Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(14): 3423-3448, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38885335

RESUMO

Chronic coronary artery stenosis can lead to regional myocardial dysfunction in the absence of myocardial infarction by repetitive stunning, hibernation or both. The molecular mechanisms underlying repetitive stunning-associated myocardial dysfunction are not clear. We used non-targeted metabolomics to elucidate responses to chronically stunned myocardium in a canine model with and without ß-adrenergic blockade treatment. After development of left ventricular systolic dysfunction induced by ameroid constrictors on the coronary arteries, animals were randomized to 3 months of placebo, metoprolol or carvedilol. We compared these two ß-blockers with their different ß-adrenergic selectivities on myocardial function, perfusion and metabolic pathways involved in tissue undergoing chronic stunning. Control animals underwent sham surgery. Dysfunction in stunned myocardium was associated with reduced fatty acid oxidation and enhanced ketogenic amino acid metabolism, together with alterations in mitochondrial membrane phospholipid composition. These changes were consistent with impaired mitochondrial function and were linked to reduced nitric oxide and peroxisome proliferator-activated receptor signalling, resulting in a decline in adenosine monophosphate-activated protein kinase. Mitochondrial changes were ameliorated by carvedilol more than metoprolol, and improvement was linked to nitric oxide and possibly hydrogen sulphide signalling. In summary, repetitive myocardial stunning commonly seen in chronic multivessel coronary artery disease is associated with adverse metabolic remodelling linked to mitochondrial dysfunction and specific signalling pathways. These changes are reversed by ß-blockers, with the non-selective inhibitor having a more favourable impact. This is the first investigation to demonstrate that ß-blockade-associated improvement of ventricular function in chronic myocardial stunning is associated with restoration of mitochondrial function. KEY POINTS: The mechanisms responsible for the metabolic changes associated with repetitive myocardial stunning seen in chronic multivessel coronary artery disease have not been fully investigated. In a canine model of repetitive myocardial stunning, we showed that carvedilol, a non-selective ß-receptor blocker, ameliorated adverse metabolic remodelling compared to metoprolol, a selective ß1-receptor blocker, by improving nitric oxide synthase and adenosine monophosphate protein kinase function, enhancing calcium/calmodulin-dependent protein kinase, probably increasing hydrogen sulphide, and suppressing cyclic-adenosine monophosphate signalling. Mitochondrial fatty acid oxidation alterations were ameliorated by carvedilol to a larger extent than metoprolol; this improvement was linked to nitric oxide and possibly hydrogen sulphide signalling. Both ß-blockers improved the cardiac energy imbalance by reducing metabolites in ketogenic amino acid and nucleotide metabolism. These results elucidated why metabolic remodelling with carvedilol is preferable to metoprolol when treating chronic ischaemic left ventricular systolic dysfunction caused by repetitive myocardial stunning.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1 , Estenose Coronária , Metabolômica , Metoprolol , Miocárdio Atordoado , Animais , Miocárdio Atordoado/tratamento farmacológico , Miocárdio Atordoado/metabolismo , Miocárdio Atordoado/etiologia , Cães , Metoprolol/farmacologia , Estenose Coronária/tratamento farmacológico , Estenose Coronária/metabolismo , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Antagonistas de Receptores Adrenérgicos beta 1/uso terapêutico , Carvedilol/farmacologia , Masculino , Propanolaminas/farmacologia , Carbazóis/farmacologia , Miocárdio/metabolismo , Miocárdio/patologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo
2.
BMC Microbiol ; 24(1): 261, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004720

RESUMO

BACKGROUND: The excessive application of chemical fertilizers in the cultivation of Astragalus mongholicus Bunge results in a reduction in the quality of the medicinal plant and compromises the sustainable productivity of the soil. PGPB inoculant is a hot topic in ecological agriculture research. In the cultivation of Astragalus mongholicus, the screened nitrogen-fixing bacteria can promote plant growth, however, whether it can promote the accumulation of main bioactive components remains unknown. In this study, mixed inoculants containing 5 strains of growth promoting bacteria (Rhizobium T16 , Sinorhizobium T21 , Bacillus J1 , Bacillus G4 and Arthrobacter J2) were used in the field experiment. The metabolic substances in the root tissues of Astragalus mongholicus were identified during the harvest period by non-targeted metabolomics method, and the differential metabolites between groups were identified by statistical analysis. Meanwhile, high-throughput sequencing was performed to analyze the changes of rhizosphere soil and endophytic microbial community structure after mixed microbial treatment. RESULTS: The results of non-targeted metabolism indicated a significant increase in the levels of 26 metabolites after treatment including 13 flavonoids, 3 saponins and 10 other components. The contents of three plant hormones (abscisic acid, salicylic acid and spermidine) also increased after treatment, which presumed to play an important role in regulating plant growth and metabolism. Studies on endosphere and rhizosphere bacterial communities showed that Rhzobiaceae, Micromonosporaceae, and Hypomicrobiaceae in endophytic, and Oxalobactereae in rhizosphere were significantly increased after treatment. These findings suggest their potential importance in plant growth promotion and secondary metabolism regulation. CONCLUSIONS: This finding provides a basis for developing nitrogen-fixing bacteria fertilizer and improving the ecological planting efficiency of Astragalus mongholicus.


Assuntos
Astrágalo , Microbiota , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Astrágalo/microbiologia , Astrágalo/metabolismo , Bactérias Fixadoras de Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/genética , Saponinas/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Metabolômica , Arthrobacter/metabolismo , Arthrobacter/genética , Endófitos/metabolismo , Endófitos/genética , Rhizobium/metabolismo
3.
Clin Oral Implants Res ; 35(7): 719-728, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38624226

RESUMO

OBJECTS: This study aims to explore the etiology of peri-implantitis by comparing the metabolic profiles in peri-implant crevicular fluid (PICF) from patients with healthy implants (PH) and those with peri-implantitis (PI). MATERIALS AND METHODS: Fifty-six patients were enrolled in this cross-sectional study. PICF samples were collected and analyzed using both non-targeted and targeted metabolomics approaches. The relationship between metabolites and clinical indices including probing depth (PD), bleeding on probing (BOP), and marginal bone loss (MBL) was examined. Additionally, submucosal microbiota was collected and analyzed using 16S rRNA gene sequencing to elucidate the association between the metabolites and microbial communities. RESULTS: Significant differences in metabolic profiles were observed between the PH and PI groups, with 179 distinct metabolites identified. In the PI group, specific amino acids and fatty acids were significantly elevated compared to the PH group. Organic acids including succinic acid, fructose-6-phosphate, and glucose-6-phosphate were markedly higher in the PI group, showing positive correlations with mean PD, BOP, and MBL. Metabolites that increased in the PI group positively correlated with the presence of Porphyromonas and Treponema and negatively with Streptococcus and Haemophilus. CONCLUSIONS: This study establishes a clear association between metabolic compositions and peri-implant condition, highlighting enhanced metabolite activity in peri-implantitis. These findings open avenues for further research into metabolic mechanisms of peri-implantitis and their potential therapeutic implications.


Assuntos
Líquido do Sulco Gengival , Peri-Implantite , Humanos , Peri-Implantite/metabolismo , Peri-Implantite/microbiologia , Líquido do Sulco Gengival/microbiologia , Líquido do Sulco Gengival/metabolismo , Líquido do Sulco Gengival/química , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Idoso , Metaboloma , Adulto , Microbiota
4.
BMC Biol ; 21(1): 207, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794486

RESUMO

BACKGROUND: The maternal microbiota modulates fetal development, but the mechanisms of these earliest host-microbe interactions are unclear. To investigate the developmental impacts of maternal microbial metabolites, we compared full-term fetuses from germ-free and specific pathogen-free mouse dams by gene expression profiling and non-targeted metabolomics. RESULTS: In the fetal intestine, critical genes mediating host-microbe interactions, innate immunity, and epithelial barrier were differentially expressed. Interferon and inflammatory signaling genes were downregulated in the intestines and brains of the fetuses from germ-free dams. The expression of genes related to neural system development and function, translation and RNA metabolism, and regulation of energy metabolism were significantly affected. The gene coding for the insulin-degrading enzyme (Ide) was most significantly downregulated in all tissues. In the placenta, genes coding for prolactin and other essential regulators of pregnancy were downregulated in germ-free dams. These impacts on gene expression were strongly associated with microbially modulated metabolite concentrations in the fetal tissues. Aryl sulfates and other aryl hydrocarbon receptor ligands, the trimethylated compounds TMAO and 5-AVAB, Glu-Trp and other dipeptides, fatty acid derivatives, and the tRNA nucleobase queuine were among the compounds strongly associated with gene expression differences. A sex difference was observed in the fetal responses to maternal microbial status: more genes were differentially regulated in male fetuses than in females. CONCLUSIONS: The maternal microbiota has a major impact on the developing fetus, with male fetuses potentially more susceptible to microbial modulation. The expression of genes important for the immune system, neurophysiology, translation, and energy metabolism are strongly affected by the maternal microbial status already before birth. These impacts are associated with microbially modulated metabolites. We identified several microbial metabolites which have not been previously observed in this context. Many of the potentially important metabolites remain to be identified.


Assuntos
Intestinos , Microbiota , Gravidez , Masculino , Feminino , Animais , Camundongos , Placenta/metabolismo , Encéfalo/metabolismo , Feto/metabolismo
5.
J Sci Food Agric ; 104(4): 2417-2428, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37989713

RESUMO

BACKGROUND: Hyperlipidemia is characterized by abnormally elevated blood lipids. Quinoa saponins (QS) have multiple pharmacological activities, including antitumor, bactericidal and immune-enhancing effects. However, the lipid-lowering effect and mechanisms of QS in vivo have been scarcely reported. METHODS: The effect of QS against hyperlipidemia induced by high-fat diet in rats was explored based on gut microbiota and serum non-targeted metabolomics. RESULTS: The study demonstrated that the supplementation of QS could reduce serum lipids, body weight, liver injury and inflammation. 16S rRNA sequencing demonstrated that QS mildly increased alpha-diversity, altered the overall structure of intestinal flora, decreased the relative richness of Firmicutes, the ratio of Firmicutes/Bacteroidetes (P < 0.05) and increased the relative richness of Actinobacteria, Bacteroidetes, Bifidobacterium, Roseburia and Coprococcus (P < 0.05). Simultaneously, metabolomics analysis showed that QS altered serum functional metabolites with respect to bile acid biosynthesis, arachidonic acid metabolism and taurine and hypotaurine metabolism, which were closely related to bile acid metabolism and fatty acid ß-oxidation. Furthermore, QS increased protein levels of farnesoid X receptor, peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase 1, which were related to the screened metabolic pathways. Spearman correlation analysis showed that there was a correlation between gut microbiota and differential metabolites. CONCLUSION: QS could prevent lipid metabolism disorders in hyperlipidemic rats, which may be closely associated with the regulation of the gut microbiota and multiple metabolic pathways. This study may provide new evidence for QS as natural active substances for the prevention of hyperlipidemia. © 2023 Society of Chemical Industry.


Assuntos
Chenopodium quinoa , Microbioma Gastrointestinal , Hiperlipidemias , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Chenopodium quinoa/metabolismo , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/etiologia , Hiperlipidemias/metabolismo , RNA Ribossômico 16S , Lipídeos/farmacologia , Redes e Vias Metabólicas , Ácidos e Sais Biliares
6.
J Sci Food Agric ; 104(6): 3294-3305, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38087418

RESUMO

BACKGROUND: Mulberry leaves (MLs) are widely used in food because of their nutritional and functional characteristics. However, plant cell walls and natural bitterness influence nutrient release and the flavor properties of MLs. Liquid-state fermentation using Monascus purpureus (LFMP) is a common processing method used to improve food properties. The present study used headspace solid-phase micro extraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and non-targeted metabolomics to examine changes in volatile and non-volatile metabolites in MLs. The transformation mechanism of LFMP was investigated by microscopic observation and dynamic analysis of enzyme activity, and changes in the biological activity of MLs were analyzed. RESULTS: LFMP significantly increased total phenolics, total flavonoids, free amino acids and soluble sugars in MLs, at the same time as decreasing phytic acid levels. In total, 92 volatile organic compounds (VOCs) were identified and quantified. VOCs such as (2R,3R)-(-)-2,3-butanediol, terpineol and eugenol showed some improvement in the flavour characteristics of MLs. By using non-targeted metabolomics, 124 unique metabolites in total were examined. LFMP altered the metabolic profile of MLs, mainly in plant secondary metabolism, lipid metabolism and amino acid metabolism. Microscopic observation and dynamic analysis of enzyme activity indicated that LFMP promoted cell wall degradation and biotransformation of MLs. In addition, LFMP significantly increased the angiotensin I-converting enzyme and α-glucosidase inhibitory activity of MLs. CONCLUSION: LFMP altered the flavour characteristics, metabolite profile and biological activity of MLs. These findings will provide ideas for the processing of MLs into functional foods. In addition, they also provide useful information for biochemical studies of fermented MLs. © 2023 Society of Chemical Industry.


Assuntos
Monascus , Morus , Compostos Orgânicos Voláteis , Microextração em Fase Sólida/métodos , Morus/química , Monascus/metabolismo , Fermentação , Metabolômica/métodos , Compostos Orgânicos Voláteis/química , Metaboloma
7.
J Sci Food Agric ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963133

RESUMO

BACKGROUND: Yeast culture (YC) is a product fermented on a specific medium, which is a type of postbiotic of anaerobic solid-state fermentation. Although YC has positive effects on the animal growth and health, it contains a variety of beneficial metabolites as dark matter, which have not been quantified. In the present study, liquid chromatography-tandem mass spectrometry is employed to identify the unknown metabolites. Following their identification, the important chemicals are quantified using HPLC-diode array detection methods. RESULTS: Non-targeted metabolomics studies showed that 670 metabolites in total were identified in YC, of which 23 metabolites significantly increased, including organic acids, amino acids, nucleosides and purines, isoflavones, and other substances. The chemical quantitative analysis showed that the contents of succinic acid, aminobutyric acid, glutamine, purine and daidzein increased by 84.42%, 51.07%, 100%, 68.85% and 4.60%, respectively. CONCLUSION: Therefore, the use of non-targeted metabolomics combined with chemical quantitative analysis to reveal the nutritional and functional substances of YC could help to elucidate the postbiotic mechanism and provide theoretical support for the regulation of the directional accumulation of beneficial metabolites. © 2024 Society of Chemical Industry.

8.
J Sci Food Agric ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625751

RESUMO

BACKGROUND: Mung beans are highly nutritious but their leguminous flavor limits their development. Lactic acid bacteria (LAB) fermentation can decrease unwanted bean flavors in legumes and enhance their flavor. This study examined the influence of Lactobacillus fermentation on the flavor characteristics of mung bean flour (MBF) using volatile compounds and non-targeted metabolomics. RESULTS: Lactobacillus plantarum LP90, Lactobacillus casei LC89, and Lactobacillus acidophilus LA85 eliminated 61.37%, 48.29%, and 43.73%, respectively, of the primary bean odor aldehydes from MBF. The relative odor activity value (ROAV) results showed that fermented mung bean flour (FMBF) included volatile chemicals that contributed to fruity, flowery, and milky aromas. These compounds included ethyl acetate, hexyl formate, 3-hydroxy-2-butanone, and 2,3-butanedione. The levels of amino acids with a fresh sweet flavor increased significantly by 93.89, 49.40, and 35.27% in LP90, LC89, and LA85, respectively. A total of 49 up-regulated and 13 down-regulated significantly differential metabolites were annotated, and ten metabolic pathways were screened for contributing to the flavor. The correlation between important volatile compounds and non-volatile substances relies on two primary metabolic pathways: the citric acid cycle pathway and the amino acid metabolic system. CONCLUSION: The flavor of MBF was enhanced strongly by the process of Lactobacillus fermentation, with LP90 having the most notable impact. These results serve as a reference for identifying the flavor of FMBF. © 2024 Society of Chemical Industry.

9.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3002-3011, 2024 Jun.
Artigo em Zh | MEDLINE | ID: mdl-39041160

RESUMO

This study aims to observe the effects of the traditional Chinese medicine prescription Dahuang Zhechong Pills(DHZCP on renal aging and explore its potential multi-target effects. Rats were assigned into the normal, model, DHZCP, and vitamin E(VE)groups. Firstly, the rat model of D-galactose(D-gal)-induced renal aging was established. During the modeling period, the rats in the 4 groups were administrated with double distilled water, double distilled water, DHZCP suspension, and VE suspension, respectively,by gavage every day. On day 60 of intervention, the indicators of renal aging and injury in rats were measured, including the function,histopathological characteristics, senescence-associated ß-galactosidase( SA-ß-gal) staining, and expression levels of Klotho and proteins associated with cell cycle arrest and senescence-associated secretory phenotype(SASP) in the renal tissue. Moreover, nontargeted metabolomic analysis of the renal tissue was performed for the 4 groups of rats to screen out the potential biomarkers and metabolic pathways. Finally, the signaling pathways of key targets were preliminarily validated. The results showed that DHZCP and VE significantly improved the renal function, histopathological features of renal tubular/interstitial tissue, and degree of SA-ß-gal staining, up-regulated the expression level of Klotho, and down-regulated the expression levels of proteins associated with cell cycle arrest and SASP in the renal tissue of the aging rats. In addition, DHZCP and VE regulated the metabolites in the renal tissue of the aging rats. There were 21 common differential metabolites. Among them, 5 differential metabolites were significantly increased in the aging rats and recovered after DHZCP or VE treatment, and they were involved in the lipid metabolism and energy metabolism pathways. The areas under the curves of the groups in comparison varied within the range of 0. 88-1. DHZCP regulated multiple signaling pathways, such as the adenosine monophosphate-activated protein kinase(AMPK), cyclic guanosine monophosphate-protein kinase G( c GMP-PKG), cyclic adenylic acid( c AMP), phosphatidylinositol-3-kinase-protein kinase B( PI3K-Akt), mammalian target of rapamycin(mTOR), and autophagy signaling pathways. In addition, it affected the multiple metabolic pathways, such as renin secretion, longevity regulation pathway, diabetic cardiomyopathy, and niacin and nicotinamide metabolism. DHZCP and VE significantly up-regulated the expression level of the key proteins in the AMPK signaling pathway in the renal tissue of the aging rats. In all, DHZCP and VE could mitigate renal aging and injury. DHZCP exerted multi-target effects via multiple signaling pathways and metabolic pathways in the kidney, in which the AMPK signaling pathway may be one of the key targets for action.


Assuntos
Envelhecimento , Medicamentos de Ervas Chinesas , Rim , Metabolômica , Ratos Sprague-Dawley , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Ratos , Rim/efeitos dos fármacos , Rim/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos
10.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2247-2261, 2024 Apr.
Artigo em Zh | MEDLINE | ID: mdl-38812239

RESUMO

This study employed microcirculation visualization and metabolomics methods to explore the effect and possible mechanism of Dalbergia cochinchinensis in ameliorating coronary microvascular dysfunction(CMD) induced by microsphere embolization in rats. Sixty SPF-grade male SD rats were randomized into sham, model, and low-, medium-, and high-dose [1.5, 3.0, and 6.0 g·kg~(-1)·d~(-1), respectively] D. cochinchinensis water extract groups. The rats in sham and model groups were administrated with equal volume of normal saline by gavage once a day for 7 consecutive days. The rat model of CMD was prepared by injecting polyethylene microspheres into the left ventricle, while the sham group was injected with an equal amount of normal saline. A blood flow meter was used to measure blood flow, and a blood rheometer to measure blood viscosity and fibrinogen content. An automatic biochemical analyzer and reagent kits were used to measure the serum levels of myocardial enzymes, glucose, and nitric oxide(NO). Hematoxylin-eosin(HE) staining was used to observe the pathological changes of myocardial tissue. DiI C12/C18 perfusion was used to infuse coronary microvessels, and the structural and morphological changes were observed using a confocal laser scanning microscope. AngioTool was used to analyze the vascular area, density, radius, and mean E lacunarity in the microsphere embolization area, and vascular blood flow resistance was calculated based on Poiseuille's law. Non-targeted metabolomics based on high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed screen potential biomarkers and differential metabolites regulated by D. cochinchinensis and the involved metabolic pathways were enriched. The pharmacodynamic results showed that compared with the model group, D. cochinchinensis significantly increased mean blood flow, reduced plasma fibrinogen content, lowered the levels of myocardial enzymes such as creatine kinase(CK), creatine kinase-MB(CK-MB), and lactate dehydrogenase(LDH), alleviate myocardial injury, and protect damaged myocardium. In addition, D. cochinchinensis significantly increased serum NO content, promoted vascular smooth muscle relaxation, dilated blood vessels, lowered serum glucose(GLU) level, improved myocardial energy metabolism, and alleviated pathological changes in myocardial fibrosis and inflammatory cell infiltration. The results of coronary microcirculation perfusion showed that D. cochinchinensis improved the vascular morphology, increased the vascular area, density, and radius, reduced vascular mean E lacunarity and blood flow resistance, and alleviated vascular endothelial damage in CMD rats. The results of metabolomics identified 45 differential metabolites between sham and model groups, and D. cochinchinensis recovered the levels 25 differential metabolites, which were involved in 8 pathways including arachidonic acid metabolism, arginine biosynthesis, and sphingolipids metabolism. D. cochinchinensis can ameliorate coronary microcirculation dysfunction caused by microsphere embolization in rats, and it may alleviate the pathological changes of CMD rats by regulating inflammatory reaction, endothelial damage, and phospholipid metabolism.


Assuntos
Dalbergia , Medicamentos de Ervas Chinesas , Metabolômica , Microcirculação , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Microcirculação/efeitos dos fármacos , Dalbergia/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Miocárdio/metabolismo , Vasos Coronários/fisiopatologia , Humanos
11.
BMC Med ; 21(1): 99, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927416

RESUMO

BACKGROUND: Metabolomic changes during pregnancy have been suggested to underlie the etiology of gestational diabetes mellitus (GDM). However, research on metabolites during preconception is lacking. Therefore, this study aimed to investigate distinctive metabolites during the preconception phase between GDM and non-GDM controls in a nested case-control study in Singapore. METHODS: Within a Singapore preconception cohort, we included 33 Chinese pregnant women diagnosed with GDM according to the IADPSG criteria between 24 and 28 weeks of gestation. We then matched them with 33 non-GDM Chinese women by age and pre-pregnancy body mass index (ppBMI) within the same cohort. We performed a non-targeted metabolomics approach using fasting serum samples collected within 12 months prior to conception. We used generalized linear mixed model to identify metabolites associated with GDM at preconception after adjusting for maternal age and ppBMI. After annotation and multiple testing, we explored the additional predictive value of novel signatures of preconception metabolites in terms of GDM diagnosis. RESULTS: A total of 57 metabolites were significantly associated with GDM, and eight phosphatidylethanolamines were annotated using HMDB. After multiple testing corrections and sensitivity analysis, phosphatidylethanolamines 36:4 (mean difference ß: 0.07; 95% CI: 0.02, 0.11) and 38:6 (ß: 0.06; 0.004, 0.11) remained significantly higher in GDM subjects, compared with non-GDM controls. With all preconception signals of phosphatidylethanolamines in addition to traditional risk factors (e.g., maternal age and ppBMI), the predictive value measured by area under the curve (AUC) increased from 0.620 to 0.843. CONCLUSIONS: Our data identified distinctive signatures of GDM-associated preconception phosphatidylethanolamines, which is of potential value to understand the etiology of GDM as early as in the preconception phase. Future studies with larger sample sizes among alternative populations are warranted to validate the associations of these signatures of metabolites and their predictive value in GDM.


Assuntos
Diabetes Gestacional , Gravidez , Feminino , Humanos , Diabetes Gestacional/diagnóstico , Estudos de Casos e Controles , Fosfatidiletanolaminas , Fatores de Risco , Mães
12.
J Exp Bot ; 74(1): 458-471, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36260503

RESUMO

The biosynthesis of N-hydroxy pipecolic acid (NHP) has been intensively studied, though knowledge on its metabolic turnover is still scarce. To close this gap, we discovered three novel metabolites via metabolite fingerprinting in Arabidopsis thaliana leaves after Pseudomonas infection and UV-C treatment. Exact mass information and fragmentation by tandem mass spectrometry (MS/MS) suggest a methylated derivative of NHP (MeNHP), an NHP-OGlc-hexosyl conjugate (NHP-OGlc-Hex), and an additional NHP-OGlc-derivative. All three compounds were formed in wild-type leaves but were not present in the NHP-deficient mutant fmo1-1. The identification of these novel NHP-based molecules was possible by a dual-infiltration experiment using a mixture of authentic NHP and D9-NHP standards for leaf infiltration followed by UV-C treatment. Interestingly, the signal intensity of MeNHP and other NHP-derived metabolites increased in ugt76b1-1 mutant plants. For MeNHP, we unequivocally determined the site of methylation at the carboxylic acid moiety. MeNHP application by leaf infiltration leads to the detection of a MeNHP-OGlc as well as NHP, suggesting MeNHP hydrolysis to NHP. This is in line with the observation that MeNHP infiltration is able to rescue the fmo1-1 susceptible phenotype against Hyaloperonospora arabidopsidis Noco 2. Together, these data suggest MeNHP as an additional storage or transport form of NHP.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ésteres/metabolismo , Espectrometria de Massas em Tandem , Imunidade Vegetal/genética , Ácido Salicílico/metabolismo , Doenças das Plantas
13.
Anal Bioanal Chem ; 415(3): 471-480, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36369592

RESUMO

Medulloblastoma is a malignancy of the central nervous system that occurs most frequently in childhood and is often difficult to diagnose due to its similarities to conventional imaging findings for other pediatric intracranial tumors such as astrocytomas and ependymomas. The purpose of this study was to identify new metabolites and differential metabolic pathways by analyzing the significantly different metabolites present in the plasma of children with medulloblastoma in comparison with those with other intracranial tumors. Plasma was collected from 37 children with medulloblastoma and 34 children with other intracranial tumors. Targeted and non-targeted metabolomics based on ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analyses were performed to determine metabolic changes in pediatric medulloblastomas versus other intracranial tumors. Based on multivariate statistical analysis and regression models, we identified differential metabolites in the plasma and investigated different metabolic pathways. A total of 61 differential metabolites in the plasma of children with medulloblastoma were identified by non-targeted metabolomics analysis. In addition, targeted metabolomics analysis identified four differential amino acids, thus allowing us to establish a diagnostic model for children with medulloblastoma. Metabolic pathway analysis showed that there were significant differences in patients with medulloblastoma in terms of glycerophospholipid and α-linolenic acid metabolism pathways as well as several amino acid metabolism pathways (phenylalanine, tyrosine, and tryptophan biosynthesis). We identified differential profiles of key plasma metabolites between children with medulloblastoma and other forms of intracranial tumor, thus providing a basis for identifying early diagnostic markers of medulloblastoma and new therapeutic targets and strategies.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Meduloblastoma/diagnóstico , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Neoplasias Encefálicas/diagnóstico , Neoplasias Cerebelares/diagnóstico , Biomarcadores
14.
Drug Chem Toxicol ; : 1-9, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36815321

RESUMO

OBJECTIVE: Particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5) is a public health risk. We investigate PM2.5 on metabolites in cardiomyocytes and the influence of vitamin C on PM2.5 toxicity. MATERIALS AND METHODS: For 24 hours, H9C2 were exposed to various concentrations of PM2.5 (0, 100, 200, 400, 800 µg/ml), after which the levels of reactive oxygen species (ROS) and cell viability were measured using the cell counting kit-8 (CCK-8) and 2',7'-dichlorofluoresceindiacetate (DCFH2-DA), respectively. H9C2 were treated with PM2.5 (200 µg/ml) in the presence or absence of vitamin C (40 µmol/L). mRNA levels of interleukin 6(IL-6), caspase-3, fatty acid-binding protein 3 (FABP3), and hemeoxygenase-1 (HO-1) were investigated by quantitative reverse-transcription polymerase chain reaction. Non-targeted metabolomics by LC-MS/MS was applied to evaluate the metabolic profile in the cell. RESULTS: Results revealed a concentration-dependent reduction in cell viability, death, ROS, and increased expression of caspase-3, FABP3, and IL-6. In total, 15 metabolites exhibited significant differential expression (FC > 2, p < 0.05) between the control and PM2.5 group. In the PM2.5 group, lysophosphatidylcholines (LysoPC,3/3) were upregulated, whereas amino acids (5/5), amino acid analogues (3/3), and other acids and derivatives (4/4) were downregulated. PM2.5 toxicity was lessened by vitamin C. It reduced PM2.5-induced elevation of LysoPC (16:0), LysoPC (16:1), and LysoPC (18:1). DISCUSSION AND CONCLUSIONS: PM2.5 induces metabolic disorders in H9C2 cardiomyocytes that can be ameliorated by treatment with vitamin C.

15.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108400

RESUMO

Among the extracellular vesicles, apoptotic bodies (ABs) are only formed during the apoptosis and perform a relevant role in the pathogenesis of different diseases. Recently, it has been demonstrated that ABs from human renal proximal tubular HK-2 cells, either induced by cisplatin or by UV light, can lead to further apoptotic death in naïve HK-2 cells. Thus, the aim of this work was to carry out a non-targeted metabolomic approach to study if the apoptotic stimulus (cisplatin or UV light) affects in a different way the metabolites involved in the propagation of apoptosis. Both ABs and their extracellular fluid were analyzed using a reverse-phase liquid chromatography-mass spectrometry setup. Principal components analysis showed a tight clustering of each experimental group and partial least square discriminant analysis was used to assess the metabolic differences existing between these groups. Considering the variable importance in the projection values, molecular features were selected and some of them could be identified either unequivocally or tentatively. The resulting pathways indicated that there are significant, stimulus-specific differences in metabolites abundancies that may propagate apoptosis to healthy proximal tubular cells; thus, we hypothesize that the share in apoptosis of these metabolites might vary depending on the apoptotic stimulus.


Assuntos
Cisplatino , Vesículas Extracelulares , Humanos , Cisplatino/farmacologia , Raios Ultravioleta , Metabolômica/métodos , Apoptose
16.
Molecules ; 28(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959722

RESUMO

OBJECTIVE: Our study aims to assess Ardisia japonica (AJ)'s anti-blood-stasis effect and its underlying action mechanisms. METHODS: The primary components of AJ were determined using liquid chromatography-mass spectrometry (LC-MS). The blood stasis model was used to investigate the anti-blood-stasis effect of AJ extract. The underlying mechanisms of AJ against blood stasis were investigated via network pharmacology, molecular docking, and plasma non-targeted metabolomics. RESULTS: In total, 94 compounds were identified from an aqueous extract of AJ, including terpenoids, phenylpropanoids, alkaloids, and fatty acyl compounds. In rats with blood stasis, AJ reduced the area of stasis, decreased the inflammatory reaction in the liver and lungs of rats, lowered the plasma viscosity, increased the index of erythrocyte deformability, and decreased the index of erythrocyte aggregation, suggesting that AJ has an anti-blood-stasis effect. Different metabolites were identified via plasma untargeted metabolomics, and it was found that AJ exerts its anti-blood-stasis effect by reducing inflammatory responses through the cysteine and methionine metabolism, linolenic acid metabolism, and sphingolipid metabolism. For the effect of AJ on blood stasis syndrome, the main active ingredients predicted via network pharmacology include sinensetin, galanin, isorhamnetin, kaempferol, wogonin, quercetin, and bergenin, and their targets were TP53, HSP90AA1, VEGFA, AKT1, EGFR, and PIK3CA that were mainly enriched in the PI3K/AKT and MAPK signaling pathways, which modulate the inflammatory response. Molecular docking was also performed, and the binding energies of these seven compounds to six proteins were less than -5, indicating that the chemical components bind to the target proteins. CONCLUSIONS: This study suggests AJ effectively prevents blood stasis by reducing inflammation.


Assuntos
Ardisia , Medicamentos de Ervas Chinesas , Ratos , Animais , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Metabolômica/métodos , Medicamentos de Ervas Chinesas/farmacologia , Inflamação/tratamento farmacológico
17.
Molecules ; 28(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959866

RESUMO

The processing of tea leaves plays a crucial role in the formation of the taste of the resulting tea. In order to study the compositions of and changes in taste-related substances during the processing of Rizhao green tea, non-targeted metabolomics was used, based on UHPLC-Q Exactive MS. Totals of 529, 349, and 206 non-volatile metabolites were identified using three different detection modes, of which 112 secondary metabolites were significantly changed. Significant variations in secondary metabolites were observed during processing, especially during the drying stage, and the conversion intensity levels of non-volatile metabolites were consistent with the law of "Drying > Fixation > Rolling". The DOT method was used to screen tea-quality-related compounds that contributed significantly to the taste of Rizhao green tea, including (-)-epicatechin gallate, (-)-epicatechin gallate, gallic acid, L-theanine, and L-leucine, which make important contributions to taste profiles, such as umami and bitterness. Metabolic pathway analysis revealed that purine metabolism, caffeine metabolism, and tyrosine metabolism perform key roles in the processing of Rizhao green tea in different processing stages. The results of this study provide a theoretical basis for tea processing and practical advice for the food industry.


Assuntos
Camellia sinensis , Chá , Chá/metabolismo , Cafeína/análise , Paladar , Percepção Gustatória , Metabolômica/métodos , Camellia sinensis/metabolismo
18.
J Sci Food Agric ; 103(1): 213-220, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35871448

RESUMO

BACKGROUND: Roasting plays an important role in the formation of flavor of roasted green tea; however, the changes in chemicals during this process have not been systematically studied until now. To reveal the dynamic changes in chemicals in green tea during roasting, non-targeted metabolomics, coupled with chemometrics, was employed. RESULTS: A total of 101 non-volatile metabolites were identified in tea samples, and 29 metabolites were identified as characteristic metabolites of roasting. A significant increase in catechins and their derivatives, organic acids, and flavonoid glycosides was observed, while the content of some amino acids and their derivatives decreased over 50% during roasting. The content of theanine glucoside increased dramatically (by 21.23-fold at the roasting stage), and Maillard-derived compounds also increased to varying degrees. CONCLUSION: Glycosylation, oxidative polymerization, and pyrolysis were important reactions responsible for the formation and transformation of flavor compounds in roasted green tea during roasting. © 2022 Society of Chemical Industry.


Assuntos
Catequina , Chá , Chá/química , Temperatura Alta , Metabolômica
19.
World J Microbiol Biotechnol ; 40(2): 53, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38146044

RESUMO

Fermentation is considered an effective tool for improving the functional characteristics of food. In this study, Lacticaseibacillus casei YQ336 was used to ferment yellow whey, and physical and chemical analysis was performed to identify the changes in the nutritional components and antioxidant activity of the fermented yellow whey. Non-targeted metabolomics was used to study the transformation of small molecular substances in the fermented yellow whey. After 48 h of pure culture fermentation with L. casei YQ336, the pH of yellow whey decreased significantly (p < 0.05). Meanwhile, the content of total acids, organic acids, sugars, total phenols, and total flavonoids and the antioxidant activity showed a significant increase (p < 0.05). A total of 628 differential metabolites were identified between fermented and unfermented yellow whey samples, of which 293 were upregulated and 335 were downregulated. After fermentation, due to the growth and metabolic activity of L. casei YQ336, meaningful metabolites such as homovanillic acid, lactic acid, oxalic acid, L-glutamic acid, and phenylalanine, as well as phenyllactic acid, gallic acid, and genistein were produced. This increased the organic acid content and antioxidant activity of yellow whey. The findings provide a theoretical and practical basis for further research on the bio-functional activity of yellow whey and the recycling and utilization of food by-products.


Assuntos
Lacticaseibacillus casei , Soro do Leite , Soro do Leite/metabolismo , Antioxidantes/metabolismo , Fermentação , Proteínas do Soro do Leite/metabolismo , Ácidos/metabolismo , Ácido Láctico/metabolismo
20.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3922-3933, 2023 Jul.
Artigo em Zh | MEDLINE | ID: mdl-37475084

RESUMO

Through the non-targeted metabolomics study of endogenous substances in the liver and serum of hyperlipidemia rats, the biomarkers related to abnormal lipid metabolism in hyperlipidemia rats were found, and the target of ginsenoside Rb_1 in improving hyperlipidemia was explored and its mechanism was elucidated. The content of serum biochemical indexes of rats in each group was detected by the automatic biochemical analyzer. The metabolite profiles of liver tissues and serum of rats were analyzed by HPLC-MS. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to compare and analyze the metabolic data in the normal group, the hyperlipidemia group, and the ginsenoside Rb_1 group, and screen potential biomar-kers. The related metabolic pathways were further constructed by KEGG database analysis. The results showed that hyperlipemia induced dyslipidemia in rats, which was alleviated by ginsenoside Rb_1. The non-targeted metabolomics results showed that there were 297 differential metabolites in the liver tissues of hyperlipidemia rats, 294 differential metabolites in the serum samples, and 560 diffe-rential metabolites in the hyperlipidemia rats treated by ginsenoside Rb_1. Perillic acid and N-ornithyl-L-taurine were common metabolites in the liver and serum samples, which could be used as potential biomarkers for ginsenoside Rb_1 in the improvement of hyperlipidemia. As revealed by pathway enrichment in the liver and serum, ginsenoside Rb_1 could participate in the metabolic pathway of choline in both the liver and serum. In addition, ginsenoside Rb_1 also participated in the ABC transporter, alanine, aspartic acid, and glutamate metabolism, protein digestion and absorption, ß-alanine metabolism, taurine and hypotaurine metabolism, caffeine metabolism, valine, leucine, and isoleucine biosynthesis, arachidonic acid metabolism, and methionine and cysteine metabolism to improve dyslipidemia in rats.


Assuntos
Ginsenosídeos , Hiperlipidemias , Ratos , Animais , Hiperlipidemias/tratamento farmacológico , Metaboloma , Ginsenosídeos/metabolismo , Metabolismo dos Lipídeos , Metabolômica/métodos , Fígado/metabolismo , Biomarcadores , Taurina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA