RESUMO
mTORC1 is a signal integrator and master regulator of cellular anabolic processes linked to cell growth and survival. Here, we demonstrate that mTORC1 promotes lipid biogenesis via SRPK2, a key regulator of RNA-binding SR proteins. mTORC1-activated S6K1 phosphorylates SRPK2 at Ser494, which primes Ser497 phosphorylation by CK1. These phosphorylation events promote SRPK2 nuclear translocation and phosphorylation of SR proteins. Genome-wide transcriptome analysis reveals that lipid biosynthetic enzymes are among the downstream targets of mTORC1-SRPK2 signaling. Mechanistically, SRPK2 promotes SR protein binding to U1-70K to induce splicing of lipogenic pre-mRNAs. Inhibition of this signaling pathway leads to intron retention of lipogenic genes, which triggers nonsense-mediated mRNA decay. Genetic or pharmacological inhibition of SRPK2 blunts de novo lipid synthesis, thereby suppressing cell growth. These results thus reveal a novel role of mTORC1-SRPK2 signaling in post-transcriptional regulation of lipid metabolism and demonstrate that SRPK2 is a potential therapeutic target for mTORC1-driven metabolic disorders.
Assuntos
Regulação da Expressão Gênica , Lipogênese , Processamento Pós-Transcricional do RNA , Transdução de Sinais , Animais , Núcleo Celular/metabolismo , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Feminino , Xenoenxertos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Nus , Transplante de Neoplasias , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismoRESUMO
Many spliceosomal introns are excised from nascent transcripts emerging from RNA polymerase II (RNA Pol II). The extent of cell-type-specific regulation and possible functions of such co-transcriptional events remain poorly understood. We examined the role of the RNA-binding protein PTBP1 in this process using an acute depletion approach followed by the analysis of chromatin- and RNA Pol II-associated transcripts. We show that PTBP1 activates the co-transcriptional excision of hundreds of introns, a surprising effect given that this protein is known to promote intron retention. Importantly, some co-transcriptionally activated introns fail to complete their splicing without PTBP1. In a striking example, retention of a PTBP1-dependent intron triggers nonsense-mediated decay of transcripts encoding DNA methyltransferase DNMT3B. We provide evidence that this regulation facilitates the natural decline in DNMT3B levels in developing neurons and protects differentiation-specific genes from ectopic methylation. Thus, PTBP1-activated co-transcriptional splicing is a widespread phenomenon mediating epigenetic control of cellular identity.
Assuntos
Células-Tronco Pluripotentes , RNA Polimerase II , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Splicing de RNA/genética , Spliceossomos/metabolismo , Íntrons/genética , Células-Tronco Pluripotentes/metabolismo , Epigênese Genética , Processamento AlternativoRESUMO
Nonsense-mediated decay (NMD) is a translation-dependent RNA quality control mechanism that occurs in the cytoplasm. However, it is unknown how NMD regulates the stability of RNAs translated at the endoplasmic reticulum (ER). Here, we identify a localized NMD pathway dedicated to ER-translated mRNAs. We previously identified NBAS, a component of the Syntaxin 18 complex involved in Golgi-to-ER trafficking, as a novel NMD factor. Furthermore, we show that NBAS fulfills an independent function in NMD. This ER-NMD pathway requires the interaction of NBAS with the core NMD factor UPF1, which is partially localized at the ER in the proximity of the translocon. NBAS and UPF1 coregulate the stability of ER-associated transcripts, in particular those associated with the cellular stress response. We propose a model where NBAS recruits UPF1 to the membrane of the ER and activates an ER-dedicated NMD pathway, thus providing an ER-protective function by ensuring quality control of ER-translated mRNAs.
Assuntos
Retículo Endoplasmático/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Retículo Endoplasmático/enzimologia , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiologia , Biossíntese de Proteínas , RNA Helicases/metabolismoRESUMO
Protein-truncating variants (PTVs) near the 3' end of genes may escape nonsense-mediated decay (NMD). PTVs in the NMD-escape region (PTVescs) can cause Mendelian disease but are difficult to interpret given their varying impact on protein function. Previously, PTVesc burden was assessed in an epilepsy cohort, but no large-scale analysis has systematically evaluated these variants in rare disease. We performed a retrospective analysis of 29,031 neurodevelopmental disorder (NDD) parent-offspring trios referred for clinical exome sequencing to identify PTVesc de novo mutations (DNMs). We identified 1,376 PTVesc DNMs and 133 genes that were significantly enriched (binomial p < 0.001). The PTVesc-enriched genes included those with PTVescs previously described to cause dominant Mendelian disease (e.g., SEMA6B, PPM1D, and DAGLA). We annotated ClinVar variants for PTVescs and identified 948 genes with at least one high-confidence pathogenic variant. Twenty-two known Mendelian PTVesc-enriched genes had no prior evidence of PTVesc-associated disease. We found 22 additional PTVesc-enriched genes that are not well established to be associated with Mendelian disease, several of which showed phenotypic similarity between individuals harboring PTVesc variants in the same gene. Four individuals with PTVesc mutations in RAB1A had similar phenotypes including NDD and spasticity. PTVesc mutations in IRF2BP1 were found in two individuals who each had severe immunodeficiency manifesting in NDD. Three individuals with PTVesc mutations in LDB1 all had NDD and multiple congenital anomalies. Using a large-scale, systematic analysis of DNMs, we extend the mutation spectrum for known Mendelian disease-associated genes and identify potentially novel disease-associated genes.
Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Humanos , Estudos Retrospectivos , Mutação/genética , Epilepsia/genética , Fenótipo , Transtornos do Neurodesenvolvimento/genéticaRESUMO
The cellular nonsense-mediated decay (NMD) pathway recognizes and degrades mRNAs with unusual structural features, such as long 3' UTRs or overlapping reading frames, and therefore serves as a transcript quality control mechanism. A broad spectrum of today's knowledge about the nonsense-mediated mRNA decay pathway has been discovered using NMD reporter systems, mostly consisting of multiple exons, with a wild type (WT) and a premature termination codon (PTC) containing variant. In a preliminary NMD study, we used the seven-exon triose phosphate isomerase (TPI) reporter and observed that in this well-known NMD reporter, surprisingly, not all splice sites are used constitutively, but additional cryptic splice sites are used. As this is more frequently observed in the construction of minigenes, especially when unknown splicing regulatory elements are removed, e.g. by shortening introns, this may affect the reliability of such reporters. To demonstrate how such minigenes can be improved in general with respect to constitutive splice site recognition, we restored an intron length in the TPI reporter or made bioinformatic adjustments to splice regulatory elements (SREs) or intrinsic strength of the splice sites themselves. As a result, this NMD reporter could be made more robust and specific for the evaluation of NMD sensitivity within a single transcript. The modifications of the TPI reporter shown here as examples can generally be used for the transfer of cellular multiexon transcripts to minigenes.
RESUMO
Translation of mRNAs containing premature termination codons (PTCs) results in truncated protein products with deleterious effects. Nonsense-mediated decay (NMD) is a surveillance pathway responsible for detecting PTC containing transcripts. Although the molecular mechanisms governing mRNA degradation have been extensively studied, the fate of the nascent protein product remains largely uncharacterized. Here, we use a fluorescent reporter system in mammalian cells to reveal a selective degradation pathway specifically targeting the protein product of an NMD mRNA. We show that this process is post-translational and dependent on the ubiquitin proteasome system. To systematically uncover factors involved in NMD-linked protein quality control, we conducted genome-wide flow cytometry-based screens. Our screens recovered known NMD factors but suggested that protein degradation did not depend on the canonical ribosome-quality control (RQC) pathway. A subsequent arrayed screen demonstrated that protein and mRNA branches of NMD rely on a shared recognition event. Our results establish the existence of a targeted pathway for nascent protein degradation from PTC containing mRNAs, and provide a reference for the field to identify and characterize required factors.
Assuntos
Mamíferos , Degradação do RNAm Mediada por Códon sem Sentido , Animais , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/metabolismoRESUMO
UPF1 is an RNA helicase that orchestrates nonsense-mediated decay and other RNA surveillance pathways. While UPF1 is best known for its basal cytoprotective role in degrading aberrant RNAs, UPF1 also degrades specific, normally occurring mRNAs to regulate diverse cellular processes. Here we describe a role for UPF1 in regulated protein decay, wherein UPF1 acts as an E3 ubiquitin ligase to repress human skeletal muscle differentiation. Suppressing UPF1 accelerates myogenesis, while ectopically increasing UPF1 levels slows myogenesis. UPF1 promotes the decay of MYOD protein, a transcription factor that is a master regulator of myogenesis, while leaving MYOD mRNA stability unaffected. UPF1 acts as an E3 ligase via its RING domain to promote MYOD protein ubiquitination and degradation. Our data characterize a regulatory role for UPF1 in myogenesis, and they demonstrate that UPF1 provides a mechanistic link between the RNA and protein decay machineries in human cells.
Assuntos
Diferenciação Celular , Desenvolvimento Muscular , Músculo Esquelético/enzimologia , Mioblastos Esqueléticos/enzimologia , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Baixo , Feminino , Células HEK293 , Humanos , Masculino , Músculo Esquelético/citologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Domínios Proteicos , Proteólise , RNA Helicases , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo , Transativadores/química , Transativadores/genética , Transcrição Gênica , Transfecção , UbiquitinaçãoRESUMO
Temperature-dependent alternative splicing (AS) is a crucial mechanism for organisms to adapt to varying environmental temperatures. In mammals, even slight fluctuations in body temperature are sufficient to drive significant AS changes in a concerted manner. This dynamic regulation allows organisms to finely tune gene expression and protein isoform diversity in response to temperature cues, ensuring proper cellular function and physiological adaptation. Understanding the molecular mechanisms underlying temperature-dependent AS thus provides valuable insights into the intricate interplay between environmental stimuli and gene expression regulation. In this review, we provide an overview of recent advances in understanding temperature-regulated AS across various biological processes and systems. We will discuss the machinery sensing and translating temperature cues into changed AS patterns, the adaptation of the splicing regulatory machinery to extreme temperatures, the role of temperature-dependent AS in shaping the transcriptome, functional implications and the development of potential therapeutics targeting temperature-sensitive AS pathways.
Assuntos
Processamento Alternativo , Transcriptoma , Animais , Humanos , Temperatura , Regulação da Temperatura Corporal/genética , Regulação da Temperatura Corporal/fisiologia , Regulação da Expressão GênicaRESUMO
CFTR gene mutations that result in the introduction of premature termination codons (PTCs) are common in cystic fibrosis (CF). This mutation type causes a severe form of the disease, likely because of low CFTR messenger RNA (mRNA) expression as a result of nonsense-mediated mRNA decay, as well as the production of a nonfunctional, truncated CFTR protein. Current therapeutics for CF, which target residual protein function, are less effective in patients with these types of mutations due in part to low CFTR protein levels. Splice-switching antisense oligonucleotides (ASOs), designed to induce skipping of exons in order to restore the mRNA open reading frame, have shown therapeutic promise preclinically and clinically for a number of diseases. We hypothesized that ASO-mediated skipping of CFTR exon 23 would recover CFTR activity associated with terminating mutations in the exon, including CFTR p.W1282X, the fifth most common mutation in CF. Here, we show that CFTR lacking the amino acids encoding exon 23 is partially functional and responsive to corrector and modulator drugs currently in clinical use. ASO-induced exon 23 skipping rescued CFTR expression and chloride current in primary human bronchial epithelial cells isolated from a homozygote CFTR-W1282X patient. These results support the use of ASOs in treating CF patients with CFTR class I mutations in exon 23 that result in unstable CFTR mRNA and truncations of the CFTR protein.
Assuntos
Fibrose Cística/genética , Fibrose Cística/terapia , Oligonucleotídeos Antissenso/uso terapêutico , Fases de Leitura Aberta/genética , Splicing de RNA/genética , Alelos , Sequência de Bases , Brônquios/patologia , Linhagem Celular , Canais de Cloreto/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Éxons/genética , Homozigoto , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Immunotherapy harnesses neoantigens encoded within the human genome, but their therapeutic potential is hampered by low expression, which may be controlled by the nonsense-mediated mRNA decay (NMD) pathway. This study investigates the impact of UPF1-knockdown on the expression of non-canonical/mutant proteins, employing proteogenomic to explore UPF1 role within the NMD pathway. Additionally, we conducted a comprehensive pan-cancer analysis of UPF1 expression and evaluated UPF1 expression in Triple-Negative Breast Cancer (TNBC) tissue in-vivo. Our findings reveal that UPF1-knockdown leads to increased translation of non-canonical/mutant proteins, particularly those originating from retained-introns, pseudogenes, long non-coding RNAs, and unannotated transcript biotypes. Moreover, our analysis demonstrates elevated UPF1 expression in various cancer types, with notably heightened protein levels in patient-derived TNBC tumors compared to adjacent tissues. This study elucidates UPF1 role in mitigating transcriptional noise by degrading transcripts encoding non-canonical/mutant proteins. Targeting this mechanism may reveal a new spectrum of neoantigens accessible to the antigen presentation pathway. Our novel findings provide a strong foundation for the development of therapeutic strategies aimed at targeting UPF1 or modulating the NMD pathway.
Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases , Transativadores , Neoplasias de Mama Triplo Negativas , Humanos , Degradação do RNAm Mediada por Códon sem Sentido/genética , Transativadores/metabolismo , Transativadores/genética , RNA Helicases/metabolismo , RNA Helicases/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
RNA stability is meticulously controlled. Here, we sought to determine whether an essential post-transcriptional regulatory mechanism plays a role in pain. Nonsense-mediated decay (NMD) safeguards against translation of mRNAs that harbor premature termination codons and controls the stability of â¼10% of typical protein-coding mRNAs. It hinges on the activity of the conserved kinase SMG1. Both SMG1 and its target, UPF1, are expressed in murine DRG sensory neurons. SMG1 protein is present in both the DRG and sciatic nerve. Using high-throughput sequencing, we examined changes in mRNA abundance following inhibition of SMG1. We confirmed multiple NMD stability targets in sensory neurons, including ATF4. ATF4 is preferentially translated during the integrated stress response (ISR). This led us to ask whether suspension of NMD induces the ISR. Inhibition of NMD increased eIF2-α phosphorylation and reduced the abundance of the eIF2-α phosphatase constitutive repressor of eIF2-α phosphorylation. Finally, we examined the effects of SMG1 inhibition on pain-associated behaviors. Peripheral inhibition of SMG1 results in mechanical hypersensitivity in males and females that persists for several days and priming to a subthreshold dose of PGE2. Priming was fully rescued by a small-molecule inhibitor of the ISR. Collectively, our results indicate that suspension of NMD promotes pain through stimulation of the ISR.SIGNIFICANCE STATEMENT Nociceptors undergo long-lived changes in their plasticity which may contribute to chronic pain. Translational regulation has emerged as a dominant mechanism in pain. Here, we investigate the role of a major pathway of RNA surveillance called nonsense-mediated decay (NMD). Modulation of NMD is potentially beneficial for a broad array of diseases caused by frameshift or nonsense mutations. Our results suggest that inhibition of the rate-limiting step of NMD drives behaviors associated with pain through activation of the ISR. This work reveals complex interconnectivity between RNA stability and translational regulation and suggests an important consideration in harnessing the salubrious benefits of NMD disruption.
Assuntos
Fator de Iniciação 2 em Eucariotos , Nociceptividade , Masculino , Feminino , Humanos , Camundongos , Animais , Fator de Iniciação 2 em Eucariotos/genética , Degradação do RNAm Mediada por Códon sem Sentido , Fosforilação , Dor , RNA Helicases/genética , RNA Helicases/metabolismo , Transativadores/genéticaRESUMO
Many transcripts are targeted by nonsense-mediated decay (NMD), leading to their degradation and the inhibition of their translation. We found that the protein SUZ domain-containing protein 1 (SZRD1) interacts with the key NMD factor up-frameshift 1. When recruited to NMD-sensitive reporter gene transcripts, SZRD1 increased protein production, at least in part, by relieving translational inhibition. The conserved SUZ domain in SZRD1 was required for this effect. The SUZ domain is present in only three other human proteins besides SZRD1: R3H domain-containing protein 1 and 2 (R3HDM1, R3HDM2) and cAMP-regulated phosphoprotein 21 (ARPP21). We found that ARPP21, similarly to SZRD1, can increase protein production from NMD-sensitive reporter transcripts in an SUZ domain-dependent manner. This indicated that the SUZ domain-containing proteins could prevent translational inhibition of transcripts targeted by NMD. Consistent with the idea that SZRD1 mainly prevents translational inhibition, we did not observe a systematic decrease in the abundance of NMD targets when we knocked down SZRD1. Surprisingly, knockdown of SZRD1 in two different cell lines led to reduced levels of the NMD component UPF3B, which was accompanied by increased levels in a subset of NMD targets. This suggests that SZRD1 is required to maintain normal UPF3B levels and indicates that the effect of SZRD1 on NMD targets is not limited to a relief from translational inhibition. Overall, our study reveals that human SUZ domain-containing proteins play a complex role in regulating protein output from transcripts targeted by NMD.
Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Proteínas de Ligação a RNA , Humanos , Linhagem Celular , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Domínios Proteicos , Células HeLa , Células HEK293RESUMO
Precise interpretation of the effects of rare protein-truncating variants (PTVs) is important for accurate determination of variant impact. Current methods for assessing the ability of PTVs to induce nonsense-mediated decay (NMD) focus primarily on the position of the variant in the transcript. We used RNA sequencing of the Genotype Tissue Expression v.8 cohort to compute the efficiency of NMD using allelic imbalance for 2,320 rare (genome aggregation database minor allele frequency ≤ 1%) PTVs across 809 individuals in 49 tissues. We created an interpretable predictive model using penalized logistic regression in order to evaluate the comprehensive influence of variant annotation, tissue, and inter-individual variation on NMD. We found that variant position, allele frequency, the inclusion of ultra-rare and singleton variants, and conservation were predictive of allelic imbalance. Furthermore, we found that NMD effects were highly concordant across tissues and individuals. Due to this high consistency, we demonstrate in silico that utilizing peripheral tissues or cell lines provides accurate prediction of NMD for PTVs.
Assuntos
Códon sem Sentido/genética , Regulação da Expressão Gênica , Doenças Genéticas Inatas/patologia , Variação Genética , Mutação , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/genética , Frequência do Gene , Doenças Genéticas Inatas/genética , HumanosRESUMO
Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD." All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.
Assuntos
Anormalidades Múltiplas/patologia , Adenosina Trifosfatases/genética , Anormalidades Craniofaciais/patologia , Metilação de DNA , Epigênese Genética , Transtornos do Crescimento/patologia , Comunicação Interventricular/patologia , Mutação , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Anormalidades Múltiplas/genética , Estudos de Casos e Controles , Estudos de Coortes , Anormalidades Craniofaciais/genética , Feminino , Predisposição Genética para Doença , Transtornos do Crescimento/genética , Comunicação Interventricular/genética , Humanos , Recém-Nascido , Masculino , Transtornos do Neurodesenvolvimento/genéticaRESUMO
Gene expression analysis requires accurate measurements of global RNA degradation rates, earlier problematic with methods disruptive to cell physiology. Recently, metabolic RNA labeling emerged as an efficient and minimally invasive technique applied in mammalian cells. Here, we have adapted SH-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) for a global mRNA stability study in yeast using 4-thiouracil pulse-chase labeling. We assign high-confidence half-life estimates for 67.5% of expressed ORFs, and measure a median half-life of 9.4 min. For mRNAs where half-life estimates exist in the literature, their ranking order was in good agreement with previous data, indicating that SLAM-seq efficiently classifies stable and unstable transcripts. We then leveraged our yeast protocol to identify targets of the nonsense-mediated decay (NMD) pathway by measuring the change in RNA half-lives, instead of steady-state RNA level changes. With SLAM-seq, we assign 580 transcripts as putative NMD targets, based on their measured half-lives in wild-type and upf3Δ mutants. We find 225 novel targets, and observe a strong agreement with previous reports of NMD targets, 61.2% of our candidates being identified in previous studies. This indicates that SLAM-seq is a simpler and more economic method for global quantification of mRNA half-lives. Our adaptation for yeast yielded global quantitative measures of the NMD effect on transcript half-lives, high correlation with RNA half-lives measured previously with more technically challenging protocols, and identification of novel NMD regulated transcripts that escaped prior detection.
Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Mamíferos/genética , Degradação do RNAm Mediada por Códon sem Sentido , Fases de Leitura Aberta , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Phenotypic features of a hereditary connective tissue disorder, including craniofacial characteristics, hyperextensible skin, joint laxity, kyphoscoliosis, arachnodactyly, inguinal hernia, and diverticulosis associated with biallelic pathogenic variants in EFEMP1 have been previously described in four patients. Genome sequencing on a proband and her mother with comparable phenotypic features revealed that both patients were heterozygous for a stop-gain variant c.1084C>T (p.Arg362*). Complementary RNA-seq on fibroblasts revealed significantly reduced levels of mutant EFEMP1 transcript. Considering the absence of other molecular explanations, we extrapolated that EFEMP1 could be the cause of the patient's phenotypes. Furthermore, nonsense-mediated decay was demonstrated for the mutant allele as the principal mechanism for decreased levels of EFEMP1 mRNA. We provide strong clinical and genetic evidence for the haploinsufficiency of EFEMP1 due to nonsense-medicated decay to cause severe kyphoscoliosis, generalized hypermobility of joints, high and narrow arched palate, and potentially severe diverticulosis. To the best of our knowledge, this is the first report of an autosomal dominant EFEMP1-associated hereditary connective tissue disorder and therefore expands the phenotypic spectrum of EFEMP1 related disorders.
Assuntos
Doenças do Tecido Conjuntivo , Proteínas da Matriz Extracelular , Haploinsuficiência , Síndrome de Marfan , Fenótipo , Humanos , Haploinsuficiência/genética , Feminino , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Proteínas da Matriz Extracelular/genética , Doenças do Tecido Conjuntivo/genética , Doenças do Tecido Conjuntivo/patologia , Linhagem , Mutação/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Masculino , Adulto , Alelos , Predisposição Genética para Doença , CriançaRESUMO
INTRODUCTION: Massive intestinal loss resulting in short bowel syndrome has been linked to intestinal failure associated liver disease. Efforts to elucidate the driving force behind the observed hepatic injury have identified inflammatory mediators, alterations in the microbiome, extent of structural and functional intestinal adaptation, and toxic shifts in the bile acid pool. In the present study, we posit that ileocecal resection interrupts the delivery of these hepatotoxic substances to the liver by physically disrupting the enterohepatic circulation, thereby shielding the liver from exposure to the aforementioned noxious stimuli. METHODS: Mice underwent sham, 50% proximal, or 50% distal small bowel resection (SBR), with or without tauroursodeoxycolic acid supplementation. Enterohepatic signaling and nonsense-mediated ribonucleic acid (RNA) decay were evaluated and correlated with hepatic injury. RESULTS: When compared to 50% proximal SBR, mice that underwent ileocecal resection exhibited reduced hepatic oxidative stress and exhibited a more physiological bile acid profile with increased de novo bile acid synthesis, enhanced colonic bile acid signaling, and reduced hepatic proliferation. Distal intestinal resection promoted an adaptive response including via the nonsense-mediated RNA decay pathway to satisfactorily process injurious messenger RNA and successfully maintain homeostasis. By contrast, this adaptive response was not observed in the proximal SBR group and hepatic injury persisted. CONCLUSIONS: In summary, interruption of enterohepatic circulation via ileocecal resection abrogates the liver's exposure to toxic and inflammatory mediators while promoting physiological adaptations in bile acid metabolism and maintaining existing homeostatic pathways.
Assuntos
Hepatopatias , RNA , Camundongos , Animais , RNA/metabolismo , Fígado/cirurgia , Fígado/metabolismo , Hepatopatias/metabolismo , Ácidos e Sais Biliares/metabolismo , Mediadores da Inflamação/metabolismoRESUMO
Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
Assuntos
Processamento Pós-Transcricional do RNA , RNA não Traduzido , Animais , Humanos , Processamento Alternativo/genética , Regulação da Expressão Gênica , Edição de RNA , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismoRESUMO
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved quality control pathway that inhibits the expression of transcripts containing premature termination codon. Transcriptome and phenotypic studies across a range of organisms indicate roles of NMD beyond RNA quality control and imply its involvement in regulating gene expression in a wide range of physiological processes. Studies in moss Physcomitrella patens and Arabidopsis thaliana have shown that NMD is also important in plants where it contributes to the regulation of pathogen defence, hormonal signalling, circadian clock, reproduction and gene evolution. Here, we provide up to date overview of the biological functions of NMD in plants. In addition, we discuss several biological processes where NMD factors implement their function through NMD-independent mechanisms.
Assuntos
Arabidopsis , Degradação do RNAm Mediada por Códon sem Sentido , Plantas/genética , Arabidopsis/genética , Códon sem Sentido , Evolução MolecularRESUMO
PURPOSE: Neurodevelopmental disorders (NDDs) often result from rare genetic variation, but genomic testing yield for NDDs remains below 50%, suggesting that clinically relevant variants may be missed by standard analyses. Here, we analyze "poison exons" (PEs), which are evolutionarily conserved alternative exons often absent from standard gene annotations. Variants that alter PE inclusion can lead to loss of function and may be highly penetrant contributors to disease. METHODS: We curated published RNA sequencing data from developing mouse cortex to define 1937 conserved PE regions potentially relevant to NDDs, and we analyzed variants found by genome sequencing in multiple NDD cohorts. RESULTS: Across 2999 probands, we found 6 novel clinically relevant variants in PE regions. Five of these variants are in genes that are part of the sodium voltage-gated channel alpha subunit family (SCN1A, SCN2A, and SCN8A), which is associated with epilepsies. One variant is in SNRPB, associated with cerebrocostomandibular syndrome. These variants have moderate to high computational impact assessments, are absent from population variant databases, and in genes with gene-phenotype associations consistent with each probands reported features. CONCLUSION: With a very minimal increase in variant analysis burden (average of 0.77 variants per proband), annotation of PEs can improve diagnostic yield for NDDs and likely other congenital conditions.