Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Struct Biol ; 216(2): 108093, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615726

RESUMO

Many enzymes can self-assemble into higher-order structures with helical symmetry. A particularly noteworthy example is that of nitrilases, enzymes in which oligomerization of dimers into spiral homo-oligomers is a requirement for their enzymatic function. Nitrilases are widespread in nature where they catalyze the hydrolysis of nitriles into the corresponding carboxylic acid and ammonia. Here, we present the Cryo-EM structure, at 3 Å resolution, of a C-terminal truncate nitrilase from Rhodococcus sp. V51B that assembles in helical filaments. The model comprises a complete turn of the helical arrangement with a substrate-intermediate bound to the catalytic cysteine. The structure was solved having added the substrate to the protein. The length and stability of filaments was made more substantial in the presence of the aromatic substrate, benzonitrile, but not for aliphatic nitriles or dinitriles. The overall structure maintains the topology of the nitrilase family, and the filament is formed by the association of dimers in a chain-like mechanism that stabilizes the spiral. The active site is completely buried inside each monomer, while the substrate binding pocket was observed within the oligomerization interfaces. The present structure is in a closed configuration, judging by the position of the lid, suggesting that the intermediate is one of the covalent adducts. The proximity of the active site to the dimerization and oligomerization interfaces, allows the dimer to sense structural changes once the benzonitrile was bound, and translated to the rest of the filament, stabilizing the helical structure.


Assuntos
Aminoidrolases , Microscopia Crioeletrônica , Nitrilas , Multimerização Proteica , Rhodococcus , Aminoidrolases/química , Aminoidrolases/metabolismo , Aminoidrolases/ultraestrutura , Microscopia Crioeletrônica/métodos , Rhodococcus/enzimologia , Nitrilas/química , Nitrilas/metabolismo , Especificidade por Substrato , Modelos Moleculares , Domínio Catalítico , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Catálise
2.
J Exp Bot ; 75(1): 454-467, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37738570

RESUMO

The protist pathogen Plasmodiophora brassicae hijacks the metabolism and development of host cruciferous plants and induces clubroot formation, but little is known about its regulatory mechanisms. Previously, the Pnit2int2 sequence, a sequence around the second intron of the nitrilase gene (BrNIT2) involved in auxin biosynthesis in Brassica rapa ssp. pekinensis, was identified as a specific promoter activated during clubroot formation. In this study, we hypothesized that analysis of the transcriptional regulation of Pnit2int2 could reveal how P. brassicae affects the host gene regulatory system during clubroot development. By yeast one-hybrid screening, the pathogen zinc finger protein PbZFE1 was identified to specifically bind to Pnit2int2. Specific binding of PbZFE1 to Pnit2int2 was also confirmed by electrophoretic mobility shift assay. The binding site of PbZFE1 is essential for promoter activity of Pnit2int2 in clubbed roots of transgenic Arabidopsis thaliana (Pnit2int2-2::GUS), indicating that PbZFE1 is secreted from P. brassicae and functions within plant cells. Ectopic expression of PbZEF1 in A. thaliana delayed growth and flowering time, suggesting that PbZFE1 has significant impacts on host development and metabolic systems. Thus, P. brassicae appears to secrete PbZFE1 into host cells as a transcription factor-type effector during pathogenesis.


Assuntos
Arabidopsis , Plasmodioforídeos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Doenças das Plantas/genética , Plasmodioforídeos/fisiologia , Regulação da Expressão Gênica , Arabidopsis/genética , Arabidopsis/metabolismo , Expressão Gênica
3.
Extremophiles ; 28(2): 19, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427139

RESUMO

Organic and inorganic cyanides are widely distributed in nature, yet not much is known about the ability of microorganisms to use these compounds as a source of nitrogen and/or carbon at high temperatures (>80 °C). Here we studied the capacity of organic and inorganic cyanides to support growth of an hyperthermophilic Pyrococcus strain isolated from Deception Island, Antarctica. This microorganism was capable of growing with aromatic nitriles, aliphatic nitriles, heterocyclic nitriles, amino aromatic nitriles and inorganic cyanides as nitrogen and/or carbon source. This is the first report of an hyperthermophilic microorganism able to incorporate these compounds in its nitrogen and carbon metabolism. Based on enzymatic activity and genomic information, it is possibly that cells of this Pyrococcus strain growing with nitriles or cyanide, might use the carboxylic acid and/or the ammonia generated through the nitrilase enzymatic activity, as a carbon and/or nitrogen source respectively. This work expands the temperature range at which microorganisms can use organic and inorganic cyanides to growth, having important implications to understand microbial metabolisms that can support life on Earth and the possibility to support life elsewhere.


Assuntos
Cianetos , Pyrococcus , Cianetos/metabolismo , Regiões Antárticas , Nitrilas , Carbono , Nitrogênio
4.
Bioorg Chem ; 143: 107055, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185008

RESUMO

Hydration, a secondary activity mediated by nitrilase, is a promising new pathway for amide production. However, low hydration activity of nitrilase or trade-off between hydration and catalytic activity hinders its application in the production of amides. Here, natural C-terminal-truncated wild-type nitrilase, mined from a public database, obtained a high-hydration activity nitrilase as a novel evolutionary starting point for further protein engineering. The nitrilase Nit-74 from Spirosoma linguale DSM 74 was successfully obtained and exhibited the highest hydration activity level, performing 50.7 % nicotinamide formation and 87.6 % conversion to 2 mM substrate 3-cyanopyridine. Steric hindrance of the catalytic activity center and the N-terminus of the catalytic cysteine residue helped us identify three key residues: I166, W168, and T191. Saturation mutations resulted in three single mutants that further improved the hydration activity of N-heterocyclic nitriles. Among them, the mutant T191S performed 72.7 % nicotinamide formation, which was much higher than the previously reported highest level of 18.7 %. Additionally, mutants I166N and W168Y exhibited a 97.5 % 2-picolinamide ratio and 97.7 % isonicotinamide ratio without any loss of catalytic activity, which did not indicate a trade-off effect. Our results expand the screening and evolution library of promiscuous nitrilases with high hydration activity for amide formation.


Assuntos
Aminoidrolases , Cytophagaceae , Nitrilas , Pirimidinas , Triazóis , Nitrilas/química , Aminoidrolases/genética , Aminoidrolases/química , Aminoidrolases/metabolismo , Amidas , Niacinamida , Especificidade por Substrato
5.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674043

RESUMO

Molecular studies about cyanide biodegradation have been mainly focused on the hydrolytic pathways catalyzed by the cyanide dihydratase CynD or the nitrilase NitC. In some Pseudomonas strains, the assimilation of cyanide has been linked to NitC, such as the cyanotrophic model strain Pseudomonas pseudoalcaligenes CECT 5344, which has been recently reclassified as Pseudomonas oleovorans CECT 5344. In this work, a phylogenomic approach established a more precise taxonomic position of the strain CECT 5344 within the species P. oleovorans. Furthermore, a pan-genomic analysis of P. oleovorans and other species with cyanotrophic strains, such as P. fluorescens and P. monteilii, allowed for the comparison and identification of the cioAB and mqoAB genes involved in cyanide resistance, and the nitC and cynS genes required for the assimilation of cyanide or cyanate, respectively. While cyanide resistance genes presented a high frequency among the analyzed genomes, genes responsible for cyanide or cyanate assimilation were identified in a considerably lower proportion. According to the results obtained in this work, an in silico approach based on a comparative genomic approach can be considered as an agile strategy for the bioprospection of putative cyanotrophic bacteria and for the identification of new genes putatively involved in cyanide biodegradation.


Assuntos
Biodegradação Ambiental , Cianetos , Genoma Bacteriano , Filogenia , Pseudomonas , Cianetos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Genômica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Pseudomonas pseudoalcaligenes/metabolismo , Pseudomonas pseudoalcaligenes/genética
6.
Appl Environ Microbiol ; 89(6): e0022023, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37191513

RESUMO

Nitrilase can catalyze nitrile compounds to generate corresponding carboxylic acids. Nitrilases as promiscuous enzymes can catalyze a variety of nitrile substrates, such as aliphatic nitriles, aromatic nitriles, etc. However, researchers tend to prefer enzymes with high substrate specificity and high catalytic efficiency. In this study, we developed an active pocket remodeling (ALF-scanning) based on modulating the geometry of the nitrilase active pocket to alter substrate preference and improve catalytic efficiency. Using this strategy, combined with site-directed saturation mutagenesis, we successfully obtained 4 mutants with strong aromatic nitrile preference and high catalytic activity, W170G, V198L, M197F, and F202M, respectively. To explore the synergistic relationship of these 4 mutations, we constructed 6 double-combination mutants and 4 triple-combination mutants. By combining mutations, we obtained the synergistically enhanced mutant V198L/W170G, which has a significant preference for aromatic nitrile substrates. Compared with the wild type, its specific activities for 4 aromatic nitrile substrates are increased to 11.10-, 12.10-, 26.25-, and 2.55-fold, respectively. By mechanistic dissection, we found that V198L/W170G introduced a stronger substrate-residue π-alkyl interaction in the active pocket and obtained a larger substrate cavity (225.66 Å3 to 307.58 Å3), making aromatic nitrile substrates more accessible to be catalyzed by the active center. Finally, we conducted experiments to rationally design the substrate preference of 3 other nitrilases based on the substrate preference mechanism and also obtained the corresponding aromatic nitrile substrate preference mutants of these three nitrilases and these mutants with greatly improved catalytic efficiency. Notably, the substrate range of SmNit is widened. IMPORTANCE In this study, the active pocket was largely remodeled based on the ALF-scanning strategy we developed. It is believed that ALF-scanning not only could be employed for substrate preference modification but might also play a role in protein engineering of other enzymatic properties, such as substrate region selectivity and substrate spectrum. In addition, the mechanism of aromatic nitrile substrate adaptation we found is widely applicable to other nitrilases in nature. To a large extent, it could provide a theoretical basis for the rational design of other industrial enzymes.


Assuntos
Aminoidrolases , Nitrilas , Aminoidrolases/genética , Aminoidrolases/metabolismo , Catálise , Engenharia de Proteínas , Especificidade por Substrato
7.
Crit Rev Biotechnol ; 43(8): 1226-1235, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36154348

RESUMO

(R)-(-)-mandelic acid is an important carboxylic acid known for its numerous potential applications in the pharmaceutical industry as it is an ideal starting material for the synthesis of antibiotics, antiobesity drugs and antitumor agents. In past few decades, the synthesis of (R)-(-)-mandelic acid has been undertaken mainly through the chemical route. However, chemical synthesis of optically pure (R)-(-)-mandelic acid is difficult to achieve at an industrial scale. Therefore, its microbe mediated production has gained considerable attention as it exhibits many merits over the chemical approaches. The present review focuses on various biotechnological strategies for the production of (R)-(-)-mandelic acid through microbial biotransformation and enzymatic catalysis; in particular, an analysis and comparison of the synthetic methods and different enzymes. The wild type as well as recombinant microbial strains for the production of (R)-(-)-mandelic acid have been elucidated. In addition, different microbial strategies used for maximum bioconversion of mandelonitrile into (R)-(-)-mandelic acid are discussed in detail with regard to higher substrate tolerance and maximum bioconversion.HighlightsMandelonitrile, mandelamide and o-chloromandelonitrile can be used as substrates to produce (R)-(-)-mandelic acid by enzymes.Three enzymes (nitrilase, nitrile hydratase and amidase) are systematically introduced for production of (R)-(-)-mandelic acid.Microbial transformation is able to produce optically pure (R)-(-)-mandelic acid with 100% productive yield.


Assuntos
Biotecnologia , Ácidos Mandélicos , Ácidos Mandélicos/metabolismo , Biotransformação , Aminoidrolases/metabolismo
8.
Bioprocess Biosyst Eng ; 46(2): 195-206, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36451047

RESUMO

In the present study, the Gordonia terrae was subjected to chemical mutagenesis using ethyl methane sulfonate (EMS) and methyl methane sulfonate (MMS), N-methyl-N-nitro-N-nitrosoguanidine (MNNG), 5-bromouracil (5-BU) and hydroxylamine with the aim of improving the catalytic efficiency of its nitrilase for conversion of 3-cyanopyridine to nicotinic acid. A mutant MN12 generated with MNNG exhibited increase in nitrilase activity from 0.5 U/mg dcw (dry cell weight) (in the wild G. terrae) to 1.33 U/mg dcw. Further optimizations of culture conditions using response surface methodology enhanced the enzyme production to 1.2-fold. Whole-cell catalysis was adopted for bench-scale synthesis of nicotinic acid, and 100% conversion of 100 mM 3-cyanopyridine was achieved in potassium phosphate buffer (0.1 M, pH 8.0) at 40 °C in 15 min. The whole-cell nitrilase of the mutant MN12 exhibited higher rate of product formation and volumetric productivity, i.e., 24.56 g/h/g dcw and 221 g/L as compared to 8.95 g/h/g dcw and 196.8 g/L of the wild G. terrae. The recovered product was confirmed by HPLC, FTIR and NMR analysis with high purity (> 99.9%). These results indicated that the mutant MN12 of G. terrae as whole-cell nitrilase is a very promising biocatalyst for the large-scale synthesis of nicotinic acid.


Assuntos
Bactéria Gordonia , Niacina , Metilnitronitrosoguanidina , Aminoidrolases/química , Biotransformação , Bactéria Gordonia/genética , Metano
9.
J Labelled Comp Radiopharm ; 66(7-8): 172-179, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37186406

RESUMO

A strategy has been developed for the carbon-14 radiosynthesis of [14 C]-SHP-141, a 4-(7-hydroxycarbamoyl-heptanoyloxy)-benzoic acid methyl ester derivative containing a terminal hydroxamic acid. The synthesis involved four radiochemical transformations. The key step in the radiosynthesis was the conversion of the 7-[14 C]-cyano-heptanoic acid benzyloxyamide [14 C]-4 directly into the carboxylic acid derivative, 7-benzyloxycarbamoyl-[14 C]-heptanoic acid [14 C]-8 using nitrilase-113 biocatalyst. The final step involved deprotection of the benzyloxy group using catalytic hydrogenation to facilitate the release of the hydroxamic acid without cleaving the phenoxy ester. [14 C]-SHP-141 was isolated with a radiochemical purity of 90% and a specific activity of 190 µCi/mg from four radiochemical steps starting from potassium [14 C]-cyanide in a radiochemical yield of 45%.


Assuntos
Ácido Benzoico , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/farmacologia , Radioisótopos de Carbono , Ésteres , Nitrilas , Hidrólise , Ácidos Hidroxâmicos , Compostos Radiofarmacêuticos , Histona Desacetilases
10.
J Struct Biol ; 214(2): 107859, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35439644

RESUMO

The nitrilase superfamily enzymes from Pyrococcus abyssi and Pyrococcus horikoshii hydrolyze several different amides. No nitriles that we tested were hydrolyzed by either enzyme. Propionamide and acetamide were the most rapidly hydrolyzed of all the substrates tested. Amide substrate docking studies on the wild-type and C146A variant P. horikoshii enzymes suggest a sequence in which the incoming amide substrate initially hydrogen bonds to the amino group of Lys-113 and the backbone carbonyl of Asn-171. When steric hindrance is relieved by replacing the cysteine with alanine, the amide then docks such that the amino group of Lys-113 and the backbone amide of Phe-147 are hydrogen-bonded to the substrate carbonyl oxygen, while the backbone carbonyl oxygen of Asn-171 and the carboxyl oxygen of Glu-42 are hydrogen-bonded to the amino group of the substrate. Here, we confirm the location of the acetamide and glutaramide ligands experimentally in well-resolved crystal structures of the C146A mutant of the enzyme from P. horikoshii. This ligand location suggests that there is no direct interaction between the substrate amide and the other active site glutamate, Glu-120, and supports an active-site geometry leading to the formation of the thioester intermediate via an attack on the si-face of the amide by the sulfhydryl of the active site cysteine.


Assuntos
Pyrococcus horikoshii , Acetamidas , Amidas , Amidoidrolases/química , Amidoidrolases/genética , Cisteína/química , Hidrogênio , Ligantes , Oxigênio , Especificidade por Substrato
11.
Appl Environ Microbiol ; 88(9): e0029622, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35435711

RESUMO

Pichia pastoris is widely used for the production of valuable recombinant proteins. An advantage of P. pastoris over other expression systems is that it secretes low levels of endogenous proteins, which facilitates the purification processes if the desired recombinant proteins are efficiently secreted into the culture medium. However, not all recombinant proteins can be successfully secreted by P. pastoris, especially enzymes that are located in intracellular compartments in their native hosts. Few studies have reported strategies for releasing recombinant proteins which cannot be secreted by standard protocols. Here, we investigated whether this challenge can be addressed using novel secretion leaders. Analysis of the secretome and transcriptome of P. pastoris indicated that the four genes with the highest protein-to-transcript ratios were EPX1, PAS_chr3_0030, SCW10, and UTH1, suggesting that their gene products contain efficient secretion leaders. Our data revealed that the signal peptide derived from the PAS_chr3_0030 gene product conferred secretion competence to certain industrial enzymes, e.g., a nitrilase of Alcaligenes faecalis ZJUTB10, a ribosylnicotinamide kinase of P. pastoris, and a glucose dehydrogenase of Exiguobacterium sibiricum. Therefore, the signal peptide derived from the PAS_chr3_0030 gene product represents a novel secretion sequence for the secretory expression of recombinant enzymes in P. pastoris. IMPORTANCE Although P. pastoris is widely used for the secretory production of pharmaceutical proteins, its successful applications in the secretory production of industrial enzymes are limited. The α-mating factor pre-pro leader is the most widely used secretion signal in P. pastoris, but numerous industrial enzymes cannot be secreted using it. The importance of this study is that we identified a signal peptide derived from the PAS_chr3_0030 gene product which conferred secretion competence to three-quarters of the enzymes tested. This signal peptide derived from the PAS_chr3_0030 gene product may facilitate the application of P. pastoris in industrial biocatalysis.


Assuntos
Sinais Direcionadores de Proteínas , Saccharomycetales , Pichia/genética , Pichia/metabolismo , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales/metabolismo
12.
Appl Environ Microbiol ; 88(5): e0239721, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35020449

RESUMO

Nitrilase-catalyzed hydrolysis of 2-chloronicotinonitrile (2-CN) is a promising approach for the efficient synthesis of 2-chloronicotinic acid (2-CA). The development of nitrilase with ideal catalytic properties is crucial for the biosynthetic route with industrial potential. Herein, a nitrilase from Rhodococcus zopfii (RzNIT), which showed much higher hydration activity than hydrolysis activity, was designed for efficient hydrolysis of 2-CN. Two residues (N165 and W167) significantly affecting the reaction specificity were precisely identified. By tuning these two residues, a single mutation of W167G with abolished hydration activity and 20-fold improved hydrolysis activity was obtained. Molecular dynamics simulation and molecular docking revealed that the mutation generated a larger binding pocket, causing the substrate 2-CN to bind more deeply in the pocket and form a delocalized π bond between the residues W190 and Y196, which reduced the negative influence of steric hindrance and electron effect caused by chlorine substituent. With mutant W167G as biocatalyst, 100 mM 2-CN was exclusively converted into 2-CA within 16 h. The study provides useful guidance in nitrilase engineering for simultaneous improvement of reaction specificity and catalytic activity, which are highly desirable in value-added carboxylic acids production from nitriles hydrolysis. IMPORTANCE 2-CA is an important building block for agrochemicals and pharmaceuticals with a rapid increase in demand in recent years. It is currently manufactured from 3-cyanopyridine by chemical methods. However, during the final step of 2-CN hydrolysis under high temperature and strong alkaline conditions, the byproduct 2-CM was generated except for the target product, leading to low yield and tedious separation steps. Nitrilase-mediated hydrolysis is regarded as a promising alternative for 2-CA production, which proceeded under mild conditions. Nevertheless, nitrilase capable of efficient hydrolysis of 2-CN has not been reported because the enzymes showed either extremely low activity or surprisingly high hydration activity toward 2-CN. Herein, the reaction specificity of RzNIT was precisely tuned through a single site mutation. The mutant exhibited remarkably enhanced hydrolysis activity without the formation of byproducts, providing a robust biocatalyst for 2-CA biosynthesis with industrial potential.


Assuntos
Aminoidrolases , Nitrilas , Aminoidrolases/genética , Aminoidrolases/metabolismo , Hidrólise , Simulação de Acoplamento Molecular , Mutação , Especificidade por Substrato
13.
Biotechnol Bioeng ; 119(12): 3421-3431, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36042572

RESUMO

Nitrilases are promising biocatalysts to produce high-value-added carboxylic acids through hydrolysis of nitriles. However, since the enzymes always show low activity and sometimes with poor reaction specificity toward 2-chloronicotinonitrile (2-CN), very few robust nitrilases have been reported for efficient production of 2-chloronicotinic acid (2-CA) from 2-CN. Herein, a nitrilase from Paraburkholderia graminis (PgNIT) was engineered to improve its catalytic properties. We identified the beneficial residues via computational analysis and constructed the mutant library. The positive mutants were obtained and the activity of the "best" mutant F164G/I130L/N167Y/A55S/Q260C/T133I/R199Q toward 2-CN was increased from 0.14 × 10-3  to 4.22 U/mg. Its reaction specificity was improved with elimination of hydration activity. Molecular docking and molecular dynamics simulation revealed that the conformational flexibility, the nucleophilic attack distance, as well as the interaction forces between the enzyme and substrate were the main reason alternating the catalytic properties of PgNIT. With the best mutant as biocatalyst, 150 g/L 2-CN was completely converted, resulting in 2-CA accumulated to 169.7 g/L. When the substrate concentration was increased to 200 g/L, 203.1 g/L 2-CA was obtained with yield of 85.7%. The results laid the foundation for industrial production of 2-CA with the nitrilase-catalyzed route.


Assuntos
Aminoidrolases , Burkholderiaceae , Ácidos Nicotínicos , Aminoidrolases/química , Aminoidrolases/genética , Aminoidrolases/metabolismo , Burkholderiaceae/genética , Burkholderiaceae/metabolismo , Simulação de Acoplamento Molecular , Especificidade por Substrato , Ácidos Nicotínicos/biossíntese , Ácidos Nicotínicos/metabolismo , Catálise
14.
Biotechnol Bioeng ; 119(9): 2399-2412, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35750945

RESUMO

Simultaneous evolution of multiple enzyme properties remains challenging in protein engineering. A chimeric nitrilase (BaNITM0 ) with high activity towards isobutylsuccinonitrile (IBSN) was previously constructed for biosynthesis of pregabalin precursor (S)-3-cyano-5-methylhexanoic acid ((S)-CMHA). However, BaNITM0 also catalyzed the hydration of IBSN to produce by-product (S)-3-cyano-5-methylhexanoic amide. To obtain industrial nitrilase with vintage performance, we carried out engineering of BaNITM0 for simultaneous evolution of reaction specificity, enantioselectivity, and catalytic activity. The best variant V82L/M127I/C237S (BaNITM2 ) displayed higher enantioselectivity (E = 515), increased enzyme activity (5.4-fold) and reduced amide formation (from 15.8% to 1.9%) compared with BaNITM0 . Structure analysis and molecular dynamics simulations indicated that mutation M127I and C237S restricted the movement of E66 in the catalytic triad, resulting in decreased amide formation. Mutation V82L was incorporated to induce the reconstruction of the substrate binding region in the enzyme catalytic pocket, engendering the improvement of stereoselectivity. Enantio- and regio-selective hydrolysis of 150 g/L IBSN using 1.5 g/L Escherichia coli cells harboring BaNITM2 as biocatalyst afforded (S)-CMHA with >99.0% ee and 45.9% conversion, which highlighted the robustness of BaNITM2 for efficient manufacturing of pregabalin.


Assuntos
Aminoidrolases , Escherichia coli , Amidas , Aminoidrolases/genética , Aminoidrolases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Pregabalina/química , Especificidade por Substrato
15.
J Appl Microbiol ; 133(2): 311-322, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35365856

RESUMO

AIMS: To characterize the functions of nitrilases of Variovorax boronicumulans CGMCC 4969 and evaluate flonicamid (FLO) degradation and ß-cyano-L-alanine (Ala(CN)) detoxification by this bacterium. METHODS AND RESULTS: Variovorax boronicumulans CGMCC 4969 nitrilases (NitA and NitB) were purified, and substrate specificity assay indicated that both of them degraded insecticide FLO to N-(4-trifluoromethylnicotinoyl)glycinamide (TFNG-AM) and 4-(trifluoromethyl)nicotinol glycine (TFNG). Ala(CN), a plant detoxification intermediate, was hydrolysed by NitB. Escherichia coli overexpressing NitA and NitB degraded 41.2 and 93.8% of FLO (0.87 mmol·L-1 ) within 1 h, with half-lives of 1.30 and 0.25 h, respectively. NitB exhibited the highest nitrilase activity towards FLO. FLO was used as a substrate to compare their enzymatic properties. NitB was more tolerant to acidic conditions and organic solvents than NitA. Conversely, NitA was more tolerant to metal ions than NitB. CGMCC 4969 facilitated FLO degradation in soil and surface water and utilized Ala(CN) as a sole nitrogen source for growth. CONCLUSIONS: CGMCC 4969 efficiently degraded FLO mediated by NitA and NitB; NitB was involved in Ala(CN) detoxification. SIGNIFICANCE AND IMPACT OF THE STUDY: This study promotes our understanding of versatile functions of nitrilases from CGMCC 4969 that is promising for environmental remediation.


Assuntos
Inseticidas , Alanina/análogos & derivados , Aminoidrolases/genética , Aminoidrolases/metabolismo , Comamonadaceae , Escherichia coli/genética , Escherichia coli/metabolismo , Inseticidas/metabolismo , Niacinamida/análogos & derivados
16.
Appl Microbiol Biotechnol ; 106(7): 2445-2454, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35262786

RESUMO

Nitriles derived from glucosinolates (GSLs) in rapeseed meal (RSM) can cause lesions on animal liver and kidneys. Nitrilase converts nitriles to carboxylic acids and NH3, eliminating their toxicity. Here we describe a nitrilase, BnNIT2, from Brassica napus (optimal temperature, 45 °C; pH, 7.0) that is stable at 40 °C and has a wide substrate specificity. Recombinant BnNIT2 converted the three main nitriles from GSLs (3-hydroxy-4-pentenenitrile, 3-butenenitrile, and 4-pentenenitrile), with the highest specific activity (58.6 U/mg) for 4-pentenenitrile. We used mutagenesis to improve the thermostability of BnNIT2; the resulting mutant BnNIT2-H90M had an ~ 14.5% increase in residual activity at 50 °C for 1 h. To verify the functionality of BnNIT2, GSLs were extracted from RSM and converted into nitriles at pH 5.0 in the presence of Fe2+. Then, BnNIT2 was used to degrade the nitriles from GSLs; ultimately, ~ 80% of nitriles were removed. Thus BnNIT2 is a potential enzyme for detoxification of RSM. KEY POINTS: • Functional identification of the plant nitrilase BnNIT2. • Identified a mutant, H90M, with improved thermostability. • BnNIT2 was capable of degrading nitriles from transformed GSLs.


Assuntos
Brassica napus , Brassica rapa , Aminoidrolases , Animais , Brassica napus/metabolismo , Brassica rapa/metabolismo , Glucosinolatos/metabolismo , Nitrilas/metabolismo , Especificidade por Substrato
17.
Biotechnol Appl Biochem ; 69(1): 183-189, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33377552

RESUMO

Hydrogen cyanide is an industrially important chemical, and its annual production is more than 1.5 million tons. Because of its toxicity, the cyanide-containing effluents from industries have caused many environmental problems. Among various methods to treat the contaminated soils or water, the biological degradation is regarded to be promising. We isolated two cyanide-degrading microorganisms, Pedobacter sp. EBE-1 and Bacillus sp. EBE-2, from soil contaminated with cyanide. Among these bacteria, Bacillus sp. EBE-2 exhibited significantly a high cyanide-degrading ability. Bacillus sp. EBE-2 might be used for the remediation of cyanide contaminated water or soil. A nitrilase gene was cloned from Bacillus sp. EBE-2. Bacillus nitrilase was expressed in Escherichia coli and purified. Bacillus nitrilase exhibited cyanide-degrading activity as a large oligomer. Since formic acid formation from cyanide was observed, Bacillus nitrilase is likely to be a cyanide hydrolase. Although there exist various homologous enzymes annotated as carbon-nitrogen family hydrolases, this is the first report on the cyanide degrading activity. The structure and catalytic site of Bacillus nitrilase were studied by homology modeling and molecular docking simulation.


Assuntos
Aminoidrolases , Cianetos , Aminoidrolases/genética , Bactérias , Biodegradação Ambiental , Simulação de Acoplamento Molecular
18.
Biotechnol Appl Biochem ; 69(2): 587-595, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33650215

RESUMO

Nitrilases can directly hydrolyze nitrile compounds into carboxylic acids and ammonium. To solve the current problems of bioconversions using nitrilases, including the difficult separation of products from the resting cells used as the catalyst and high costs of chemical inducers, a nitrilase from Alcaligenes faecalis was heterologously expressed in Pichia pastoris X33. The stable nitrilase-expressing strain No.39-6-4 was obtained after three rounds of screening based on a combined detection method including dot-blot, SDS-PAGE, and western blot analyses, which confirmed the presence of recombinant nitrilase with a molecular mass of about 50 kDa. The temperature and pH optima of the nitrilase were 45°C and pH 7.5, respectively. Cu2+ , Zn2+ , and Tween 80 strongly inhibited the enzyme activity, but the optical purity of the product R-mandelic acid (R-MA) was stable, with practically 100% enantiomeric excess (ee). The nitrilase-producing P. pastoris strain developed in this study provides a basis for further research on the enzyme.


Assuntos
Alcaligenes faecalis , Alcaligenes faecalis/química , Alcaligenes faecalis/genética , Aminoidrolases/genética , Aminoidrolases/metabolismo , Concentração de Íons de Hidrogênio , Ácidos Mandélicos/química , Ácidos Mandélicos/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomycetales
19.
Biotechnol Lett ; 44(10): 1163-1173, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36050605

RESUMO

PURPOSE: We screened nitrilases with significant nitrile hydratase activity to exploit their potential in benzylic amide biosynthesis. We also investigated the factors affecting their hydration activity to support further research on benzylic amide production by nitrilase. METHODS: A sequence-based screening method using previously reported crucial positions identified to be essential for amide-forming capacity of nitrilase (referred to as "amide-formation hotspots") as molecular probes to identify putative amide-forming nitrilases. RESULTS: Based on the previously reported "amide-formation hotspots," we identified a nitrilase NitPG from Paraburkholderia graminis DSM 17151 that could produce a significant amount of mandelamide toward mandelonitrile and exhibited general hydration activity toward various benzylic nitriles. The time-course experiment with NitPG demonstrated that amide was also a true reaction product of nitrilase, suggesting that the nitrile catalysis by amide-forming nitrilase could be a post-transition state bifurcation-mediated enzymatic reaction. Further research demonstrated that low temperature, metal ion addition, and specific substrate structure could profoundly improve the amide formation capability of nitrilase. CONCLUSIONS: NitPG with broad hydration activity is a potential candidate for the enzymatic synthesis of benzylic amides for biotechnological applications. Studying the effect of nitrilase hydration activity could promote our understanding of the factors that influence amide and acid distribution.


Assuntos
Aminoidrolases , Nitrilas , Amidas , Aminoidrolases/metabolismo , Hidroliases , Sondas Moleculares , Especificidade por Substrato
20.
Bioprocess Biosyst Eng ; 45(9): 1559-1579, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35962826

RESUMO

Nitrilases capable of performing hydroxylation of 2-chloroisonicotinonitrile to 2-chloroisonicotinic acid were screened, and ES-NIT-102 was the best nitrilase for said biotransformation. Nitrilase was immobilized as cross linked enzyme aggregates (nitrilase-CLEAs) by fractional precipitation with iso-propanol, and cross linked with glutaraldehyde. The nitrilase-CLEAs prepared with optimized 35 mM glutaraldehyde for 120 min cross linking time had 82.36 ± 4.45% residual activity, and displayed type-II structural CLEAs formation as confirmed by particle size, SEM, FTIR, and SDS-PAGE analysis. Nitrilase-CLEAs had superior pH and temperature stability, showed a shift in optimal temperature by 5 °C, and retained nearly 1.5 to 1.7 folds activity over free nitrilase at 50 °C and 55 °C after more than 9 h incubation. Nitrilase-CLEAs showed reduced affinity and decreased conversion of substrate as indicated by slightly higher Km values by 5.19% and reduced Vmax by 17%. Furthermore, these nitrilase-CLEAs showed 98% conversion, 94.72 g/L product formation, and 83.30% recovery after 24 h when used for hydroxylation of 2-chloroisonicotinonitrile to 2-chloroisonicotinic acid. Nitrilase-CLEAs were catalytically active for 3 cycles showcasing 81% conversion, 75.53 g/L product formation and 66.42% yield. The recovered product was confirmed by HPLC, FTIR, LC-MS, and 1H NMR, and displayed > 99% purity.


Assuntos
Enzimas Imobilizadas , Aminoidrolases , Reagentes de Ligações Cruzadas/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Glutaral/química , Hidroxilação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA