Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Cell Physiol ; 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36036549

RESUMO

Alzheimer's disease (AD) is the leading cause of mortality, disability, and long-term care burden in the United States, with women comprising the majority of AD diagnoses. While AD-related dementia is associated with tau and amyloid beta accumulation, concurrent derangements in cerebral blood flow have been observed alongside these proteinopathies in humans and rodent models. The homeostatic production of nitric oxide synthases (NOS) becomes uncoupled in AD which leads to decreased NO-mediated vasodilation and oxidative stress via the production of peroxynitrite (ONOO-∙) superoxide species. Here, we investigate the role of the novel protein arginine methyltransferase 4 (PRMT4) enzyme function and its downstream product asymmetric dimethyl arginine (ADMA) as it relates to NOS dysregulation and cerebral blood flow in AD. ADMA (type-1 PRMT product) has been shown to bind NOS as a noncanonic ligand causing enzymatic dysfunction. Our results from RT-qPCR and protein analyses suggest that aged (9-12 months) female mice bearing tau- and amyloid beta-producing transgenic mutations (3xTg-AD) express higher levels of PRMT4 in the hippocampus when compared to age- and sex-matched C57BL6/J mice. In addition, we performed studies to quantify the expression and activity of different NOS isoforms. Furthermore, laser speckle contrast imaging analysis was indicative that 3xTg-AD mice have dysfunctional NOS activity, resulting in reduced production of NO metabolites, enhanced production of free-radical ONOO-, and decreased cerebral blood flow. Notably, the aforementioned phenomena can be reversed via pharmacologic PRMT4 inhibition. Together, these findings implicate the potential importance of PRMT4 signaling in the pathogenesis of Alzheimer's-related cerebrovascular derangement.

2.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206365

RESUMO

Acute liver failure (ALF) is associated with deregulated nitric oxide (NO) signaling in the brain, which is one of the key molecular abnormalities leading to the neuropsychiatric disorder called hepatic encephalopathy (HE). This study focuses on the effect of ALF on the relatively unexplored endothelial NOS isoform (eNOS). The cerebral prefrontal cortices of rats with thioacetamide (TAA)-induced ALF showed decreased eNOS expression, which resulted in an overall reduction of NOS activity. ALF also decreased the content of the NOS cofactor, tetrahydro-L-biopterin (BH4), and evoked eNOS uncoupling (reduction of the eNOS dimer/monomer ratio). The addition of the NO precursor L-arginine in the absence of BH4 potentiated ROS accumulation, whereas nonspecific NOS inhibitor L-NAME or EDTA attenuated ROS increase. The ALF-induced decrease of eNOS content and its uncoupling concurred with, and was likely causally related to, both increased brain content of reactive oxidative species (ROS) and decreased cerebral cortical blood flow (CBF) in the same model.


Assuntos
Biopterinas/análogos & derivados , Córtex Cerebral/enzimologia , Encefalopatia Hepática/enzimologia , Falência Hepática Aguda/enzimologia , Óxido Nítrico Sintase Tipo III/genética , Animais , Arginina/metabolismo , Biopterinas/análise , Biopterinas/metabolismo , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Circulação Cerebrovascular , Regulação da Expressão Gênica , Encefalopatia Hepática/etiologia , Encefalopatia Hepática/genética , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/complicações , Falência Hepática Aguda/genética , Masculino , Ratos , Ratos Sprague-Dawley , Tioacetamida/toxicidade
3.
Am J Physiol Heart Circ Physiol ; 319(1): H51-H65, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412791

RESUMO

Although there is a strong association between cigarette smoking exposure (CSE) and vascular endothelial dysfunction (VED), the underlying mechanisms by which CSE triggers VED remain unclear. Therefore, studies were performed to define these mechanisms using a chronic mouse model of cigarette smoking (CS)-induced cardiovascular disease mirroring that in humans. C57BL/6 male mice were subjected to CSE for up to 48 wk. CSE impaired acetylcholine (ACh)-induced relaxation of aortic and mesenteric segments and triggered hypertension, with mean arterial blood pressure at 32 and 48 wk of exposure of 122 ± 6 and 135 ± 5 mmHg compared with 99 ± 4 and 102 ± 6 mmHg, respectively, in air-exposed mice. CSE led to monocyte activation with superoxide generation in blood exiting the pulmonary circulation. Macrophage infiltration with concomitant increase in NADPH oxidase subunits p22phox and gp91phox was seen in aortas of CS-exposed mice at 16 wk, with further increase out to 48 wk. Associated with this, increased superoxide production was detected that decreased with Nox inhibition. Tetrahydrobiopterin was progressively depleted in CS-exposed mice but not in air-exposed controls, resulting in endothelial nitric oxide synthase (eNOS) uncoupling and secondary superoxide generation. CSE led to a time-dependent decrease in eNOS and Akt expression and phosphorylation. Overall, CSE induces vascular monocyte infiltration with increased NADPH oxidase-mediated reactive oxygen species generation and depletes the eNOS cofactor tetrahydrobiopterin, uncoupling eNOS and triggering a vicious cycle of oxidative stress with VED and hypertension. Our study provides important insights toward understanding the process by which smoking contributes to the genesis of cardiovascular disease and identifies biomarkers predictive of disease.NEW & NOTEWORTHY In a chronic model of smoking-induced cardiovascular disease, we define underlying mechanisms of smoking-induced vascular endothelial dysfunction (VED). Smoking exposure triggered VED and hypertension and led to vascular macrophage infiltration with concomitant increase in superoxide and NADPH oxidase levels as early as 16 wk of exposure. This oxidative stress was accompanied by tetrahydrobiopterin depletion, resulting in endothelial nitric oxide synthase uncoupling with further superoxide generation triggering a vicious cycle of oxidative stress and VED.


Assuntos
Endotélio Vascular/metabolismo , Leucócitos/metabolismo , Estresse Oxidativo , Lesão por Inalação de Fumaça/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Vasodilatação , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Pressão Sanguínea , Endotélio Vascular/fisiopatologia , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lesão por Inalação de Fumaça/etiologia , Lesão por Inalação de Fumaça/fisiopatologia , Superóxidos/metabolismo
4.
Biochim Biophys Acta Mol Cell Res ; 1865(5): 709-720, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29466710

RESUMO

Uncoupled endothelial nitric oxide synthase (eNOS) produces O2- instead of nitric oxide (NO). Earlier, we reported rapamycin, an autophagy inducer and inhibitor of cellular proliferation, attenuated low shear stress (SS) induced O2- production. Nevertheless, it is unclear whether autophagy plays a critical role in the regulation of eNOS uncoupling. Therefore, this study aimed to investigate the modulation of autophagy on eNOS uncoupling induced by low SS exposure. We found that low SS induced endothelial O2- burst, which was accompanied by reduced NO release. Furthermore, inhibition of eNOS by L-NAME conspicuously attenuated low SS-induced O2- releasing, indicating eNOS uncoupling. Autophagy markers such as LC3 II/I ratio, amount of Beclin1, as well as ULK1/Atg1 were increased during low SS exposure, whereas autophagic degradation of p62/SQSTM1 was markedly reduced, implying impaired autophagic flux. Interestingly, low SS-induced NO reduction could be reversed by rapamycin, WYE-354 or ATG5 overexpression vector via restoration of autophagic flux, but not by N-acetylcysteine or apocynin. eNOS uncoupling might be ascribed to autophagic flux blockade because phosphorylation of eNOS Thr495 by low SS or PMA stimulation was also regulated by autophagy. In contrast, eNOS acetylation was not found to be regulated by low SS and autophagy. Notably, although low SS had no influence on eNOS Ser1177 phosphorylation, whereas boosted eNOS Ser1177 phosphorylation by rapamycin were in favor of the eNOS recoupling through restoration of autophagic flux. Taken together, we reported a novel mechanism for regulation of eNOS uncoupling by low SS via autophagy-mediated eNOS phosphorylation, which is implicated in geometrical nature of atherogenesis.


Assuntos
Aterosclerose/genética , Autofagia/genética , Óxido Nítrico Sintase Tipo III/genética , Estresse Mecânico , Animais , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Endoteliais/metabolismo , Humanos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/biossíntese , Óxido Nítrico/química , Óxido Nítrico Sintase Tipo III/química , Oxigênio/metabolismo , Fosforilação , Transdução de Sinais
5.
J Sex Med ; 13(5): 808-814, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27114194

RESUMO

INTRODUCTION: Nitric oxide (NO) signaling can be mediated not only through classic 3',5'-cyclic guanosine monophosphate but also through S-nitrosylation. However, the impact of S-nitrosylation on erectile function and in NO regulation and oxidative stress in the penis remains poorly understood. AIMS: To characterize the role of S-nitrosoglutathione reductase (GSNOR), a major regulator of S-nitrosylation homeostasis, on erection physiology and on endothelial NO synthase (eNOS) function and oxidative-nitrosative stress in the penis. METHODS: Adult GSNOR-deficient and wild-type (WT) mice were used. Erectile function was assessed in response to electrical stimulation of the cavernous nerve. Total NO in penile homogenates was measured by Griess reaction. Protein S-nitrosylation, eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS uncoupling, and markers of oxidative stress (4-hydroxy-2-nonenal, malondialdehyde, and nitrotyrosine) in the penis were measured by western blot. MAIN OUTCOME MEASURES: Erectile function, eNOS function, and oxidative stress in the penis of GSNOR-deficient mice. RESULTS: Erectile function was intact in GSNOR-deficient mice. Total S-nitrosylated proteins were increased (P < .05) in the GSNOR(-/-) compared with WT mouse penis. Although eNOS phosphorylation on Ser-1177 did not differ between the GSNOR(-/-) and WT mouse penises at baseline, electrical stimulation of the cavernous nerve increased (P < .05) phosphorylated eNOS in the WT mouse penis but failed to increase phosphorylated eNOS in the GSNOR(-/-) mouse penis. Total NO production was decreased (P < .05), whereas eNOS uncoupling, 4-hydroxy-2-nonenal, malondialdehyde, and nitrotyrosine were increased (P < .05) in the GSNOR-deficient mouse penis compared with the WT mouse penis. CONCLUSION: Transnitrosylation mechanisms play an important role in regulating NO bioactivity in the penis. Deficiency of GSNOR leads to eNOS dysfunction and increased oxidative damage, suggesting that homeostatic eNOS function in the penis is governed by transnitrosylation.


Assuntos
Aldeído Oxirredutases/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Ereção Peniana/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Oxirredução , Estresse Oxidativo , Pênis/inervação , Fosforilação
6.
Am J Physiol Lung Cell Mol Physiol ; 307(12): L987-97, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25326583

RESUMO

Microvascular barrier integrity is dependent on bioavailable nitric oxide (NO) produced locally by endothelial NO synthase (eNOS). Under conditions of limited substrate or cofactor availability or by enzymatic modification, eNOS may become uncoupled, producing superoxide in lieu of NO. This study was designed to investigate how eNOS-dependent superoxide production contributes to endothelial barrier dysfunction in inflammatory lung injury and its regulation. C57BL/6J mice were challenged with intratracheal LPS. Bronchoalveolar lavage fluid was analyzed for protein accumulation, and lung tissue homogenate was assayed for endothelial NOS content and function. Human lung microvascular endothelial cell (HLMVEC) monolayers were exposed to LPS in vitro, and barrier integrity and superoxide production were measured. Biopterin species were quantified, and coimmunoprecipitation (Co-IP) assays were performed to identify protein interactions with eNOS that putatively drive uncoupling. Mice exposed to LPS demonstrated eNOS-dependent increased alveolar permeability without evidence for altered canonical NO signaling. LPS-induced superoxide production and permeability in HLMVEC were inhibited by the NOS inhibitor nitro-l-arginine methyl ester, eNOS-targeted siRNA, the eNOS cofactor tetrahydrobiopterin, and superoxide dismutase. Co-IP indicated that LPS stimulated the association of eNOS with NADPH oxidase 2 (Nox2), which correlated with augmented eNOS S-glutathionylation both in vitro and in vivo. In vitro, Nox2-specific inhibition prevented LPS-induced eNOS modification and increases in both superoxide production and permeability. These data indicate that eNOS uncoupling contributes to superoxide production and barrier dysfunction in the lung microvasculature after exposure to LPS. Furthermore, the results implicate Nox2-mediated eNOS-S-glutathionylation as a mechanism underlying LPS-induced eNOS uncoupling in the lung microvasculature.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Proteínas de Transporte/metabolismo , Células Endoteliais/enzimologia , Glutationa/metabolismo , Lipopolissacarídeos/toxicidade , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Superóxidos/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Proteínas de Transporte/genética , Células Cultivadas , Células Endoteliais/patologia , Glutationa/genética , Humanos , Pulmão/irrigação sanguínea , Pulmão/enzimologia , Pulmão/patologia , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/genética , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Processamento de Proteína Pós-Traducional/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases
7.
Am J Physiol Regul Integr Comp Physiol ; 305(4): R423-34, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23761637

RESUMO

The aim of this study was to investigate aerobic exercise training as a means to prevent erectile dysfunction (ED) and coronary artery disease (CAD) development associated with inactivity and diet-induced obesity. Male Sprague-Dawley rats were fed a Western diet (WD) or a control diet (CD) for 12 wk. Subgroups within each diet remained sedentary (Sed) or participated in aerobic interval treadmill running throughout the dietary intervention. Erectile function was evaluated under anesthesia by measuring the mean arterial pressure and intracavernosal pressure in response to electrical field stimulation of the cavernosal nerve, in the absence or presence of either apocynin, an NADPH oxidase inhibitor, or sepiapterin, a tetrahydrobiopterin precursor. Coronary artery endothelial function (CAEF) was evaluated ex vivo with cumulative doses of ACh applied to preconstricted segments of the left anterior descending coronary artery. CAEF was assessed in the absence or presence of apocynin or sepiapterin. Erectile function (P < 0.0001) and CAEF (P < 0.001) were attenuated in WD-Sed. Exercise preserved erectile function (P < 0.0001) and CAEF (P < 0.05) within the WD. Erectile function (P < 0.01) and CAEF (P < 0.05) were augmented by apocynin only in WD-Sed, while sepiapterin (P < 0.05) only augmented erectile function in WD-Sed. These data demonstrate that a chronic WD induces impairment in erectile function and CAEF that are commonly partially reversible by apocynin, whereas sepiapterin treatment exerted differential functional effects between the two vascular beds. Furthermore, exercise training may be a practical means of preventing diet-induced ED and CAD development.


Assuntos
Acetofenonas/farmacologia , Doença da Artéria Coronariana/prevenção & controle , Vasos Coronários/efeitos dos fármacos , Dieta Hiperlipídica , Endotélio Vascular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Disfunção Erétil/prevenção & controle , Terapia por Exercício , Ereção Peniana/efeitos dos fármacos , Pterinas/farmacologia , Animais , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Disfunção Erétil/etiologia , Disfunção Erétil/metabolismo , Disfunção Erétil/fisiopatologia , Terapia por Exercício/métodos , Masculino , NADPH Oxidases/metabolismo , Obesidade/etiologia , Obesidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Comportamento Sedentário , Fatores de Tempo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
8.
Antioxid Redox Signal ; 38(13-15): 1001-1021, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36719770

RESUMO

Significance: Cardiovascular disease and drug-induced health side effects are frequently associated with-or even caused by-an imbalance between the concentrations of reactive oxygen and nitrogen species (RONS) and antioxidants, respectively, determining the metabolism of these harmful oxidants. Recent Advances: According to the "kindling radical" hypothesis, the initial formation of RONS may further trigger the additional activation of RONS formation under certain pathological conditions. The present review specifically focuses on a dysfunctional, uncoupled endothelial nitric oxide synthase (eNOS) caused by RONS in the setting of transportation noise exposure or chronic treatment with organic nitrates, especially nitroglycerin (GTN). We further describe the various "redox switches" that are proposed to be involved in the uncoupling process of eNOS. Critical Issues: In particular, the oxidative depletion of tetrahydrobiopterin and S-glutathionylation of the eNOS reductase domain are highlighted as major pathways for eNOS uncoupling upon noise exposure or GTN treatment. In addition, oxidative disruption of the eNOS dimer, inhibitory phosphorylation of eNOS at the threonine or tyrosine residues, redox-triggered accumulation of asymmetric dimethylarginine, and l-arginine deficiency are discussed as alternative mechanisms of eNOS uncoupling. Future Directions: The clinical consequences of eNOS dysfunction due to uncoupling on cardiovascular disease are summarized also, providing a template for future clinical studies on endothelial dysfunction caused by pharmacological or environmental risk factors.


Assuntos
Doenças Cardiovasculares , Ruído dos Transportes , Doenças Vasculares , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Nitratos/metabolismo , Doenças Cardiovasculares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doenças Vasculares/metabolismo , Oxirredução , Óxido Nítrico/metabolismo , Endotélio Vascular/metabolismo
9.
Front Mol Neurosci ; 16: 1121944, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063365

RESUMO

Introduction: Endothelial nitric oxide synthase (eNOS) uncoupling plays a significant role in acute vasoconstriction during early brain injury (EBI) after subarachnoid hemorrhage (SAH). Astrocytes in the neurovascular unit extend their foot processes around endothelia. In our study, we tested the hypothesis that increased nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression in astrocytes after SAH leads to eNOS uncoupling. Methods: We utilized laser speckle contrast imaging for monitoring cortical blood flow changes in mice, nitric oxide (NO) kits to measure the level of NO, and a co-culture system to study the effect of astrocytes on endothelial cells. Moreover, the protein levels were assessed by Western blot and immunofluorescence staining. We used CCK-8 to measure the viability of astrocytes and endothelial cells, and we used the H2O2 kit to measure the H2O2 released from astrocytes. We used GSK2795039 as an inhibitor of NOX2, whereas lentivirus and adeno-associated virus were used for dihydrofolate reductase (DHFR) knockdown in vivo and in vitro. Results: The expression of NOX2 and the release of H2O2 in astrocytes are increased, which was accompanied by a decrease in endothelial DHFR 12 h after SAH. Moreover, the eNOS monomer/dimer ratio increased, leading to a decrease in NO and acute cerebral ischemia. All of the above were significantly alleviated after the administration of GSK2795039. However, after knocking down DHFR both in vivo and in vitro, the protective effect of GSK2795039 was greatly reversed. Discussion: The increased level of NOX2 in astrocytes contributes to decreased DHFR in endothelial cells, thus aggravating eNOS uncoupling, which is an essential mechanism underlying acute vasoconstriction after SAH.

10.
Biomedicines ; 10(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36289741

RESUMO

Background: The effects of diabetes on the cardiovascular system as well as in the kidney are profound, which include hypertrophy and fibrosis. Diabetes also induces oxidative stress, at least in part due to the uncoupling of nitric oxide synthase (NOS); this is a shift in NO production toward superoxide production due to reduced levels of the NOS cofactor tetrahydrobiopterin (BH4). With this in mind, we tested the hypothesis that BH4 supplementation may prevent the development of diabetic cardiomyopathy and nephropathy. Methods: Diabetes was induced in Balb/c mice with streptozotocin. Then, diabetic mice were divided into two groups: one group provided with BH4 (sapropterin) in drinking water (daily doses of 15 mg/kg/day, during eight weeks) and the other that received only water. A third group of normoglycemic mice that received only water were used as the control. Results: Cardiac levels of BH4 were increased in mice treated with BH4 (p = 0.0019). Diabetes induced cardiac hypertrophy, which was prevented in the group that received BH4 (p < 0.05). In addition, hypertrophy was evaluated as cardiomyocyte cross-sectional area. This was reduced in diabetic mice that received BH4 (p = 0.0012). Diabetes induced cardiac interstitial fibrosis that was reduced in mice that received BH4 treatment (p < 0.05). We also evaluated in the kidney the impact of BH4 treatment on glomerular morphology. Diabetes induced glomerular hypertrophy compared with normoglycemic mice and was prevented by BH4 treatment. In addition, diabetic mice presented glomerular fibrosis, which was prevented in mice that received BH4. Conclusions: These results suggest that chronic treatment with BH4 in mice ameliorates the cardiorenal effects of diabetes,, probably by restoring the nitroso−redox balance. This offers a possible new alternative to explore a BH4-based treatment for the organ damage caused by diabetes.

11.
Front Pharmacol ; 13: 976644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408271

RESUMO

Aims: The study aimed to evaluate the correlation of different microparticle (MP) phenotypes with plaque burden and their diagnostic value and preliminarily explore the role of MPs in atherosclerosis (AS). Methods: Carotid intima-media thickness (CIMT) and maximal plaque area in 23 patients with carotid atherosclerosis (CAS) and 22 healthy subjects were measured by ultrasound. Transmission electron microscopy, nanoparticle tracking analysis and western blot were used to identify MPs. Flow cytometry assay measured absolute number of MPs, and receiver operating characteristic (ROC) analysis was used to assess the relationship between plaque burden and MPs. To study the preliminary mechanism of MPs in AS, MPs were administered to 32 male Kunming mice, which were randomly divided into control, CAS, healthy, and tetrahydrobiopterin (BH4) groups. Hematoxylin-eosin staining, immunohistochemistry staining, and Western blot were adopted to detect relevant indexes 24 h after the injection. Results: The plasma levels of CD45+ leukocyte-derived microparticle (LMP), CD11a+ LMP, CD11a+/CD45+ LMP, and CD31+/CD42b+ platelet-derived microparticle (PMP) in CAS patients were significantly higher than those in healthy subjects, and were positively correlated with the maximal plaque area. Moreover, the levels of CD11a+ LMP, CD11a+/CD45+ LMP were also positively correlated with CIMT. The area under the ROC curve of the four MPs was 0.689, 0.747, 0.741, and 0.701, respectively. Compared with healthy subjects, MPs from CAS patients resulted in a significantly lower expression of endothelial nitric oxide synthase (eNOS) dimer/monomer, and BH4 could improve eNOS uncoupling. Moreover, the level of VCAM-1 in intima in the CAS group was significantly higher than in the other three groups. Conclusion: CD11a+ LMP and CD11a+/CD45+ LMP might be potential biomarkers for CAS prediction. BH4-related eNOS uncoupling occurs in CAS patients, and circulating MPs from them lead to endothelial dysfunction through eNOS uncoupling.

12.
Free Radic Biol Med ; 193(Pt 2): 499-510, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36336227

RESUMO

Endothelial malfunction is a major contributor to early or delayed vasospasm after subarachnoid hemorrhage (SAH). As a representative form of endothelial dysfunction, endothelial nitric oxide synthase (eNOS) uncoupling leads to a reduction in nitric oxide (NO) generated by endothelial cells. In this study, we investigated how the interaction between endothelial NOX4 (nicotinamide adenine dinucleotide phosphate oxidase 4) and DHFR (dihydrofolate reductase) contributes to eNOS uncoupling after SAH. Setanaxib and the adeno-associated virus (AAV) targeting brain vascular endothelia were injected through the tail vein and the expression and localization of proteins were examined by western blot and immunofluorescence staining. The NO content was measured using the NO assay kit, and laser speckle contrast imaging was used to assess cortical perfusion. ROS (reactive oxygen species) level was detected by DHE (dihydroethidium) staining, DCFH-DA (2',7'-dichlorofluorescin diacetate) staining and H2O2 (hydrogen peroxide) measurement. The Garcia score was employed to examine neurological function. Setanaxib is widely used for its preferential inhibition for NOX1/4 over other NOX isoforms. After endothelial NOX4 was inhibited by Setanaxib in a mouse model of SAH, the endothelial DHFR level was significantly elevated, which attenuated eNOS uncoupling, increased cortical perfusion, and improved the neurological function. The protective role of inhibiting endothelial NOX4, however, disappeared after knocking down endothelial DHFR. Our results suggest that endothelial DHFR decreased significantly because of the elevated level of endothelial NOX4, which aggravated eNOS uncoupling after SAH, leading to decreased cortical perfusion and worse neurological outcome.


Assuntos
Óxido Nítrico Sintase Tipo III , Hemorragia Subaracnóidea , Animais , Camundongos , Células Endoteliais/metabolismo , Peróxido de Hidrogênio/metabolismo , NADPH Oxidase 4/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
13.
Eur J Pharmacol ; 902: 174081, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33901463

RESUMO

Myocardial mitochondrial function and biogenesis are suppressed in diabetes, but the mechanisms are unclear. Increasing evidence suggests that asymmetric dimethylarginine (ADMA) is associated with diabetic cardiovascular complications. This study was to determine whether endogenous ADMA accumulation contributes to cardiac and mitochondrial dysfunctions of diabetic rats and elucidate the potential mechanisms. Diabetic rat was induced by single intraperitoneal injection of streptozotocin (50 mg/kg). N-acetylcysteine was given (250 mg/kg/d) by gavage for 12w. Cardiac function was detected by echocardiography. Left ventricle papillary muscles were isolated to examine myocardial contractility. Myocardial ATP and mitochondrial DNA contents were measured to evaluate mitochondrial function and biogenesis. Endogenous ADMA accumulation was augmented resulting in decreased nitric oxide (NO) production and increased oxidative stress, suggesting NO synthase (NOS) uncoupling in the myocardium of T1DM rats compared with control rats. ADMA augmentation was associated with cardiac and mitochondrial dysfunctions along with myocardial uncoupling protein-2 (UCP2) upregulation and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) downregulation in T1DM rats. Exogenous ADMA could directly inhibit myocardial contractility, mitochondrial function and biogenesis in parallel with decreasing NO content and PGC-1α expression while increasing oxidative stress and UCP2 expression in papillary muscles and cardiomyocytes. Treatment with antioxidant N-acetylcysteine, also an inhibitor of NOS uncoupling, either ameliorated ADMA-associated cardiac and mitochondrial dysfunctions or reversed ADMA-induced NO reduction and oxidative stress enhance in vivo and in vitro. These results indicate that myocardial ADMA accumulation precipitates cardiac and mitochondrial dysfunctions in T1DM rats. The underlying mechanism may be related to NOS uncoupling, resulting in NO reduction and oxidative stress increment, ultimate PGC-1α down-regulation and UCP2 up-regulation.


Assuntos
Arginina/análogos & derivados , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Cardiopatias/metabolismo , Mitocôndrias/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Arginina/metabolismo , Glicemia/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Glicosilação/efeitos dos fármacos , Resistência à Insulina , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Músculos Papilares/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estreptozocina
14.
Biochem Pharmacol ; 90(3): 246-53, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24863258

RESUMO

(6R)-5,6,7,8-Tetrahydro-L-biopterin (BH4) availability regulates nitric oxide and superoxide formation by endothelial nitric oxide synthase (eNOS). At low BH4 or low BH4 to 7,8-dihydrobiopterin (BH2) ratios the enzyme becomes uncoupled and generates superoxide at the expense of NO. We studied the effects of exogenously added BH2 on intracellular BH4/BH2 ratios and eNOS activity in different types of endothelial cells. Incubation of porcine aortic endothelial cells with BH2 increased BH4/BH2 ratios from 8.4 (controls) and 0.5 (BH4-depleted cells) up to ~20, demonstrating efficient reduction of BH2. Uncoupled eNOS activity observed in BH4-depleted cells was prevented by preincubation with BH2. Recycling of BH4 was much less efficient in human endothelial cells isolated from umbilical veins or derived from dermal microvessels (HMEC-1 cells), which exhibited eNOS uncoupling and low BH4/BH2 ratios under basal conditions and responded to exogenous BH2 with only moderate increases in BH4/BH2 ratios. The kinetics of dihydrofolate reductase-catalyzed BH4 recycling in endothelial cytosols showed that the apparent BH2 affinity of the enzyme was 50- to 300-fold higher in porcine than in human cell preparations. Thus, the differential regulation of eNOS uncoupling in different types of endothelial cells may be explained by striking differences in the apparent BH2 affinity of dihydrofolate reductase.


Assuntos
Biopterinas/análogos & derivados , Biopterinas/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico/antagonistas & inibidores , Tetra-Hidrofolato Desidrogenase/metabolismo , Animais , Aorta/citologia , Aorta/metabolismo , Linhagem Celular , Células Cultivadas , GMP Cíclico/metabolismo , Derme/irrigação sanguínea , Derme/citologia , Derme/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/enzimologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Microvasos/citologia , Microvasos/enzimologia , Microvasos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA