Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Biol Evol ; 37(3): 811-827, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31770430

RESUMO

The diversity of color vision systems found in extant vertebrates suggests that different evolutionary selection pressures have driven specializations in photoreceptor complement and visual pigment spectral tuning appropriate for an animal's behavior, habitat, and life history. Aquatic vertebrates in particular show high variability in chromatic vision and have become important models for understanding the role of color vision in prey detection, predator avoidance, and social interactions. In this study, we examined the capacity for chromatic vision in elasmobranch fishes, a group that have received relatively little attention to date. We used microspectrophotometry to measure the spectral absorbance of the visual pigments in the outer segments of individual photoreceptors from several ray and shark species, and we sequenced the opsin mRNAs obtained from the retinas of the same species, as well as from additional elasmobranch species. We reveal the phylogenetically widespread occurrence of dichromatic color vision in rays based on two cone opsins, RH2 and LWS. We also confirm that all shark species studied to date appear to be cone monochromats but report that in different species the single cone opsin may be of either the LWS or the RH2 class. From this, we infer that cone monochromacy in sharks has evolved independently on multiple occasions. Together with earlier discoveries in secondarily aquatic marine mammals, this suggests that cone-based color vision may be of little use for large marine predators, such as sharks, pinnipeds, and cetaceans.


Assuntos
Opsinas/genética , Opsinas/metabolismo , Retina/metabolismo , Tubarões/metabolismo , Rajidae/metabolismo , Animais , Visão de Cores , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Microespectrofotometria , Filogenia , Células Fotorreceptoras Retinianas Cones/metabolismo , Análise de Sequência de RNA , Tubarões/genética , Rajidae/genética
2.
Mol Biol Evol ; 36(3): 447-457, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590689

RESUMO

Vertebrates have four classes of cone opsin genes derived from two rounds of genome duplication. These are short wavelength sensitive 1(SWS1), short wavelength sensitive 2(SWS2), medium wavelength sensitive (RH2), and long wavelength sensitive (LWS). Teleosts had another genome duplication at their origin and it is believed that only one of each cone opsin survived the ancestral teleost duplication event. We tested this by examining the retinal cones of a basal teleost group, the osteoglossomorphs. Surprisingly, this lineage has lost the typical vertebrate green-sensitive RH2 opsin gene and, instead, has a duplicate of the LWS opsin that is green sensitive. This parallels the situation in mammalian evolution in which the RH2 opsin gene was lost in basal mammals and a green-sensitive opsin re-evolved in Old World, and independently in some New World, primates from an LWS opsin gene. Another group of fish, the characins, possess green-sensitive LWS cones. Phylogenetic analysis shows that the evolution of green-sensitive LWS opsins in these two teleost groups derives from a common ancestral LWS opsin that acquired green sensitivity. Additionally, the nocturnally active African weakly electric fish (Mormyroideae), which are osteoglossomorphs, show a loss of the SWS1 opsin gene. In comparison with the independently evolved nocturnally active South American weakly electric fish (Gymnotiformes) with a functionally monochromatic LWS opsin cone retina, the presence of SWS2, LWS, and LWS2 cone opsins in mormyrids suggests the possibility of color vision.


Assuntos
Opsinas dos Cones/genética , Peixe Elétrico/genética , Sequência de Aminoácidos , Animais , Opsinas dos Cones/química , Células Fotorreceptoras de Vertebrados/química , Filogenia , Sintenia
3.
Proc Biol Sci ; 283(1834)2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27383819

RESUMO

A comprehensive description of the spectral characteristics of retinal photoreceptors in palaeognaths is lacking. Moreover, controversy exists with respect to the spectral sensitivity of the short-wavelength-sensitive-1 (SWS1) opsin-based visual pigment expressed in one type of single cone: previous microspectrophotometric (MSP) measurements in the ostrich (Struthio camelus) suggested a violet-sensitive (VS) SWS1 pigment, but all palaeognath SWS1 opsin sequences obtained to date (including the ostrich) imply that the visual pigment is ultraviolet-sensitive (UVS). In this study, MSP was used to measure the spectral properties of visual pigments and oil droplets in the retinal photoreceptors of the emu (Dromaius novaehollandiae). Results show that the emu resembles most other bird species in possessing four spectrally distinct single cones, as well as double cones and rods. Four cone and a single rod opsin are expressed, each an orthologue of a previously identified pigment. The SWS1 pigment is clearly UVS (wavelength of maximum absorbance [λmax] = 376 nm), with key tuning sites (Phe86 and Cys90) consistent with other vertebrate UVS SWS1 pigments. Palaeognaths would appear, therefore, to have UVS SWS1 pigments. As they are considered to be basal in avian evolution, this suggests that UVS is the most likely ancestral state for birds. The functional significance of a dedicated UVS cone type in the emu is discussed.


Assuntos
Dromaiidae/fisiologia , Opsinas/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Pigmentos da Retina/fisiologia , Visão Ocular , Animais , Raios Ultravioleta
4.
BMC Ecol Evol ; 22(1): 2, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996358

RESUMO

BACKGROUND: Visual opsins are expressed in the compound eyes and ocelli of insects and enable light detection. Three distinct phylogenetic groups of visual opsins are found in insects, named long (LW), short (SW) and ultraviolet (UV) wavelength sensitive opsins. Recently, the LW group was found to be duplicated into the LW2b and the LW2a opsins. The expression of LW2b opsins is ocelli specific in some insects (e.g., bees, cricket, scorpion flies), but the gene was not found in other orders possessing three or less ocelli (e.g., dragonflies, beetles, moths, bugs). In flies, two LW2b homologs have been characterised, with one expressed in the ocelli and the other in the compound eyes. To date, it remains unclear which evolutionary forces have driven gains and losses of LW opsins in insects. Here we take advantage of the recent rapid increase in available sequence data (i.e., from insect genomes, targeted PCR amplification, RNAseq) to characterize the phylogenetic relationships of 1000 opsin sequences in 18 orders of Insects. The resulting phylogeny discriminates between four main groups of opsins, and onto this phylogeny we mapped relevant morphological and life history traits. RESULTS: Our results demonstrate a conserved LW2b opsin only present in insects with three ocelli. Only two groups (Brachycera and Odonata) possess more than one LW2b opsin, likely linked to their life history. In flies, we hypothesize that the duplication of the LW2b opsin occurred after the transition from aquatic to terrestrial larvae. During this transition, higher flies (Brachycera) lost a copy of the LW2a opsin, still expressed and duplicated in the compound eyes of lower flies (Nematocera). In higher flies, the LW2b opsin has been duplicated and expressed in the compound eyes while the ocelli and the LW2b opsin were lost in lower flies. In dragonflies, specialisation of flight capabilities likely drove the diversification of the LW2b visual opsins. CONCLUSION: The presence of the LW2b opsin in insects possessing three ocelli suggests a role in specific flight capabilities (e.g., stationary flight). This study provides the most complete view of the evolution of visual opsin genes in insects yet, and provides new insight into the influence of ocelli and life history traits on opsin evolution in insects.


Assuntos
Características de História de Vida , Odonatos , Animais , Abelhas , Insetos/genética , Odonatos/metabolismo , Opsinas/genética , Filogenia
5.
Artigo em Inglês | MEDLINE | ID: mdl-29496579

RESUMO

The spectral absorbance of photoreceptor visual pigments and the opsin gene class of the visual pigments was investigated in Sardinops melanostictus. Microspectrophotometric (MSP) measurements showed that the rod photoreceptors had peak absorbance spectra (λmax) at 502 nm. The spectral sensitivity of single cones was centered at 393 nm. Double cones had a λmax of 493/522 nm, but a few displayed a red-shifted absorbance of the long-wave member at 542 nm. The mRNAs of six different opsins were isolated from the retina, retrotranscribed, cloned, and sequenced. Three genes encoded opsins in the green-sensitive class (RH2), and three genes encoded opsins in the red-sensitive class (LWS), the ultraviolet (UV)-sensitive (SWS1) class, and the rod class (RH1). A Southern blot analysis showed that the blue-sensitive (SWS2) opsin gene is absent from this species, hence it was concluded that the λmax of 393 nm was generated from the SWS1 opsin. Phylogenetic analyses of S. melanostictus RH1, LWS, and SWS1 sequences placed them with orthologs from other species (e.g., the cyprinids Danio rerio and Carrasius auratus) in Otomorpha. However, unexpectedly, the RH2 sequences were more similar to orthologs in members of the Euteleosteomorpha (e.g., Oryzias latipes and Takifugu rubripes) than to cyprinid RH2 opsins.


Assuntos
Proteínas de Peixes/genética , Pigmentos da Retina/genética , Sequência de Aminoácidos , Proteínas de Peixes/química , Filogenia , Pigmentos da Retina/química , Análise Espectral
6.
Neuron ; 98(1): 67-74.e4, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29551493

RESUMO

Animals rely on mechanosensory feedback from proprioceptors to control locomotory body movements. Unexpectedly, we found that this movement control requires visual opsins. Disrupting the Drosophila opsins NINAE or Rh6 impaired larval locomotion and body contractions, independently of light and vision. Opsins were detected in chordotonal proprioceptors along the larval body, localizing to their ciliated dendrites. Loss of opsins impaired mechanically evoked proprioceptor spiking and cilium ultrastructure. Without NINAE or Rh6, NOMPC mechanotransduction channels leaked from proprioceptor cilia and ciliary Inactive (Iav) channels partly disappeared. Locomotion is shown to require opsins in proprioceptors, and the receptors are found to express the opsin gene Rh7, in addition to ninaE and Rh6. Besides implicating opsins in movement control, this documents roles of non-ciliary, rhabdomeric opsins in cilium organization, providing a model for a key transition in opsin evolution and suggesting that structural roles of rhabdomeric opsins preceded their use for light detection.


Assuntos
Proteínas de Drosophila/biossíntese , Larva/metabolismo , Locomoção/fisiologia , Propriocepção/fisiologia , Rodopsina/biossíntese , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/análise , Drosophila melanogaster , Feminino , Larva/química , Masculino , Mecanotransdução Celular/fisiologia , Rodopsina/análise
7.
Genome Biol Evol ; 6(9): 2380-91, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25193307

RESUMO

Screening of a deeply sequenced transcriptome using Illumina sequencing as well as the genome of the tardigrade Hypsibius dujardini revealed a set of five opsin genes. To clarify the phylogenetic position of these genes and to elucidate the evolutionary history of opsins in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we reconstructed the phylogeny of broadly sampled metazoan opsin genes using maximum likelihood and Bayesian inference methods in conjunction with carefully selected substitution models. According to our findings, the opsin repertoire of H. dujardini comprises representatives of all three major bilaterian opsin clades, including one r-opsin, three c-opsins, and a Group 4 opsin (neuropsin/opsin-5). The identification of the tardigrade ortholog of neuropsin/opsin-5 is the first record of this opsin type in a protostome, but our screening of available metazoan genomes revealed that it is also present in other protostomes. Our opsin phylogeny further suggests that two r-opsins, including an "arthropsin," were present in the last common ancestor of Panarthropoda. Although both r-opsin lineages were retained in Onychophora and Arthropoda, the arthropsin was lost in Tardigrada. The single (most likely visual) r-opsin found in H. dujardini supports the hypothesis of monochromatic vision in the panarthropod ancestor, whereas two duplications of the ancestral panarthropod c-opsin have led to three c-opsins in tardigrades. Although the early-branching nodes are unstable within the metazoans, our findings suggest that the last common ancestor of Bilateria possessed six opsins: Two r-opsins, one c-opsin, and three Group 4 opsins, one of which (Go opsin) was lost in the ecdysozoan lineage.


Assuntos
Evolução Molecular , Invertebrados/genética , Opsinas/genética , Tardígrados/genética , Animais , Duplicação Gênica , Genoma , Invertebrados/classificação , Filogenia , Tardígrados/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA