral and bacterial pathogens subvert retrograde trafficking machinery to facilitate infectivity. Here, we develop a proteomic screen to identify retrograde cargo proteins of the endosomal SNX-BAR sorting complex promoting exit 1 (ESCPE-1). Using this methodology, we identify Neuropilin-1 (NRP1), a recently characterized host factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as a cargo directly bound and trafficked by ESCPE-1. ESCPE-1 mediates retrograde trafficking of engineered nanoparticles functionalized with the NRP1-interacting peptide of the SARS-CoV-2 spike (S) protein. CRISPR-Cas9 deletion of ESCPE-1 subunits reduces SARS-CoV-2 infection levels in cell culture. ESCPE-1 sorting of NRP1 may therefore play a role in the intracellular membrane trafficking of NRP1-interacting viruses such as SARS-CoV-2.


Assuntos
COVID-19 , Endossomos , Interações Hospedeiro-Patógeno , Neuropilina-1 , SARS-CoV-2 , COVID-19/metabolismo , COVID-19/virologia , Sistemas CRISPR-Cas , Endossomos/virologia , Deleção de Genes , Humanos , Nanopartículas , Neuropilina-1/genética , Neuropilina-1/metabolismo , Proteômica , SARS-CoV-2/metabolismo , Nexinas de Classificação/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
J Cell Mol Med ; 28(8): e18201, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568078

RESUMO

Sensory nerves play a crucial role in maintaining bone homeostasis by releasing Semaphorin 3A (Sema3A). However, the specific mechanism of Sema3A in regulation of bone marrow mesenchymal stem cells (BMMSCs) during bone remodelling remains unclear. The tibial denervation model was used and the denervated tibia exhibited significantly lower mass as compared to sham operated bones. In vitro, BMMSCs cocultured with dorsal root ganglion cells (DRGs) or stimulated by Sema3A could promote osteogenic differentiation through the Wnt/ß-catenin/Nrp1 positive feedback loop, and the enhancement of osteogenic activity could be inhibited by SM345431 (Sema3A-specific inhibitor). In addition, Sema3A-stimulated BMMSCs or intravenous injection of Sema3A could promote new bone formation in vivo. To sum up, the coregulation of bone remodelling is due to the ageing of BMMSCs and increased osteoclast activity. Furthermore, the sensory neurotransmitter Sema3A promotes osteogenic differentiation of BMMSCs via Wnt/ß-catenin/Nrp1 positive feedback loop, thus promoting osteogenesis in vivo and in vitro.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Osteogênese/genética , Semaforina-3A/genética , Retroalimentação , beta Catenina , Gânglios Espinais , Neuropilina-1/genética
9.
J Physiol ; 602(8): 1815-1833, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38381008

RESUMO

Renin is the key enzyme of the systemic renin-angiotensin-aldosterone system, which plays an essential role in regulating blood pressure and maintaining electrolyte and extracellular volume homeostasis. Renin is mainly produced and secreted by specialized juxtaglomerular (JG) cells in the kidney. In the present study, we report for the first time that the conserved transmembrane receptor neuropilin-1 (NRP1) participates in the development of JG cells and plays a key role in renin production. We used the myelin protein zero-Cre (P0-Cre) to abrogate Nrp1 constitutively in P0-Cre lineage-labelled cells of the kidney. We found that the P0-Cre precursor cells differentiate into renin-producing JG cells. We employed a lineage-tracing strategy combined with RNAscope quantification and metabolic studies to reveal a cell-autonomous role for NRP1 in JG cell function. Nrp1-deficient animals displayed abnormal levels of tissue renin expression and failed to adapt properly to a homeostatic challenge to sodium balance. These findings provide new insights into cell fate decisions and cellular plasticity operating in P0-Cre-expressing precursors and identify NRP1 as a novel key regulator of JG cell maturation. KEY POINTS: Renin is a centrepiece of the renin-angiotensin-aldosterone system and is produced by specialized juxtaglomerular cells (JG) of the kidney. Neuropilin-1 (NRP1) is a conserved membrane-bound receptor that regulates vascular and neuronal development, cancer aggressiveness and fibrosis progression. We used conditional mutagenesis and lineage tracing to show that NRP1 is expressed in JG cells where it regulates their function. Cell-specific Nrp1 knockout mice present with renin paucity in JG cells and struggle to adapt to a homeostatic challenge to sodium balance. The results support the versatility of renin-producing cells in the kidney and may open new avenues for therapeutic approaches.


Assuntos
Sistema Justaglomerular , Renina , Camundongos , Animais , Renina/metabolismo , Sistema Justaglomerular/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Rim/metabolismo , Camundongos Knockout , Sódio/metabolismo
10.
J Biol Chem ; 299(9): 104998, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394009

RESUMO

Chlorotoxin (CTX), a scorpion venom-derived 36-residue miniprotein, binds to and is taken up selectively by glioblastoma cells. Previous studies provided controversial results concerning target protein(s) of CTX. These included CLC3 chloride channel, matrix metalloproteinase 2 (MMP-2), regulators of MMP-2, annexin A2, and neuropilin 1 (NRP1). The present study aimed at clarifying which of the proposed binding partners can really interact with CTX using biochemical methods and recombinant proteins. For this purpose, we established two new binding assays based on anchoring the tested proteins to microbeads and quantifying the binding of CTX by flow cytometry. Screening of His-tagged proteins anchored to cobalt-coated beads indicated strong interaction of CTX with MMP-2 and NRP1, whereas binding to annexin A2 was not confirmed. Similar results were obtained with fluorophore-labeled CTX and CTX-displaying phages. Affinity of CTX to MMP-2 and NRP1 was assessed by the "immunoglobulin-coated bead" test, in which the proteins were anchored to beads by specific antibodies. This assay yielded highly reproducible data using both direct titration and displacement approach. The affinities of labeled and unlabeled CTX appeared to be similar for both MMP-2 and NRP1 with estimated KD values of 0.5 to 0.7 µM. Contrary to previous reports, we found that CTX does not inhibit the activity of MMP-2 and that CTX not only with free carboxyl end but also with carboxamide terminal end binds to NRP1. We conclude that the presented robust assays could also be applied for affinity-improving studies of CTX to its genuine targets using phage display libraries.


Assuntos
Glioblastoma , Metaloproteinase 2 da Matriz , Neuropilina-1 , Venenos de Escorpião , Humanos , Glioblastoma/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Neuropilina-1/metabolismo , Venenos de Escorpião/metabolismo , Linhagem Celular Tumoral , Ligação Proteica
11.
J Neurochem ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946488

RESUMO

A growth cone is a highly motile tip of an extending axon that is crucial for neural network formation. Three-dimensional-structured illumination microscopy, a type of super-resolution light microscopy with a resolution that overcomes the optical diffraction limitation (ca. 200 nm) of conventional light microscopy, is well suited for studying the molecular dynamics of intracellular events. Using this technique, we discovered a novel type of filopodia distributed along the z-axis ("z-filopodia") within the growth cone. Z-filopodia were typically oriented in the direction of axon growth, not attached to the substratum, protruded spontaneously without microtubule invasion, and had a lifetime that was considerably shorter than that of conventional filopodia. Z-filopodia formation and dynamics were regulated by actin-regulatory proteins, such as vasodilator-stimulated phosphoprotein, fascin, and cofilin. Chromophore-assisted laser inactivation of cofilin induced the rapid turnover of z-filopodia. An axon guidance receptor, neuropilin-1, was concentrated in z-filopodia and was transported together with them, whereas its ligand, semaphorin-3A, was selectively bound to them. Membrane domains associated with z-filopodia were also specialized and resembled those of lipid rafts, and their behaviors were closely related to those of neuropilin-1. The results suggest that z-filopodia have unique turnover properties, and unlike xy-filopodia, do not function as force-generating structures for axon extension.

12.
J Hepatol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960374

RESUMO

BACKGROUND & AIMS: Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for hepatitis B virus (HBV). However, hepatocytes expressing NTCP exhibit varying susceptibilities to HBV infection. This study aimed to investigate whether other host factors modulate the process of HBV infection. METHODS: Liver biopsy samples obtained from children with hepatitis B were used for single-cell sequencing and susceptibility analysis. Primary human hepatocytes, HepG2-NTCP cells, and human liver chimeric mice were used to analyze the effect of candidate host factors on HBV infection. RESULTS: Single-cell sequencing and susceptibility analysis revealed a positive correlation between neuropilin-1 (NRP1) expression and HBV infection. In the HBV-infected cell model, NRP1 overexpression before HBV inoculation significantly enhanced viral attachment and internalization, and promoted viral infection in the presence of NTCP. Mechanistic studies indicated that NRP1 formed a complex with LHBs and NTCP. The NRP1 b domain mediated its interaction with conserved arginine residues at positions 88 and 92 in the preS1 domain of the HBV envelope protein LHBs. This NRP1-preS1 interaction subsequently promoted the binding of preS1 to NTCP, facilitating viral infection. Moreover, disruption of the NRP1-preS1 interaction by the NRP1 antagonist EG00229 significantly attenuated the binding affinity between NTCP and preS1, thereby inhibiting HBV infection both in vitro and in vivo. CONCLUSIONS: Our findings indicate that NRP1 is a novel host factor for HBV infection, which interacts with preS1 and NTCP to modulate HBV entry into hepatocytes. IMPACT AND IMPLICATIONS: HBV infection is a global public health problem, but the understanding of the early infection process of HBV remains limited. Through single-cell sequencing, we identified a novel host factor, NRP1, which modulates HBV entry by interacting with HBV preS1 and NTCP. Moreover, antagonists targeting NRP1 can inhibit HBV infection both in vitro and in vivo. This study could further advance our comprehension of the early infection process of HBV.

13.
Small ; 20(28): e2309882, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38342670

RESUMO

Negative therapeutic feedback of inflammation would extensively attenuate the antitumor effect of photodynamic therapy (PDT). In this work, tumor homing chimeric peptide rhomboids (designated as NP-Mel) are fabricated to improve photodynamic performance by inhibiting PDT-upregulated cyclooxygenase-2 (COX-2). The hydrophobic photosensitizer of protoporphyrin IX (PpIX) and palmitic acid are conjugated onto the neuropilin receptors (NRPs) targeting peptide motif (CGNKRTR) to obtain tumor homing chimeric peptide (Palmitic-K(PpIX)CGNKRTR), which can encapsulate the COX-2 inhibitor of meloxicam. The well dispersed NP-Mel not only improves the drug stability and reactive oxygen species (ROS) production ability, but also increase the breast cancer targeted drug delivery to intensify the PDT effect. In vitro and in vivo studies verify that NP-Mel will decrease the secretion of prostaglandin E2 (PGE2) after PDT treatment, inducing the downregulation of IL-6 and TNF-α expressions to suppress PDT induced inflammation. Ultimately, an improved PDT performance of NP-Mel is achieved without inducing obvious systemic toxicity, which might inspire the development of sophisticated nanomedicine in consideration of the feedback induced therapeutic resistance.


Assuntos
Ciclo-Oxigenase 2 , Peptídeos , Fotoquimioterapia , Fotoquimioterapia/métodos , Ciclo-Oxigenase 2/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Animais , Humanos , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , Feminino , Meloxicam/farmacologia , Meloxicam/uso terapêutico , Camundongos , Protoporfirinas/química , Protoporfirinas/farmacologia , Dinoprostona/metabolismo
14.
Allergy ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166395

RESUMO

BACKGROUND: Neuropilin-1 (NRP1) is expressed on the surface epithelium of respiratory tract and immune cells, demonstrating its possible function in regulating the immune response in airway disease. However, its role in patient with chronic rhinosinusitis (CRS) remains unknown. This study aimed to elucidate the role of NRP1 in CRS with nasal polyps (CRSwNP). METHODS: Sinonasal biopsy specimens were immunohistochemically stained to investigate NRP1 expression. Double immunofluorescence, immunoblotting, and real-time polymerase chain reaction were performed to evaluate NRP1 in primary human nasal epithelial cells (hNECs). An NRP1 inhibitor was administered to a murine nasal polyp (NP) model. RESULTS: NRP1 was highly expressed in the epithelium in patients with CRSwNP compared to nasal tissue from controls and CRS without NP patients. NRP1 and vascular endothelial growth factor were upregulated in hNECs under hypoxia. Treatment with NRP1 inhibitor (EG00229) reduced the secretion of interleukin (IL)-1ß, IL-6, IL-8, and IL-33 cytokines, as well as inducible nitric oxide synthase, cyclooxygenase-2, and prostaglandin E2 in hNECs. We found that NRP1 was highly expressed in the airway epithelium in the murine NP model. The group treated with the NRP1 inhibitor had significantly fewer nasal polypoid lesions and reduced accumulations of immune cells. CONCLUSIONS: These findings reveal that NRP1 is upregulated in CRS and NP epithelium, and the inhibition of NRP1 may lead to a reduction in NP growth and immune cell infiltration. Our results suggest that NRP1 inhibition could be a novel possibility for treating nasal polyposis.

15.
Eur J Nucl Med Mol Imaging ; 51(7): 1826-1840, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38319321

RESUMO

PURPOSE: Neuropilin-1 (NRP-1) is a multifunctional protein involved in a variety of biological processes such as angiogenesis, tumorigenesis and immunomodulation. It was usually overexpressed in many cancer cell lines and correlated with poor prognosis of breast cancer. Positron emission tomography (PET) is an advanced imaging technique for detecting the function and metabolism of tumor-associated molecules in real time, dynamically, quantitatively and noninvasively. To improve the level of early diagnosis and evaluate the prognosis of breast cancer, an NRP-1 targeting peptide-based tracer [68 Ga]Ga-NOTA-PEG4-CK2 was designed to sensitively and specifically detect the NRP-1 expression in vivo via PET imaging. METHODS: In silico modeling and microscale thermophoresis (MST) assay were carried out to design the NRP-1 targeting peptide NOTA-PEG4-CK2, and it was further radiolabeled with 68 Ga to prepare the tracer [68 Ga]Ga-NOTA-PEG4-CK2. The radiochemical yield (RCY), radiochemical purity (RCP), molar activity (Am), lipid-water partition coefficient (Log P) and stability of [68 Ga]Ga-NOTA-PEG4-CK2 were assessed. The targeting specificity of the tracer for NRP-1 was investigated by in vitro cellular uptake assay and in vivo PET imaging as well as blocking studies. The sensitivity of the tracer in monitoring the dynamic changes of NRP-1 expression induced by chemical drug was also investigated in vitro and in vivo. Ex vivo biodistribution, autoradiography, western blot, and immunofluorescence staining were also performed to study the specificity of [68 Ga]Ga-NOTA-PEG4-CK2 for NRP-1. RESULTS: [68 Ga]Ga-NOTA-PEG4-CK2 was designed and synthesized with high RCY (> 98%), high stability (RCP > 95%) and high affinity to NRP-1 (KD = 25.39 ± 1.65 nM). In vitro cellular uptake assay showed that the tracer [68 Ga]Ga-NOTA-PEG4-CK2 can specifically bind to NRP-1 positive cancer cells MDA-MB-231 (1.04 ± 0.04% at 2 h) rather than NRP-1 negative cancer cells NCI-H1299 (0.43 ± 0.05%). In vivo PET imaging showed the maximum tumor uptake of [68 Ga]Ga-NOTA-PEG4-CK2 in MDA-MB-231 xenografts (4.16 ± 0.67%ID/mL) was significantly higher than that in NCI-H1299 xenografts (1.03 ± 0.19%ID/mL) at 10 min post injection, and the former exhibited higher tumor-to-muscle uptake ratio (5.22 ± 0.18) than the latter (1.07 ± 0.27) at 60 min post injection. MDA-MB-231 xenografts pretreated with nonradioactive precursor NOTA-PEG4-CK2 showed little tumor uptake of [68 Ga]Ga-NOTA-PEG4-CK2 (1.67 ± 0.38%ID/mL at 10 min post injection). Both cellular uptake assay and PET imaging revealed that NRP-1 expression in breast cancer MDA-MB-231 could be effectively suppressed by SB-203580 treatment and can be sensitively detected by [68 Ga]Ga-NOTA-PEG4-CK2. Ex vivo analysis also proved the high specificity and sensitivity of [68 Ga]Ga-NOTA-PEG4-CK2 for NRP-1 expression in MDA-MB-231 xenografts. CONCLUSION: A promising NRP-1 targeting PET tracer [68 Ga]Ga-NOTA-PEG4-CK2 was successfully prepared. It showed remarkable specificity and sensitivity in monitoring the dynamic changes of NRP-1 expression. Hence, it could provide valuable information for early diagnosis of NRP-1 relevant cancers and evaluating the prognosis of cancer patients.


Assuntos
Radioisótopos de Gálio , Neuropilina-1 , Tomografia por Emissão de Pósitrons , Neuropilina-1/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Distribuição Tecidual , Feminino , Compostos Heterocíclicos com 1 Anel/química , Marcação por Isótopo , Peptídeos/química , Regulação Neoplásica da Expressão Gênica , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química
16.
FASEB J ; 37(3): e22813, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36809652

RESUMO

Apolipoprotein(a) [apo(a)] is a highly polymorphic O-glycoprotein circulating in human plasma as lipoprotein(a) [Lp(a)]. The O-glycan structures of apo(a) subunit of Lp(a) serve as strong ligands of galectin-1, an O-glycan binding pro-angiogenic lectin abundantly expressed in placental vascular tissues. But the pathophysiological significance of apo(a)-galectin-1 binding is not yet been revealed. Carbohydrate-dependent binding of galectin-1 to another O-glycoprotein, neuropilin-1 (NRP-1) on endothelial cells activates vascular endothelial growth factor receptor 2 (VEGFR2) and mitogen-activated protein kinase (MAPK) signaling. Using apo(a), isolated from human plasma, we demonstrated the potential of the O-glycan structures of apo(a) in Lp(a) to inhibit angiogenic properties such as proliferation, migration, and tube-formation in human umbilical vein endothelial cells (HUVECs) as well as neovascularization in chick chorioallantoic membrane. Further, in vitro protein-protein interaction studies have confirmed apo(a) as a superior ligand to NRP-1 for galectin-1 binding. We also demonstrated that the protein levels of galectin-1, NRP-1, VEGFR2, and downstream proteins in MAPK signaling were reduced in HUVECs in the presence of apo(a) with intact O-glycan structures compared to that of de-O-glycosylated apo(a). In conclusion, our study shows that apo(a)-linked O-glycans prevent the binding of galectin-1 to NRP-1 leading to the inhibition of galectin-1/neuropilin-1/VEGFR2/MAPK-mediated angiogenic signaling pathway in endothelial cells. As higher plasma Lp(a) level in women is an independent risk factor for pre-eclamsia, a pregnancy-associated vascular complication, we propose that apo(a) O-glycans-mediated inhibition of the pro-angiogenic activity of galectin-1 may be one of the underlying molecular mechanism of pathogenesis of Lp(a) in pre-eclampsia.


Assuntos
Galectina 1 , Lipoproteína(a) , Feminino , Humanos , Apoproteína(a)/metabolismo , Galectina 1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ligantes , Lipoproteína(a)/metabolismo , Neuropilina-1/metabolismo , Polissacarídeos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Pharmacol Res ; 205: 107259, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38871237

RESUMO

The osteopontin-derived peptide FOL-005 stimulates hair growth. Using ligand-receptor glyco-capture technology we identified neuropilin-1 (NRP-1), a known co-receptor for vascular endothelial growth factor (VEGF) receptors, as the most probable receptor for FOL-005 and the more stable analogue FOL-026. X-ray diffraction and microscale thermophoresis analysis revealed that FOL-026 shares binding site with VEGF in the NRP-1 b1-subdomain. Stimulation of human umbilical vein endothelial cells with FOL-026 resulted in phosphorylation of VEGFR-2, ERK1/2 and AKT, increased cell growth and migration, stimulation of endothelial tube formation and inhibition of apoptosis in vitro. FOL-026 also promoted angiogenesis in vivo as assessed by subcutaneous Matrigel plug and hind limb ischemia models. NRP-1 knock-down or treatment of NRP-1 antagonist EG00229 blocked the stimulatory effects of FOL-026 on endothelial cells. Exposure of human coronary artery smooth muscle cells to FOL-026 stimulated cell growth, migration, inhibited apoptosis, and induced VEGF gene expression and VEGFR-2/AKT phosphorylation by an NRP-1-dependent mechanism. RNA sequencing showed that FOL-026 activated pathways involved in tissue repair. These findings identify NRP-1 as the receptor for FOL-026 and show that its biological effects mimic that of growth factors binding to the VEGF receptor family. They also suggest that FOL-026 may have therapeutical potential in conditions that require vascular repair and/or enhanced angiogenesis.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Neovascularização Fisiológica , Neuropilina-1 , Osteopontina , Neuropilina-1/metabolismo , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Animais , Neovascularização Fisiológica/efeitos dos fármacos , Osteopontina/metabolismo , Osteopontina/genética , Movimento Celular/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Masculino , Peptídeos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ligação Proteica , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Camundongos , Angiogênese
18.
Arterioscler Thromb Vasc Biol ; 43(10): 1921-1934, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37650323

RESUMO

BACKGROUND: CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) technology-mediated genome editing has significantly improved the targeted inactivation of genes in vitro and in vivo in many organisms. Neuropilins play crucial roles in zebrafish heart regeneration, heart failure in mice, and electrical remodeling after myocardial infarction in rats. But the cell-specific functions of nrp1 have not been described before. In this study, we have investigated the role of nrp1 isoforms, including nrp1a and nrp1b, in cardiomyocytes during cardiac injury and regeneration in adult zebrafish hearts. METHODS: In this study, we have reported a novel CRISPR-based vector system for conditional tissue-specific gene ablation in zebrafish. Specifically, the cardiac-specific cmlc2 promoter drives Cas9 expression to silence the nrp1 gene in cardiomyocytes in a heat-shock inducible manner. This vector system establishes a unique tool to regulate the gene knockout in both the developmental and adult stages and hence widens the possibility of loss-of-function studies in zebrafish at different stages of development and adulthood. Using this approach, we investigated the role of neuropilin isoforms nrp1a and nrp1b in response to cardiac injury and regeneration in adult zebrafish hearts. RESULTS: We observed that both the isoforms (nrp1a and nrp1b) are upregulated after the cryoinjury. Interestingly, the nrp1b knockout significantly delayed heart regeneration and impaired cardiac function in the adult zebrafish after cryoinjury, demonstrated by reduced heart rate, ejection fractions, and fractional shortening. In addition, we show that the knockdown of nrp1b but not nrp1a induces activation of the cardiac remodeling genes in response to cryoinjury. CONCLUSIONS: To our knowledge, this study is novel where we have reported a heat-shock-mediated conditional knockdown of nrp1a and nrp1b isoforms using CRISPR/Cas9 technology in the cardiomyocyte in zebrafish and furthermore have identified a crucial role for the nrp1b isoform in zebrafish cardiac remodeling and eventually heart function in response to injury.


Assuntos
Sistemas CRISPR-Cas , Miócitos Cardíacos , Regeneração , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Edição de Genes , Miócitos Cardíacos/fisiologia , Neuropilina-1/genética , Remodelação Ventricular , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
19.
Biol Pharm Bull ; 47(1): 166-174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38220212

RESUMO

Neuropilin-1 (NRP1), a transmembrane glycoprotein, plays an important role in the malignant progression of gliomas; however, its role in chemoresistance is not fully understood. In this study, we observed the effects of NRP1 on the stemness and chemoresistance of glioma cells and the mediating role of Yes-associated protein (YAP). We constructed NRP1 overexpressing LN-229 glioma cells. Cells were treated with recombinant NRP1 protein (rNRP1) and the YAP inhibitor Super-TDU when necessary. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect the sensitivity of cells to temozolomide (TMZ). Sphere and clone formation assays were performed to detect the sphere- and clone-forming abilities of cells. Western blotting was performed to detect cellular CD133, CD44, p-LATS1, and p-YAP protein expression. Immunofluorescence and flow cytometry were used to detect the subcellular localization of YAP and apoptosis, respectively. We found that both NRP1 overexpression and rNRP1 treatment enhanced self-renewal, TMZ resistance, and CD133 and CD44 protein expression in LN-229 cells. NRP1 overexpression and rNRP1 treatment also induced LATS1 and YAP dephosphorylation and YAP nuclear translocation. Super-TDU inhibits NRP1 overexpression-induced enhanced self-renewal and TMZ resistance in LN-229 cells. Our study suggests that NRP1 induces increased stemness in glioma cells, resulting in chemoresistance, and that this effect is associated with YAP activation.


Assuntos
Glioma , Neuropilina-1 , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Glioma/metabolismo , Neuropilina-1/genética , Proteínas Serina-Treonina Quinases , Temozolomida/farmacologia , Proteínas de Sinalização YAP
20.
Graefes Arch Clin Exp Ophthalmol ; 262(3): 957-965, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37878035

RESUMO

PURPOSE: The aim of this study was to evaluate the expression of placental growth factor (PLGF), neuropilin-1 (NP-1), and neuropilin-2 (NP-2) molecules in primary pterygium tissue compared with normal conjunctival tissue. METHODS: The records of 42 patients who underwent excision surgery with autografts for primary pterygium (pterygium group) and 20 patients who underwent conjunctival nevus excision surgery (control group) in the same period were reviewed retrospectively. The samples obtained from the pterygium tissues in the pterygium group and the clean conjunctival tissues adjacent to the nevus in the control group were collected from the archive. Immunohistochemical stains of the primary antibodies-1/100 diluted PLGF, NP-1, and NP-2 (Abcam Cambridge Science Park, UK)-were applied to all groups. Staining intensities and the percentage of positive cells in epithelial, endothelial, stromal, and inflammatory cells were analyzed by an experienced pathologist. RESULTS: The positivity rates of PLGF and NP-2 expression in epithelial, endothelial, stromal, and inflammatory cells were found to be higher in the pterygium group than in the control group (PLGF: p < 0.001, p < 0.001, p = 0.001, and p < 0.001, respectively; NP-2: p < 0.001 for all). Staining intensities for PLGF and NP-2 were higher in the pterygium group than in the control group (PLGF: p < 0.001, p < 0.001, p = 0.005, and p < 0.001, respectively; NP-2: p < 0.001, p < 0.001, p = 0.001, and p < 0.001, respectively). However, no significant differences were found in any cell type in terms of NP-1 expression positivity rates (p = 0.730, p = 0.121, p = 0.524, and p = 0.624, respectively) or staining intensity (p = 0.716, p = 0.147, p = 0.147, and p = 0.780, respectively). CONCLUSION: PLGF and NP-2 levels were found to be higher in pterygium tissue, while there was no difference in NP-1. These results indicate the possible roles of NP-2 and PLGF in primary pterygium.


Assuntos
Túnica Conjuntiva , Nevo , Pterígio , Neoplasias Cutâneas , Humanos , Túnica Conjuntiva/anormalidades , Neuropilina-1 , Neuropilina-2 , Fator de Crescimento Placentário , Pterígio/diagnóstico , Pterígio/cirurgia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA