Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 115(1): 108-126, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36987839

RESUMO

Lactuca saligna L. is a wild relative of cultivated lettuce (Lactuca sativa L.), with which it is partially interfertile. Hybrid progeny suffer from hybrid incompatibility (HI), resulting in reduced fertility and distorted transmission ratios. Lactuca saligna displays broad-spectrum resistance against lettuce downy mildew caused by Bremia lactucae Regel and is considered a non-host species. This phenomenon of resistance in L. saligna is called non-host resistance (NHR). One possible mechanism behind this NHR is through the plant-pathogen interaction triggered by pathogen recognition receptors, including nucleotide-binding leucine-rich repeat (NLR) proteins and receptor-like kinases (RLKs). We report a chromosome-level genome assembly of L. saligna (accession CGN05327), leading to the identification of two large paracentric inversions (>50 Mb) between L. saligna and L. sativa. Genome-wide searches delineated the major resistance clusters as regions enriched in NLRs and RLKs. Three of the enriched regions co-locate with previously identified NHR intervals. RNA-seq analysis of Bremia-infected lettuce identified several differentially expressed RLKs in NHR regions. Three tandem wall-associated kinase-encoding genes (WAKs) in the NHR8 interval display particularly high expression changes at an early stage of infection. We propose RLKs as strong candidates for determinants of the NHR phenotype of L. saligna.


Assuntos
Lactuca , Oomicetos , Lactuca/genética , Genoma , Fenótipo , Doenças das Plantas/genética
2.
BMC Plant Biol ; 24(1): 736, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095719

RESUMO

BACKGROUND: Septoria tritici blotch (STB), caused by the foliar fungus Zymoseptoria tritici, is one of the most damaging disease of wheat in Europe. Genetic resistance against this fungus relies on different types of resistance from non-host resistance (NHR) and host species specific resistance (HSSR) to host resistance mediated by quantitative trait loci (QTLs) or major resistance genes (Stb). Characterizing the diversity of theses resistances is of great importance for breeding wheat cultivars with efficient and durable resistance. While the functional mechanisms underlying these resistance types are not well understood, increasing piece of evidence suggest that fungus stomatal penetration and early establishment in the apoplast are both crucial for the outcome of some interactions between Z. tritici and plants. To validate and extend these previous observations, we conducted quantitative comparative phenotypical and cytological analyses of the infection process corresponding to 22 different interactions between plant species and Z. tritici isolates. These interactions included four major bread wheat Stb genes, four bread wheat accessions with contrasting quantitative resistance, two species resistant to Z. tritici isolates from bread wheat (HSSR) and four plant species resistant to all Z. tritici isolates (NHR). RESULTS: Infiltration of Z. tritici spores into plant leaves allowed the partial bypass of all bread wheat resistances and durum wheat resistance, but not resistances from other plants species. Quantitative comparative cytological analysis showed that in the non-grass plant Nicotiana benthamiana, Z. tritici was stopped before stomatal penetration. By contrast, in all resistant grass plants, Z. tritici was stopped, at least partly, during stomatal penetration. The intensity of this early plant control process varied depending on resistance types, quantitative resistances being the least effective. These analyses also demonstrated that Stb-mediated resistances, HSSR and NHR, but not quantitative resistances, relied on the strong growth inhibition of the few Z. tritici penetrating hyphae at their entry point in the sub-stomatal cavity. CONCLUSIONS: In addition to furnishing a robust quantitative cytological assessment system, our study uncovered three stopping patterns of Z. tritici by plant resistances. Stomatal resistance was found important for most resistances to Z. tritici, independently of its type (Stb, HSSR, NHR). These results provided a basis for the functional analysis of wheat resistance to Z. tritici and its improvement.


Assuntos
Ascomicetos , Resistência à Doença , Doenças das Plantas , Estômatos de Plantas , Triticum , Ascomicetos/fisiologia , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Locos de Características Quantitativas , Interações Hospedeiro-Patógeno
3.
Planta ; 260(1): 8, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789631

RESUMO

MAIN CONCLUSION: A gene-to-metabolite approach afforded new insights regarding defence mechanisms in oat plants that can be incorporated into plant breeding programmes for the selection of markers and genes related to disease resistance. Monitoring metabolite levels and changes therein can complement and corroborate transcriptome (mRNA) data on plant-pathogen interactions, thus revealing mechanisms involved in pathogen attack and host defence. A multi-omics approach thus adds new layers of information such as identifying metabolites with antimicrobial properties, elucidating metabolomic profiles of infected and non-infected plants, and reveals pathogenic requirements for infection and colonisation. In this study, two oat cultivars (Dunnart and SWK001) were inoculated with Pseudomonas syringae pathovars, pathogenic and non-pathogenic on oat. Following inoculation, metabolites were extracted with methanol from leaf tissues at 2, 4 and 6 days post-infection and analysed by multiple reaction monitoring (MRM) on a triple quadrupole mass spectrometer system. Relatedly, mRNA was isolated at the same time points, and the cDNA analysed by quantitative PCR (RT-qPCR) for expression levels of selected gene transcripts associated with avenanthramide (Avn) biosynthesis. The targeted amino acids, hydroxycinnamic acids and Avns were successfully quantified. Distinct cultivar-specific differences in the metabolite responses were observed in response to pathogenic and non-pathogenic strains. Trends in aromatic amino acids and hydroxycinnamic acids seem to indicate stronger activation and flux through these pathways in Dunnart as compared to SWK001. A positive correlation between hydroxycinnamoyl-CoA:hydroxyanthranilate N-hydroxycinnamoyl transferase (HHT) gene expression and the abundance of Avn A in both cultivars was documented. However, transcript profiling of selected genes involved in Avn synthesis did not reveal a clear pattern to distinguish between the tolerant and susceptible cultivars.


Assuntos
Avena , Perfilação da Expressão Gênica , Metaboloma , Doenças das Plantas , Pseudomonas syringae , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Avena/microbiologia , Avena/genética , Avena/metabolismo , Metaboloma/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Compostos Fitoquímicos/metabolismo , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas , Resistência à Doença/genética , Interações Hospedeiro-Patógeno , Transcriptoma , ortoaminobenzoatos/metabolismo
4.
Plant Cell Environ ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39262218

RESUMO

Nicotiana benthamiana, a widely acknowledged laboratory model plant for molecular studies, exhibits lethality to certain insect pests and can serve as a dead-end trap plant for pest control in the field. However, the underlying mechanism of N. benthamiana's resistance against insects remains unknown. Here, we elucidate that the lethal effect of N. benthamiana on the whitefly Bemisia tabaci arises from the toxic glandular trichome exudates. By comparing the metabolite profiles of trichome exudates, we found that 51 metabolites, including five O-acyl sugars (O-AS) with medium-chain acyl moieties, were highly accumulated in N. benthamiana. Silencing of two O-AS biosynthesis genes, branched-chain keto acid dehydrogenase (BCKD) and Isopropyl malate synthase-C (IPMS-C), significantly reduced the O-AS levels in N. benthamiana and its resistance against whiteflies. Additionally, we demonstrated that the higher expression levels of BCKD and IPMS-C in the trichomes of N. benthamiana contribute to O-AS synthesis and consequently enhance whitefly resistance. Furthermore, overexpression of NbBCKD and NbIPMS-C genes in the cultivated tobacco Nicotiana tabacum enhanced its resistance to whiteflies. Our study revealed the metabolic and molecular mechanisms underlying the lethal effect of N. benthamiana on whiteflies and presents a promising avenue for improving whitefly resistance.

5.
J Chem Ecol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888642

RESUMO

Helicoverpa armigera exhibits extensive variability in feeding habits and food selection. Neuronal regulation of H. armigera feeding behavior is primarily influenced by biogenic amines such as Tyramine (TA) and Octopamine (OA). The molecular responses of H. armigera to dietary challenges in the presence of TA or OA have yet to be studied. This investigation dissects the impact of OA and TA on H. armigera feeding choices and behaviors under non-host nutritional stress. It has been observed that feeding behavior remains unaltered during the exogenous administration of OA and TA through an artificial diet (AD). Ingestion of higher OA or TA concentrations leads to increased mortality. OA and TA treatment in combination with host and non-host diets results in the induction of feeding and higher locomotion toward food, particularly in the case of TA treatment. Increased expression of markers, prominin-like, and tachykinin-related peptide receptor-like transcripts further assessed increased locomotion activity. Insects subjected to a non-host diet with TA treatment exhibited increased feeding and overexpression of the feeding indicator, the Neuropeptide F receptor, and the feeding regulator, Sulfakinin, compared with other conditions. Expression of sensation and biogenic amine synthesis genesis elevated in insects fed a non-host diet in combination with OA or TA. Metabolomics analysis revealed a decreased concentration of the feeding behavior elicitor, dopamine, in insects fed a non-host diet containing TA. This work highlights the complex interplay between biogenic amine functions during dietary stress and suggests the role of tyramine in feeding promotion under stressed conditions.

6.
Plant Biotechnol J ; 21(7): 1361-1372, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36912620

RESUMO

Nonhost resistance (NHR) is a robust plant immune response against non-adapted pathogens. A number of nucleotide-binding leucine-rich repeat (NLR) proteins that recognize non-adapted pathogens have been identified, although the underlying molecular mechanisms driving robustness of NHR are still unknown. Here, we screened 57 effectors of the potato late blight pathogen Phytophthora infestans in nonhost pepper (Capsicum annuum) to identify avirulence effector candidates. Selected effectors were tested against 436 genome-wide cloned pepper NLRs, and we identified multiple functional NLRs that recognize P. infestans effectors and confer disease resistance in the Nicotiana benthamiana as a surrogate system. The identified NLRs were homologous to known NLRs derived from wild potatoes that recognize P. infestans effectors such as Avr2, Avrblb1, Avrblb2, and Avrvnt1. The identified CaRpi-blb2 is a homologue of Rpi-blb2, recognizes Avrblb2 family effectors, exhibits feature of lineage-specifically evolved gene in microsynteny and phylogenetic analyses, and requires pepper-specific NRC (NLR required for cell death)-type helper NLR for proper function. Moreover, CaRpi-blb2-mediated hypersensitive response and blight resistance were more tolerant to suppression by the PITG_15 278 than those mediated by Rpi-blb2. Combined results indicate that pepper has stacked multiple NLRs recognizing effectors of non-adapted P. infestans, and these NLRs could be more tolerant to pathogen-mediated immune suppression than NLRs derived from the host plants. Our study suggests that NLRs derived from nonhost plants have potential as untapped resources to develop crops with durable resistance against fast-evolving pathogens by stacking the network of nonhost NLRs into susceptible host plants.


Assuntos
Phytophthora infestans , Solanum tuberosum , Phytophthora infestans/fisiologia , Solanum tuberosum/genética , Leucina , Filogenia , Nucleotídeos/metabolismo
7.
New Phytol ; 238(4): 1562-1577, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36529883

RESUMO

Successful host colonization by plant pathogens requires the circumvention of host defense responses, frequently through sequence modifications in secreted pathogen proteins known as avirulence factors (Avrs). Although Avr sequences are often polymorphic, the contribution of these polymorphisms to virulence diversity in natural pathogen populations remains largely unexplored. We used molecular genetic tools to determine how natural sequence polymorphisms of the avirulence factor Avr3D1 in the wheat pathogen Zymoseptoria tritici contributed to adaptive changes in virulence. We showed that there is a continuous distribution in the magnitude of resistance triggered by different Avr3D1 isoforms and demonstrated that natural variation in an Avr gene can lead to a quantitative resistance phenotype. We further showed that homologues of Avr3D1 in two nonpathogenic sister species of Z. tritici are recognized by some wheat cultivars, suggesting that Avr-R gene-for-gene interactions can contribute to nonhost resistance. We suggest that the mechanisms underlying host range, qualitative resistance, and quantitative resistance are not exclusive.


Assuntos
Resistência à Doença , Especificidade de Hospedeiro , Especificidade de Hospedeiro/genética , Resistência à Doença/genética , Polimorfismo Genético , Virulência/genética , Fenótipo , Doenças das Plantas/genética
8.
Plant Cell Environ ; 46(7): 2206-2221, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37151160

RESUMO

In soil, arbuscular mycorrhizal fungi (AMF) meet the roots of both host and presumed nonhost plants, but the interactional mechanisms of AMF with and functional relevance for nonhost plants is little known. Here we show AMF can colonize an individually grown nonhost plant, Arabidopsis thaliana, and suppress the growth of Arabidopsis and two nonhost Brassica crops. This inhibitory effect increased with increasing AMF inoculum density, and was independent of AMF species or nutrient availability. 13 C isotope labeling and physiological analyses revealed no significant carbon-phosphorus exchange between Arabidopsis and AMF, indicating a lack of nutritional function in this interaction. AMF colonization activated the danger-associated peptide Pep-PEPR signaling pathway, and caused clear defense responses in Arabidopsis. The impairment of Pep-PEPR signaling in nonhost plants greatly compromised AMF-triggered defensive responses and photosynthesis suppression, leading to higher colonization rates and reduced growth suppression upon AMF inoculation. Pretreatment with Pep peptide decreased AMF colonization, and largely substituted for AMF-induced growth suppression in nonhosts, confirming that the Pep-PEPR pathway is a key participant in resistance to AMF colonization and in mediating growth suppression of nonhost plants. This work greatly increases our knowledge about the functional relevance of AMF and their mechanisms of interactions with nonhost plants.


Assuntos
Arabidopsis , Micorrizas , Humanos , Micorrizas/fisiologia , Arabidopsis/metabolismo , Fósforo/metabolismo , Carbono , Fungos , Raízes de Plantas/metabolismo , Peptídeos , Transdução de Sinais
9.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629099

RESUMO

An oil palm (Elaeis guineensis Jacq.) bud rod disorder of unknown etiology, named Fatal Yellowing (FY) disease, is regarded as one of the top constraints with respect to the growth of the palm oil industry in Brazil. FY etiology has been a challenge embraced by several research groups in plant pathology throughout the last 50 years in Brazil, with no success in completing Koch's postulates. Most recently, the hypothesis of having an abiotic stressor as the initial cause of FY has gained ground, and oxygen deficiency (hypoxia) damaging the root system has become a candidate for stress. Here, a comprehensive, large-scale, single- and multi-omics integration analysis of the metabolome and transcriptome profiles on the leaves of oil palm plants contrasting in terms of FY symptomatology-asymptomatic and symptomatic-and collected in two distinct seasons-dry and rainy-is reported. The changes observed in the physicochemical attributes of the soil and the chemical attributes and metabolome profiles of the leaves did not allow the discrimination of plants which were asymptomatic or symptomatic for this disease, not even in the rainy season, when the soil became waterlogged. However, the multi-omics integration analysis of enzymes and metabolites differentially expressed in asymptomatic and/or symptomatic plants in the rainy season compared to the dry season allowed the identification of the metabolic pathways most affected by the changes in the environment, opening an opportunity for additional characterization of the role of hypoxia in FY symptom intensification. Finally, the initial analysis of a set of 56 proteins/genes differentially expressed in symptomatic plants compared to the asymptomatic ones, independent of the season, has presented pieces of evidence suggesting that breaks in the non-host resistance to non-adapted pathogens and the basal immunity to adapted pathogens, caused by the anaerobic conditions experienced by the plants, might be linked to the onset of this disease. This set of genes might offer the opportunity to develop biomarkers for selecting oil palm plants resistant to this disease and to help pave the way to employing strategies to keep the safety barriers raised and strong.


Assuntos
Arecaceae , Olea , Arecaceae/genética , Brasil , Hipóxia , Indústrias , Metaboloma
10.
Plant J ; 108(4): 1005-1019, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506685

RESUMO

Arabidopsis non-host resistance against non-adapted fungal pathogens including Colletotrichum fungi consists of pre-invasive and post-invasive immune responses. Here we report that non-host resistance against non-adapted Colletotrichum spp. in Arabidopsis leaves requires CURLY LEAF (CLF), which is critical for leaf development, flowering and growth. Microscopic analysis of pathogen behavior revealed a requirement for CLF in both pre- and post-invasive non-host resistance. The loss of a functional SEPALLATA3 (SEP3) gene, ectopically expressed in clf mutant leaves, suppressed not only the defect of the clf plants in growth and leaf development but also a defect in non-host resistance against the non-adapted Colletotrichum tropicale. However, the ectopic overexpression of SEP3 in Arabidopsis wild-type leaves did not disrupt the non-host resistance. The expression of multiple plant defensin (PDF) genes that are involved in non-host resistance against C. tropicale was repressed in clf leaves. Moreover, the Octadecanoid-responsive Arabidopsis 59 (ORA59) gene, which is required for PDF expression, was also repressed in clf leaves. Notably, when SEP3 was overexpressed in the ora59 mutant background, C. tropicale produced clear lesions in the inoculated leaves, indicating an impairment in non-host resistance. Furthermore, ora59 plants overexpressing SEP3 exhibited a defect in leaf immunity to the adapted Colletotrichum higginsianum. Since the ora59 plants overexpressing SEP3 did not display obvious leaf curling or reduced growth, in contrast to the clf mutants, these results strongly suggest that concomitant SEP3 repression and ORA59 induction via CLF are required for Arabidopsis leaf immunity to Colletotrichum fungi, uncoupled from CLF's function in growth and leaf development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Colletotrichum/fisiologia , Proteínas de Homeodomínio/metabolismo , Doenças das Plantas/imunologia , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Defensinas , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Mutação com Perda de Função , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/imunologia , Fatores de Transcrição/genética
11.
Plant J ; 107(5): 1432-1446, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34171147

RESUMO

Non-host resistance (NHR), which protects all members of a plant species from non-adapted or non-host plant pathogens, is the most common form of plant immunity. NHR provides the most durable and robust form of broad-spectrum immunity against non-adaptive pathogens pathogenic to other crop species. In a mutant screen for loss of Arabidopsis (Arabidopsis thaliana) NHR against the soybean (Glycine max (L.) Merr.) pathogen Phytophthora sojae, the Phytophthora sojae-susceptible 30 (pss30) mutant was identified. The pss30 mutant is also susceptible to the soybean pathogen Fusarium virguliforme. PSS30 encodes a folate transporter, AtFOLT1, which was previously localized to chloroplasts and implicated in the transport of folate from the cytosol to plastids. We show that two Arabidopsis folate biosynthesis mutants with reduced folate levels exhibit a loss of non-host immunity against P. sojae. As compared to the wild-type Col-0 ecotype, the steady-state folate levels are reduced in the pss1, atfolt1 and two folate biosynthesis mutants, suggesting that folate is required for non-host immunity. Overexpression of AtFOLT1 enhances immunity of transgenic soybean lines against two serious soybean pathogens, the fungal pathogen F. virguliforme and the soybean cyst nematode (SCN) Heterodera glycines. Transgenic lines showing enhanced SCN resistance also showed increased levels of folate accumulation. This study thus suggests that folate contributes to non-host plant immunity and that overexpression of a non-host resistance gene could be a suitable strategy for generating broad-spectrum disease resistance in crop plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Resistência à Doença/genética , Glycine max/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Animais , Proteínas de Arabidopsis/genética , Ecótipo , Ácido Fólico/metabolismo , Fusarium/fisiologia , Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Mutação , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas , Glycine max/genética , Glycine max/microbiologia , Glycine max/parasitologia , Tylenchoidea/fisiologia
12.
Mol Plant Microbe Interact ; 35(8): 672-680, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35343250

RESUMO

Efflux transporters such as MexAB-OprM contribute to bacterial resistance to diverse antimicrobial compounds. Here, we show that MexB contributes to epiphytic and late-stage apoplastic growth of Pseudomonas syringae strain B728a, as well as lesion formation in common bean (Phaseolus vulgaris). Although a ∆mexB mutant formed fewer lesions after topical application to common bean, these lesions contain the same number of cells (105 to 107 cells) as those caused by the wild-type strain. The internalized population size of both the wild-type and the ∆mexB mutant within small samples of surface-sterilized asymptomatic portions of leaves varied from undetectably low to as high as 105 cells/cm2. Localized bacterial populations within individual lesions consistently exceeded 105 cells/cm2. Strain B728a was capable of moderate to extensive apoplastic growth in diverse host plants, including lima bean (P. lunatus), fava bean (Vicia faba), pepper (Capsicum annuum), Nicotiana benthamiana, sunflower (Helianthus annuus), and tomato (Solanum lycopersicum), but MexB was not required for growth in a subset of these plant species. A model is proposed that MexB provides resistance to as-yet-unidentified antimicrobials that differ between plant species. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Phaseolus , Pseudomonas syringae , Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Phaseolus/microbiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas syringae/metabolismo , Virulência
13.
Mol Plant Microbe Interact ; 35(5): 393-400, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35147444

RESUMO

The Arabidopsis PENETRATION 3 (PEN3) ATP binding cassette (ABC) transporter contributes to penetration resistance against nonadapted powdery mildew fungi and is targeted to papillae deposited at sites of interaction with the fungus. Timely recruitment of PEN3 and other components of penetration resistance to the host-pathogen interface is important for successful defense against this biotrophic pathogen. A forward genetic screen was previously carried out to identify Arabidopsis mutants that mistarget the PEN3 transporter or fail to accumulate PEN3 at sites of attempted powdery mildew penetration. This study focuses on PEN3 mistargeting in the aberrant localization of PEN3 4 (alp4) mutant and identification of the causal gene. In the alp4 mutant, PEN3 accumulates within the endomembrane system in an apparently abnormal endoplasmic reticulum and is not exported into papillae at powdery mildew penetration sites. This targeting defect compromises defenses at the host-pathogen interface, resulting in increased penetration success by a nonadapted powdery mildew. Genetic mapping identified alp4 as an allele of GOLGI DEFECTS 36 (GOLD36), a gene encoding a GDSL-lipase/esterase family protein that is involved in maintaining normal morphology and organization of multiple endomembrane compartments. Genetic complementation confirmed that mutation in GOLD36 is responsible for the PEN3 targeting and powdery mildew penetration resistance defects in alp4. These results reinforce the importance of endomembrane trafficking in resistance to haustorium-forming phytopathogens such as powdery mildew fungi.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático , Doenças das Plantas/microbiologia
14.
BMC Plant Biol ; 22(1): 393, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35934696

RESUMO

BACKGROUND: Cuscuta japonica Choisy (Japanese dodder) is a parasitic weed that damages many plants and affects agricultural production. The haustorium of C. japonica plays a key role during parasitism in host plants; in contrast, some non-host plants effectively inhibit its formation. However, the metabolic differences between normal dodder in host plants and dodder inhibition in non-host plants are largely unknown. Here, we utilized an integrative analysis of transcriptomes and metabolomes to compare the differential regulatory mechanisms between C. japonica interacting with the host plant Ficus microcarpa and the non-host plant Mangifera indica. RESULTS: After parasitization for 24 h and 72 h, the differentially abundant metabolites between these two treatments were enriched in pathways associated with α-linolenic acid metabolism, linoleic acid metabolism, phenylpropanoid biosynthesis, and pyrimidine metabolism. At the transcriptome level, the flavor biosynthesis pathway was significantly enriched at 24 h, whereas the plant-pathogen interaction, arginine and proline metabolism, and MARK signaling-plant pathways were significantly enriched at 72 h, based on the differentially expressed genes between these two treatments. Subsequent temporal analyses identified multiple genes and metabolites that showed different trends in dodder interactions between the host and non-host plants. In particular, the phenylpropanoid biosynthesis pathway showed significant differential regulation between C. japonica in host and non-host plants. CONCLUSIONS: These results provide insights into the metabolic mechanisms of dodder-host interactions, which will facilitate future plant protection from C. japonica parasitism.


Assuntos
Cuscuta , Parasitos , Animais , Cuscuta/genética , Perfilação da Expressão Gênica , Parasitos/genética , Transcriptoma
15.
J Exp Bot ; 73(3): 742-755, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34664667

RESUMO

In the reaction to non-adapted Blumeria graminis f. sp. hordei (Bgh), Arabidopsis thaliana leaf epidermal cells deposit cell wall reinforcements called papillae or seal fungal haustoria in encasements, both of which involve intensive exocytosis. A plant syntaxin, SYP121/PEN1, has been found to be of key importance for the timely formation of papillae, and the vesicle tethering complex exocyst subunit EXO70B2 has been found to contribute to their morphology. Here, we identify a specific role for the EXO70B2-containing exocyst complex in the papillae membrane domains important for callose deposition and GFP-SYP121 delivery to the focal attack sites, as well as its contribution to encasement formation. The mRuby2-EXO70B2 co-localizes with the exocyst core subunit SEC6 and GFP-SYP121 in the membrane domain of papillae, and EXO70B2 and SYP121 proteins have the capacity to directly interact. The exo70B2/syp121 double mutant produces a reduced number of papillae and haustorial encasements in response to Bgh, indicating an additive role of the exocyst in SYP121-coordinated non-host resistance. In summary, we report cooperation between the plant exocyst and a SNARE protein in penetration resistance against non-adapted fungal pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas de Transporte Vesicular
16.
Phytopathology ; 112(2): 335-344, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34311549

RESUMO

Phytophthora sojae does not infect nonhost maize (Zea mays) but infects nonhost common bean (Phaseolus vulgaris) under inoculation. Soybean seed exudates participate in mediating host resistance to P. sojae before infection. This study aims to elucidate the role of seed exudates in mediating the nonhost resistance of maize and common bean to P. sojae before infection. The behaviors of P. sojae zoospores in response to the seed exudates were determined using an assay chamber and a concave slide. The proteomes of P. sojae zoospores in response to the seed exudates were analyzed with the tandem mass tag method. The key proteins were quantitatively verified by parallel reaction monitoring. Maize seed exudates exerted a repellent effect on zoospores of P. sojae. This result explains why zoospores sense repelling signaling molecules in maize seed exudates that weaken and strongly inhibit chemotaxis signals in the phosphatidylinositol signaling pathway and arachidonic acid metabolism pathway. Common bean seed exudates did not exhibit any attraction to the zoospores because the guanine nucleotide-binding protein signaling pathway, which is responsible for transmitting chemotactic signals, had no significant change. The proteins protecting the cell membrane structure were significantly downregulated, and the early apoptosis signal glutathione was enhanced in zoospores responding to common bean seed exudates, which resulted in dissolution of the cysts. Maize and common bean seed exudates mediate part of the nonhost resistance to P. sojae via different mechanisms before infection. The immunity of maize to P. sojae is caused by the repellent effect of maize seed exudates on zoospores. Common bean seed exudates participate in mediating nonhost resistance by dissolving the cysts.


Assuntos
Phaseolus , Phytophthora , Exsudatos e Transudatos , Phytophthora/fisiologia , Doenças das Plantas , Sementes , Glycine max , Zea mays
17.
Biosci Biotechnol Biochem ; 86(12): 1623-1630, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149326

RESUMO

Nonhost resistance (NHR) is the most robust and durable resistance in plants, but its spatiotemporal regulation is poorly understood. The circadian clock functions in a tissue-specific manner and regulates individual physiological processes in plants. Using mutant and RNA-seq analyses, we revealed a role of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) in tissue-specific and time-of-day-specific regulation of NHR to Pyricularia oryzae (syn. Magnaporthe oryzae) in Arabidopsis thaliana (Arabidopsis). Targeted perturbation of CCA1 function in epidermis compromised time-of-day-specific regulation of NHR to P. oryzae in Arabidopsis. RNA-seq analysis showed that P. oryzae inoculation alters the transcriptome in penetration 2 (pen2) plants and identified POWDERY MILDEW RESISTANCE 5 (PMR5) as a candidate gene of direct targets of CCA1. Time-of-day-specific penetration resistance to P. oryzae was reduced in Arabidopsis pen2 pmr5 mutant plants. These findings suggest that epidermal CCA1 and PMR5 contribute to the establishment of time-of-day-specific NHR to P. oryzae in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Relógios Circadianos/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Epiderme/metabolismo , Ritmo Circadiano , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(7): 2767-2773, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30692254

RESUMO

Arabidopsis thaliana accessions are universally resistant at the adult leaf stage to white rust (Albugo candida) races that infect the crop species Brassica juncea and Brassica oleracea We used transgressive segregation in recombinant inbred lines to test if this apparent species-wide (nonhost) resistance in A. thaliana is due to natural pyramiding of multiple Resistance (R) genes. We screened 593 inbred lines from an Arabidopsis multiparent advanced generation intercross (MAGIC) mapping population, derived from 19 resistant parental accessions, and identified two transgressive segregants that are susceptible to the pathogen. These were crossed to each MAGIC parent, and analysis of resulting F2 progeny followed by positional cloning showed that resistance to an isolate of A. candida race 2 (Ac2V) can be explained in each accession by at least one of four genes encoding nucleotide-binding, leucine-rich repeat (NLR) immune receptors. An additional gene was identified that confers resistance to an isolate of A. candida race 9 (AcBoT) that infects B. oleracea Thus, effector-triggered immunity conferred by distinct NLR-encoding genes in multiple A. thaliana accessions provides species-wide resistance to these crop pathogens.


Assuntos
Arabidopsis/imunologia , Brassica/microbiologia , Oomicetos/patogenicidade , Doenças das Plantas/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Haplótipos , Imunidade Inata , Doenças das Plantas/microbiologia
19.
Proc Natl Acad Sci U S A ; 116(15): 7382-7386, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910953

RESUMO

Nonnative pests often cause cascading ecological impacts, leading to detrimental socioeconomic consequences; however, how plant diversity may influence insect and disease invasions remains unclear. High species diversity in host communities may promote pest invasions by providing more niches (i.e., facilitation), but it can also diminish invasion success because low host dominance may make it more difficult for pests to establish (i.e., dilution). Most studies to date have focused on small-scale, experimental, or individual pest/disease species, while large-scale empirical studies, especially in natural ecosystems, are extremely rare. Using subcontinental-level data, we examined the role of tree diversity on pest invasion across the conterminous United States and found that the tree-pest diversity relationships are hump-shaped. Pest diversity increases with tree diversity at low tree diversity (because of facilitation or amplification) and is reduced at higher tree diversity (as a result of dilution). Thus, tree diversity likely regulates forest pest invasion through both facilitation and dilution that operate simultaneously, but their relative strengths vary with overall diversity. Our findings suggest the role of native species diversity in regulating nonnative pest invasions.


Assuntos
Biodiversidade , Florestas , Interações Hospedeiro-Parasita , Insetos/fisiologia , Modelos Biológicos , Animais , Estados Unidos
20.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457046

RESUMO

DspA/E is a type three effector injected by the pathogenic bacterium Erwinia amylovora inside plant cells. In non-host Arabidopsis thaliana, DspA/E inhibits seed germination, root growth, de novo protein synthesis and triggers localized cell death. To better understand the mechanisms involved, we performed EMS mutagenesis on a transgenic line, 13-1-2, containing an inducible dspA/E gene. We identified three suppressor mutants, two of which belonged to the same complementation group. Both were resistant to the toxic effects of DspA/E. Metabolome analysis showed that the 13-1-2 line was depleted in metabolites of the TCA cycle and accumulated metabolites associated with cell death and defense. TCA cycle and cell-death associated metabolite levels were respectively increased and reduced in both suppressor mutants compared to the 13-1-2 line. Whole genome sequencing indicated that both suppressor mutants displayed missense mutations in conserved residues of Glycolate oxidase 2 (GOX2), a photorespiratory enzyme that we confirmed to be localized in the peroxisome. Leaf GOX activity increased in leaves infected with E. amylovora in a DspA/E-dependent manner. Moreover, the gox2-2 KO mutant was more sensitive to E. amylovora infection and displayed reduced JA-signaling. Our results point to a role for glycolate oxidase in type II non-host resistance and to the importance of central metabolic functions in controlling growth/defense balance.


Assuntos
Arabidopsis , Erwinia amylovora , Oxirredutases do Álcool/metabolismo , Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Erwinia amylovora/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA