Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 27, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378457

RESUMO

BACKGROUND: Isoorientin (ISO) is a glycosylated flavonoid with antitumor, anti-inflammatory, and antioxidant properties. However, its effects on bone metabolism remain largely unknown. METHODS: In this study, we aimed to investigate the effects of ISO on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation in vitro and bone loss in post-ovariectomy (OVX) rats, as well as to elucidate the underlying mechanism. First, network pharmacology analysis indicated that MAPK1 and AKT1 may be potential therapeutic targets of ISO and that ISO has potential regulatory effects on the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathways, as well as oxidative stress. ISO was added to RAW264.7 cells stimulated by RANKL, and its effects on osteoclast differentiation were evaluated using tartrate-resistant acid phosphatase (TRAP) staining, TRAP activity measurement, and F-actin ring analysis. Reactive oxygen species (ROS) production in osteoclasts was detected using a ROS assay kit. The effects of ISO on RANKL-triggered molecular cascade response were further investigated by Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence staining. In addition, the therapeutic effects of ISO were evaluated in vivo. RESULTS: ISO inhibited osteoclastogenesis in a time- and concentration-dependent manner. Mechanistically, ISO downregulated the expression of the main transcription factor for osteoclast differentiation by inhibiting MAPK and PI3K/AKT1 signaling pathways. Moreover, ISO exhibited protective effects in OVX-induced bone loss rats. This was consistent with the results derived from network pharmacology. CONCLUSION: Our findings suggest a potential therapeutic utility of ISO in the management of osteoclast-associated bone diseases, including osteoporosis.


Assuntos
Reabsorção Óssea , Luteolina , Osteoporose , Feminino , Ratos , Animais , Reabsorção Óssea/patologia , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases , Farmacologia em Rede , Diferenciação Celular , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteoporose/tratamento farmacológico , Fatores de Transcrição NFATC/metabolismo
2.
Ann Surg Oncol ; 31(7): 4822-4829, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38461192

RESUMO

BACKGROUND: Glutathione peroxidase 2 (GPX2) is an antioxidant enzyme with an important role in tumor progression in various cancers. However, the clinical significance of GPX2 in lung adenocarcinoma has not been clarified. METHODS: Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to analyze GPX2 mRNA expression. Then, we conducted immunohistochemistry (IHC) to assess GPX2 expression in specimens acquired from 351 patients with lung adenocarcinoma who underwent surgery at Kyushu University from 2003 to 2012. We investigated the association between GPX2 expression and clinicopathological characteristics and further analyzed the prognostic relevance. RESULTS: qRT-PCR revealed that GPX2 mRNA expression was notably higher in tumor cells than in normal tissues. IHC revealed that high GPX2 expression (n = 175, 49.9%) was significantly correlated with male sex, smoking, advanced pathological stage, and the presence of pleural, lymphatic, and vascular invasion. Patients with high GPX2 expression exhibited significantly shorter recurrence-free survival (RFS) and overall survival. Multivariate analysis identified high GPX2 expression as an independent prognostic factor of RFS. CONCLUSIONS: GPX2 expression was significantly associated with pathological malignancy. It is conceivable that high GPX2 expression reflects tumor malignancy. Therefore, high GPX2 expression is a significant prognostic factor of poor prognosis for completely resected lung adenocarcinoma.


Assuntos
Adenocarcinoma , Biomarcadores Tumorais , Glutationa Peroxidase , Neoplasias Pulmonares , Humanos , Masculino , Feminino , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/metabolismo , Glutationa Peroxidase/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Taxa de Sobrevida , Idoso , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Seguimentos , Invasividade Neoplásica , Metástase Linfática , Estadiamento de Neoplasias , Adulto , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/cirurgia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Mol Cell Biochem ; 479(2): 431-444, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37084167

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease that affects the mucosa of the colon, resulting in severe inflammation and ulcers. Genistein is a polyphenolic isoflavone present in several vegetables, such as soybeans and fava beans. Therefore, we conducted the following study to determine the therapeutic effects of genistein on UC in rats by influencing antioxidant activity and mitochondrial biogenesis and the subsequent effects on the apoptotic pathway. UC was induced in rats by single intracolonic administration of 2 ml of 4% acetic acid. Then, UC rats were treated with 25-mg/kg genistein. Colon samples were obtained to assess the gene and protein expression of nuclear factor erythroid 2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor-gamma coactivator (PGC-1), mitochondrial transcription factor A (TFAM), B-cell lymphoma 2 (BCL2), BCL2-associated X (BAX), caspase-3, caspase-8, and caspase-9. In addition, colon sections were stained with hematoxylin/eosin to investigate the cell structure. The microimages of UC rats revealed inflammatory cell infiltration, hemorrhage, and the destruction of intestinal glands, and these effects were improved by treatment with genistein. Finally, treatment with genistein significantly increased the expression of PGC-1, TFAM, Nrf2, HO-1, and BCL2 and reduced the expression of BAX, caspase-3, caspase-8, and caspase-9. In conclusion, genistein exerted therapeutic effects against UC in rats. This therapeutic activity involved enhancing antioxidant activity and increasing mitochondrial biogenesis, which reduced cell apoptosis.


Assuntos
Colite Ulcerativa , Genisteína , Animais , Ratos , Genisteína/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Caspase 3 , Caspase 9 , Caspase 8 , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2 , Biogênese de Organelas , Proteína X Associada a bcl-2
4.
Biol Pharm Bull ; 47(7): 1248-1254, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38866477

RESUMO

Ethanol (alcohol) is a risk factor that contributes to non-communicable diseases. Chronic abuse of ethanol is toxic to both the heart and overall health, and even results in death. Ethanol and its byproduct acetaldehyde can harm the cardiovascular system by impairing mitochondrial function, causing oxidative damage, and reducing contractile proteins. Endothelial cells are essential components of the cardiovascular system, are highly susceptible to ethanol, either through direct or indirect exposure. Thus, protection against endothelial injury is of great importance for persons who chronic abuse of ethanol. In this study, an in vitro model of endothelial injury was created using ethanol. The findings revealed that a concentration of 20.0 mM of ethanol reduced cell viability and Bcl-2 expression, while increasing cell apoptosis, intracellular reactive oxygen species (ROS) levels, mitochondrial depolarization, and the expression of Bax and cleaved-caspase-3 in endothelial cells. Further study showed that ethanol promoted nuclear translocation of nuclear factor kappa B (NF-κB), increased the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6 in the culture medium, and inhibited nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway. The aforementioned findings suggest that ethanol has a harmful impact on endothelial cells. Nevertheless, the application of epigallocatechin-3-gallate (EGCG) to the cells can effectively mitigate the detrimental effects of ethanol on endothelial cells. In conclusion, EGCG alleviates ethanol-induced endothelial injury partly through alteration of NF-κB translocation and activation of the Nrf2 signaling pathway. Therefore, EGCG holds great potential in safeguarding individuals who chronically abuse ethanol from endothelial dysfunction.


Assuntos
Catequina , Etanol , Fator 2 Relacionado a NF-E2 , NF-kappa B , Transdução de Sinais , Etanol/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , NF-kappa B/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
5.
Biol Pharm Bull ; 47(2): 417-426, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38296488

RESUMO

Small molecule drugs containing morpholine-based moieties have become crucial candidates in the tumor targeted therapy strategies, but the specific molecular mechanisms of these drugs causing tumor cell death require further investigation. The morpholine derivative N-(4-morpholinomethylene)ethanesulfonamide (MESA) was used to stimulate prostate and ovarian cancer cells and we focused on the ferroptosis effects, including the target molecule and signal pathways mediated by MESA. The results showed that MESA could induce ferroptosis to cause the proliferation inhibition and apoptosis effects of tumor cells according to the identification of ferroptosis inhibitor fer-1 and other cell death inhibitors. Further MESA could significantly increase the intracellular malondialdehyde (MDA), reactive oxygen species (ROS) and Fe2+ levels in tumor cells and mediate the dynamic changes of ferroptosis-relative molecules GPX4, nuclear factor erythroid2-related factor 2 (NRF2), ACSL4, SLC7A11 and P62-Kelch-like ECH-associated protein 1 (KEAP1)-NRF2-antioxidant response element (ARE) signal pathways. Further, NRF2 overexpression could reduce the tumor cell death and ROS levels exposure to MESA. Most importantly, it was confirmed that MESA could bind to NRF2 protein through molecular docking and thermal stability assays and NRF2 was a target molecule of MESA for inducing ferroptosis effects in tumor cells. Collectively, our findings indicated the ferroptosis effects of the morpholine derivative MESA in prostate and ovarian cancer cells and its function mechanism including targeted molecule and signal pathways, which would be helpful for developing MESA as a prospective small molecule drug for cancer therapy based on cell ferroptosis.


Assuntos
Ferroptose , Neoplasias Ovarianas , Masculino , Feminino , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , Estudos Prospectivos , Espécies Reativas de Oxigênio , Morfolinas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico
6.
Arch Toxicol ; 98(5): 1415-1436, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436694

RESUMO

In vitro and in vivo models of lipopolysaccharide (LPS)-induced pulmonary injury, quercetin-3-glucuronide (Q3G) has been previously revealed the lung-protective potential via downregulation of inflammation, pyroptotic, and apoptotic cell death. However, the upstream signals mediating anti-pulmonary injury of Q3G have not yet been clarified. It has been reported that concerted dual activation of nuclear factor-erythroid 2 related factor 2 (Nrf2) and autophagy may prove to be a better treatment strategy in pulmonary injury. In this study, the effect of Q3G on antioxidant and autophagy were further investigated. Noncytotoxic doses of Q3G abolished the LPS-caused cell injury, and reactive oxygen species (ROS) generation with inductions in Nrf2-antioxidant signaling. Moreover, Q3G treatment repressed Nrf2 ubiquitination, and enhanced the association of Keap1 and p62 in the LPS-treated cells. Q3G also showed potential in inducing autophagy, as demonstrated by formation of acidic vesicular organelles (AVOs) and upregulation of autophagy factors. Next, the autolysosomes formation and cell survival were decreased by Q3G under pre-treatment with a lysosome inhibitor, chloroquine (CQ). Furthermore, mechanistic assays indicated that anti-pulmonary injury effects of Q3G might be mediated via Nrf2 signaling, as confirmed by the transfection of Nrf2 siRNA. Finally, Q3G significantly alleviated the development of pulmonary injury in vivo, which may result from inhibiting the LPS-induced lung dysfunction and edema. These findings emphasize a toxicological perspective, providing new insights into the mechanisms of Q3G's protective effects on LPS-induced pulmonary injury and highlighting its role in dual activating Nrf2 and autophagy pathways.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Quercetina , Humanos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/prevenção & controle , Antioxidantes/farmacologia , Autofagia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Quercetina/análogos & derivados
7.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000120

RESUMO

Head and neck squamous cell carcinoma (HNSCC) affects squamous cells in the head and neck region and is currently ranked as the sixth most common cancer worldwide. NF-E2-related factor 2 (NRF2) plays a crucial role in cellular protection and defence mechanisms and NRF2 over-expression has been linked to various cancers; however, its role in the response of HNSCC cells remains elusive. We investigated the effects of ML385, a selective NRF2 inhibitor, on HNSCC to understand the underlying molecular mechanisms, and to assess the potential of ML385 as a therapeutic agent. We treated HNSCC cell lines with ML385 and observed a significant reduction in the expression of NRF2 and its downstream target, heme oxygenase-1 (HO-1), using Western blotting. We evaluated its effects on various cellular processes, including cell proliferation, cloning, migration, and wound healing, in HNSCC cell lines. ML385 treatment substantially reduced NRF2 expression, promoting a decrease in the investigated cellular activities. Additionally, we examined changes in the expression of cell-cycle-related proteins and found that ML385 induced cell cycle arrest at the G1/S phase in HNSCC cell lines. Our findings suggest that ML385 can regulate cell cycle progression, inhibit HNSCC growth, and have potential as a therapeutic agent for HNSCC.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias de Cabeça e Pescoço , Fator 2 Relacionado a NF-E2 , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Movimento Celular/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Acetamidas , Benzodioxóis
8.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203758

RESUMO

Ovarian cancer is one of the most dangerous gynecologic cancers worldwide and has a high fatality rate due to diagnosis at an advanced stage of the disease as well as a high recurrence rate due to the occurrence of chemotherapy resistance. In fact, chemoresistance weakens the therapeutic effects, worsening the outcome of this pathology. Solute Carrier Family 7 Member 11 (SLC7A11, also known as xCT) is the functional subunit of the Xc- system, an anionic L-cystine/L-glutamate antiporter expressed on the cell surface. SLC7A11 expression is significantly upregulated in several types of cancers in which it can inhibit ferroptosis and favor cancer cell proliferation, invasion and chemoresistance. SLC7A11 expression is also increased in ovarian cancer tissues, suggesting a possible role of this protein as a therapeutic target. In this review, we provide an overview of the current literature regarding the role of SLC7A11 in ovarian cancer to provide new insights on SLC7A11 modulation and evaluate the potential role of SLC7A11 as a therapeutic target.


Assuntos
Neoplasias dos Genitais Femininos , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Antiporters , Membrana Celular , Ácido Glutâmico , Sistema y+ de Transporte de Aminoácidos/genética
9.
Genes Cells ; 27(12): 719-730, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36203316

RESUMO

The induction mechanism of heme oxygenase-1 (HO-1) by heat shock (HS) is still unknown. Here, we discovered that HS activates the HO-1 expression in a mouse hepatoma cell line (Hepa 1-6). Knockdown experiments showed that the HS-induced HO-1 expression was dependent on HS factor 1 (HSF1). A chromatin immunoprecipitation (ChIP) assay demonstrated that the HS-activated HSF1 bound to the HS elements (HSEs) in the upstream enhancer 1 region (E1). Unexpectedly, HS also facilitates the BTB and CNC homology 1 (BACH1) binding to the Maf recognition elements (MAREs) in E1. We examined the effects of a catalytically inactive CRISPR-associated 9 nucleases (dCas9) with short guide RNAs (sgRNAs), and demonstrated that the HSF1 binding to HSEs in E1 was indispensable for the HS-induced HO-1 expression. Heme treatment (HA) dissociates BACH1 from MAREs and facilitated the binding of nuclear factor-erythroid-2-related factor 2 (NRF2) to MAREs. Following treatment with both HS and HA, the HO-1 induction and the HSF1 binding to HSEs in E1 were most notably observed. These results indicate that the HS-induced HO-1 expression is dependent on the HSF1 binding to HSEs in E1, although modulated by the BACH1 and NRF2 binding to MAREs within the same E1.


Assuntos
Resposta ao Choque Térmico , Heme Oxigenase-1 , Animais , Camundongos , Heme Oxigenase-1/genética , Linhagem Celular , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Choque Térmico/genética
10.
J Transl Med ; 21(1): 433, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403143

RESUMO

BACKGROUND: Cervical cancer (CC) has poor prognosis and high mortality rate for its metastasis during the disease progression. Epithelial-mesenchymal transition (EMT) and anoikis are initial and pivotal steps during the metastatic process. Although higher levels of Nrf2 are associated with aggressive tumor behaviors in cervical cancer, the detailed mechanism of Nrf2 in cervical cancer metastasis, especially EMT and anoikis, remains unclear. METHODS: Immunohistochemistry (IHC) was used to examine Nrf2 expression in CC. Wound healing assay and transwell analysis were used to evaluate the migration ability of CC cells. Western blot, qTR-PCR and immunofluorescent staining were used to verify the expression level of Nrf2, the EMT associated markers and anoikis associated proteins. Flow cytometry assays and cell counting were used to detect the apoptosis of cervical cancer cells. The lung and lymph node metastatic mouse model were established for studies in vivo. The interaction between Nrf2 and Snail1 was confirmed by rescue-of-function assay. RESULTS: When compared with cervical cancer patients without lymph node metastasis, Nrf2 was highly expressed in patients with lymph node metastasis. And Nrf2 was proved to enhance the migration ability of HeLa and SiHa cells. In addition, Nrf2 was positively correlated with EMT processes and negatively associated with anoikis in cervical cancer. In vivo, a xenograft assay also showed that Nrf2 facilitated both pulmonary and lymphatic distant metastasis of cervical cancer. Rescue-of-function assay further revealed the mechanism that Nrf2 impacted the metastasis of CC through Snail1. CONCLUSION: Our fundings established Nrf2 plays a crucial role in the metastasis of cervical cancer by enhancing EMT and resistance to anoikis by promoting the expression of Snail1, with potential value as a therapeutic candidate.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias do Colo do Útero , Feminino , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Metástase Linfática/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias do Colo do Útero/patologia , Células HeLa , Transição Epitelial-Mesenquimal , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica
11.
Artigo em Inglês | MEDLINE | ID: mdl-37815837

RESUMO

OBJECTIVES: Taxifolin (dihydroquercetin) is a bioactive plant flavonoid that exhibits anti-inflammatory and anti-oxidative properties. We hypothesized that taxifolin might be an effective dietary supplement to ameliorate symptoms arising from thrombo-inflammatory diseases such as lupus and antiphospholipid syndrome (APS). METHODS: We used in vitro assays and a mouse model to determine mechanisms by which taxifolin inhibits neutrophil extracellular trap (NET) formation (i.e., NETosis) and venous thrombosis in lupus and APS. RESULTS: At doses ranging from 0.1 to 1 µg/ml, taxifolin inhibited NETosis from control neutrophils stimulated with autoantibodies isolated from lupus and APS patients, and its suppressive effects were mitigated by blocking the antioxidant transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). Furthermore, taxifolin at a dose as low as 20 mg/kg/day reduced in vivo NETosis in thrombo-inflammatory mouse models of lupus and APS while also significantly attenuating autoantibody formation, inflammatory cytokine production, and large-vein thrombosis. CONCLUSION: Our study is the first to demonstrate the protective effects of taxifolin in the context of lupus and APS. Importantly, our study also suggests a therapeutic potential to neutralize neutrophil hyperactivity and NETosis that could have relevance to a variety of thrombo-inflammatory diseases.

12.
Mol Cell Biochem ; 478(1): 215-227, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35771396

RESUMO

During age-related macular degeneration (AMD), chronic inflammatory processes, possibly fueled by high glucose levels, cause a breakdown of the retinal pigment epithelium (RPE), leading to vision loss. Phloretin, a natural dihydroxychalcone found in apples, targets several anti-inflammatory signaling pathways and effectively inhibits transporter-mediated glucose uptake. It could potentially prevent inflammation and cell death of RPE cells through either direct regulation of inflammatory signaling pathways or through amelioration of high glucose levels. To test this hypothesis, ARPE-19 cells were incubated with or without phloretin for 1 h before exposure to lipopolysaccharide (LPS). Cell viability and the release of pro-inflammatory cytokines interleukin 6 (IL-6), IL-8 and vascular endothelial growth factor (VEGF) were measured. Glucose uptake was studied using isotope uptake studies. The nuclear levels of nuclear factor erythroid 2-related factor 2 (Nrf2) were determined alongside the phosphorylation levels of mitogen-activated protein kinases. Phloretin pretreatment reduced the LPS-induced release of IL-6 and IL-8 as well as VEGF. Phloretin increased intracellular levels of reactive oxygen species and nuclear translocation of Nrf2. It also inhibited glucose uptake into ARPE-19 cells and the phosphorylation of Jun-activated kinase (JNK). Subsequent studies revealed that Nrf2, but not the inhibition of glucose uptake or JNK phosphorylation, was the main pathway of phloretin's anti-inflammatory activities. Phloretin was robustly anti-inflammatory in RPE cells and reduced IL-8 secretion via activation of Nrf2 but the evaluation of its potential in the treatment or prevention of AMD requires further studies.


Assuntos
Degeneração Macular , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Epiteliais/metabolismo , Glucose/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/toxicidade , Degeneração Macular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Floretina/efeitos adversos , Floretina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/efeitos adversos , Pigmentos da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
J Pineal Res ; 74(1): e12835, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36214640

RESUMO

N-Acetylserotonin (NAS) is an intermediate in the melatonin biosynthetic pathway. We investigated the anti-inflammatory activity of NAS by focusing on its chemical feature oxidizable to an electrophile. NAS was readily oxidized by reaction with HOCl, an oxidant produced in the inflammatory state. HOCl-reacted NAS (Oxi-NAS), but not NAS, activated the anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase (HO)-1 pathway in cells. Chromatographic and mass analyses demonstrated that Oxi-NAS was the iminoquinone form of NAS and could react with N-acetylcysteine possessing a nucleophilic thiol to form a covalent adduct. Oxi-NAS bound to Kelch-like ECH-associated protein 1, resulting in Nrf2 dissociation. Moreover, rectally administered NAS increased the levels of nuclear Nrf2 and HO-1 proteins in the inflamed colon of rats. Simultaneously, NAS was converted to Oxi-NAS in the inflamed colon. Rectal NAS mitigated colonic damage and inflammation. The anticolitic effects were significantly compromised by the coadministration of an HO-1 inhibitor.


Assuntos
Colite , Melatonina , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Heme Oxigenase-1/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Anti-Inflamatórios/uso terapêutico
14.
Mol Biol Rep ; 50(6): 5407-5414, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37081307

RESUMO

Breast cancer is one of the most serious malignancies among women, accounting for about 12% of all cancers. The inherent complexity and heterogeneity of breast cancer results in failure to respond to treatment in the advanced stages of the disease. Breast cancer is caused by several genetic and environmental factors. One of the significant factors involved in the development of breast cancer is oxidative stress, which is generally regulated by nuclear factor erythroid 2-related factor 2 (NRF2). The level of NRF2 expression is low in healthy cells, which maintains the balance of the antioxidant system; however, its expression is higher in cancer cells, which have correlation characteristics such as angiogenesis, stem cell formation, drug resistance, and metastasis. Drug resistance increases with the upregulation of NRF2 expression, which contributes to cell protection. NRF2 controls this mechanism by increasing the expression of ATP-binding cassettes (ABCs). Considering the growing number of studies in this field, we aimed to investigate the relationship between NRF2 and ABCs, as well as their role in the development of drug resistance in breast cancer.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Neoplasias da Mama , Humanos , Feminino , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Regulação para Cima , Resistência a Medicamentos
15.
Biol Pharm Bull ; 46(2): 338-342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724962

RESUMO

Morphinone (MO) is an electrophilic metabolite of morphine that covalently binds to protein thiols via its α,ß-unsaturated carbonyl group, resulting in toxicity in vitro and in vivo. Our previous studies identified a variety of redox signaling pathways that are activated during electrophilic stress. Here, we examined in vitro activation of a signaling pathway involving Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) in response to MO. Exposure of HepG2 cells to MO caused covalent modification of Keap1 thiols (evaluated using biotin-PEAC5-maleimide labeling) and nuclear translocation of Nrf2, thereby up-regulating downstream genes encoding ATP binding cassette subfamily C member 2, solute carrier family 7 member 11, glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, glutathione S-transferase alpha 1, and heme oxygenase 1. However, dihydromorphinone, a metabolite of morphine lacking the reactive C7-C8 double bond, had little effect on Nrf2 activation. These results suggest that covalent modification is crucial in the Keap1/Nrf2 pathway activation and that this pathway is a redox signaling-associated adaptive response to MO metabolism.


Assuntos
Glutamato-Cisteína Ligase , Fator 2 Relacionado a NF-E2 , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Morfina/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Compostos de Sulfidrila , Humanos , Células Hep G2
16.
Biol Pharm Bull ; 46(1): 123-127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36596520

RESUMO

Mutations in leucine rich-repeat kinase 2 (LRRK2) cause autosomal-dominant, late-onset Parkinson's disease (PD). Accumulating evidence indicates that PD-associated LRRK2 mutations induce neuronal cell death by increasing cellular reactive oxygen species levels. However, the mechanism of increased oxidative stress associated with LRRK2 kinase activity remains unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that protects cells from oxidative stress by inducing the expression of antioxidant genes. In the present, it was found that decreased expression of Nrf2 and mRNA expression of its target genes in Lrrk2-transgenic mouse brain and LRRK2 overexpressing SH-SY5Y cells. Furthermore, knockdown of glycogen synthase kinase-3ß (GSK-3ß) recovered Nrf2 expression and mRNA expression of its target genes in LRRK2 overexpressing SH-SY5Y cells. We concluded that since Nrf2 is transcriptional factor for antioxidative responses, therefore, reduction of Nrf2 expression by LRRK2 may be part of a mechanism that LRRK2-induces vulnerability to oxidative stress in neuronal cells.


Assuntos
Fator 2 Relacionado a NF-E2 , Neuroblastoma , Camundongos , Animais , Humanos , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Neuroblastoma/metabolismo , Encéfalo/metabolismo , Antioxidantes/metabolismo , RNA Mensageiro/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo
17.
BMC Pulm Med ; 23(1): 286, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550659

RESUMO

PURPOSE: Endotoxin-induced acute lung injury (ALI) is a severe disease caused by an imbalanced host response to infection. It is necessary to explore novel mechanisms for the treatment of endotoxin-induced ALI. In endotoxin-induced ALI, tetramethylpyrazine (TMP) provides protection through anti-inflammatory, anti-apoptosis, and anti-pyroptosis effects. However, the mechanism of action of TMP in endotoxin-induced ALI remains unclear. Here, we aimed to determine whether TMP can protect the lungs by inhibiting Golgi stress via the Nrf2/HO-1 pathway. METHODS AND RESULTS: Using lipopolysaccharide (LPS)-stimulated C57BL/6J mice and MLE12 alveolar epithelial cells, we observed that TMP pretreatment attenuated endotoxin-induced ALI. LPS + TMP group showed lesser lung pathological damage and a lower rate of apoptotic lung cells than LPS group. Moreover, LPS + TMP group also showed decreased levels of inflammatory factors and oxidative stress damage than LPS group (P < 0.05). Additionally, LPS + TMP group presented reduced Golgi stress by increasing the Golgi matrix protein 130 (GM130), Golgi apparatus Ca2+/Mn2+ ATPases (ATP2C1), and Golgin97 expression while decreasing the Golgi phosphoprotein 3 (GOLPH3) expression than LPS group (P < 0.05). Furthermore, TMP pretreatment promoted Nrf2 and HO-1 expression (P < 0.05). Nrf2-knockout mice or Nrf2 siRNA-transfected MLE12 cells were pretreated with TMP to explore how the Nrf2/HO-1 pathway affected TMP-mediated Golgi stress in endotoxin-induced ALI models. We observed that Nrf2 gene silencing partially reversed the alleviating effect of Golgi stress and the pulmonary protective effect of TMP. CONCLUSION: Our findings showed that TMP therapy reduced endotoxin-induced ALI by suppressing Golgi stress via the Nrf2/HO-1 signaling pathway in vivo and in vitro.


Assuntos
Lesão Pulmonar Aguda , Pirazinas , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Antioxidantes/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Heme Oxigenase-1/genética , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Transdução de Sinais , Pirazinas/farmacologia
18.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240245

RESUMO

The mild oxidative stress induced by low doses of gaseous ozone (O3) activates the antioxidant cell response through the nuclear factor erythroid 2-related factor 2 (Nrf2), thus inducing beneficial effects without cell damage. Mitochondria are sensitive to mild oxidative stress and represent a susceptible O3 target. In this in vitro study, we investigated the mitochondrial response to low O3 doses in the immortalized, non-tumoral muscle C2C12 cells; a multimodal approach including fluorescence microscopy, transmission electron microscopy and biochemistry was used. Results demonstrated that mitochondrial features are finely tuned by low O3 doses. The O3 concentration of 10 µg maintained normal levels of mitochondria-associated Nrf2, promoted the mitochondrial increase of size and cristae extension, reduced cellular reactive oxygen species (ROS) and prevented cell death. Conversely, in 20 µg O3-treated cells, where the association of Nrf2 with the mitochondria drastically dropped, mitochondria underwent more significant swelling, and ROS and cell death increased. This study, therefore, adds original evidence for the involvement of Nrf2 in the dose-dependent response to low O3 concentrations not only as an Antioxidant Response Elements (ARE) gene activator but also as a regulatory/protective factor of mitochondrial function.


Assuntos
Ozônio , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Ozônio/farmacologia , Ozônio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Mioblastos/metabolismo , Mitocôndrias/metabolismo
19.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047024

RESUMO

Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds.


Assuntos
Nefropatias Diabéticas , Fator 2 Relacionado a NF-E2 , Humanos , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Nefropatias Diabéticas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
20.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139215

RESUMO

High energy visible (HEV) blue light is an increasing source of concern for visual health. Polycyclic aromatic hydrocarbons (PAH), a group of compounds found in high concentrations in smokers and polluted environments, accumulate in the retinal pigment epithelium (RPE). HEV absorption by indeno [1,2,3-cd]pyrene (IcdP), a common PAH, synergizes their toxicities and promotes degenerative changes in RPE cells comparable to the ones observed in age-related macular degeneration. In this study, we decipher the processes underlying IcdP and HEV synergic toxicity in human RPE cells. We found that IcdP-HEV toxicity is caused by the loss of the tight coupling between the two metabolic phases ensuring IcdP efficient detoxification. Indeed, IcdP/HEV co-exposure induces an overactivation of key actors in phase I metabolism. IcdP/HEV interaction is also associated with a downregulation of proteins involved in phase II. Our data thus indicate that phase II is hindered in response to co-exposure and that it is insufficient to sustain the enhanced phase I induction. This is reflected by an accelerated production of endogenous reactive oxygen species (ROS) and an increased accumulation of IcdP-related bulky DNA damage. Our work raises the prospect that lifestyle and environmental pollution may be significant modulators of HEV toxicity in the retina.


Assuntos
Epitélio Pigmentado da Retina , Xenobióticos , Humanos , Xenobióticos/toxicidade , Xenobióticos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA