Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Ophthalmic Physiol Opt ; 43(3): 388-401, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36738176

RESUMO

PURPOSE: To quantify the amount of myopic defocus, contrast modulation and other optical characteristics of two novel spectacle lenses (MiYOSMART by Hoya and Stellest by Essilor) with the inclusion of lenslets in their designs were investigated computationally and experimentally. This paper examined the hypothesis that despite the non-coaxial nature of the optics, image degradation will exist due to the fragmented nature of the base optic when imaging through the lens regions populated by lenslets. METHODS: Optical power was evaluated by computing wavefront vergence and curvature from wavefront slope measured with the Optocraft aberrometer within 1.0 and 6.0 mm apertures across MiYOSMART hexagons and Stellest rings. Point-spread functions (PSFs) were computed using physical (wave) optics and geometrical ray optics principles, and compared with experimental measurements using a 4f optical system. Simulated retinal images and modulation transfer functions (MTFs) were computed from PSF-derived optical transfer functions (OTFs). RESULTS: Mean lenslet power in MiYOSMART was +3.95 ± 0.10 D through the hexagons and +6.00 ± 0.15 D in Stellest in rings 1-5 and decreased by 0.42 D/ring reaching 3.50 D in the final one. Stellest lenslets included up to -0.015 microns of primary spherical aberration. PSFs and retinal images revealed simultaneous contributions of the base optic and lenslets. MTFs showed a decrease in contrast at low (1-10 c/deg) spatial frequencies (SFs) comparable to 0.25 D of defocus, and retention of diminished levels of contrast at higher SFs. CONCLUSIONS: Varying sagittal power and consistent curvature power across the lenslets is an identifying signature of the novel non-coaxial lens design included in both spectacle lenses. Lenslet array structure itself plays a significant role in determining image characteristics. For both lenses, the blur created by the fragmented base optic contributes to the image quality. The reduced MTFs over a wide range of spatial frequencies result in lowered image contrast.


Assuntos
Óculos , Miopia , Humanos , Miopia/terapia , Olho , Refração Ocular
2.
Microsc Microanal ; : 1-7, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074025

RESUMO

Due to less light scattering and a better signal-to-noise ratio in deep imaging, two-photon fluorescence microscopy (TPFM) has been widely used in biomedical photonics since its advent. However, optical aberrations degrade the performance of TPFM in terms of the signal intensity and the imaging depth and therefore restrict its application. Here, we introduce adaptive optics based on the genetic algorithm to detect the distorted wavefront of the excitation laser beam and then perform aberration correction to optimize the performance of TPFM. By using a spatial light modulator as the wavefront controller, the correction phase is obtained through a signal feedback loop and a process of natural selection. The experimental results show that the signal intensity and imaging depth of TPFM are improved after aberration correction. Finally, the method was applied to two-photon fluorescence lifetime imaging, which helps to improve the signal-to-noise ratio and the accuracy of lifetime analysis. Furthermore, the method can also be implemented in other experiments, such as three-photon microscopy, light-sheet microscopy, and super-resolution microscopy.

3.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557263

RESUMO

Commercial hyperspectral imagers (HSIs) are expensive and thus unobtainable for large audiences or research groups with low funding. In this study, we used an existing do-it-yourself push-broom HSI design for which we provide software to correct for spectral smile aberration without using an optical laboratory. The software also corrects an aberration which we call tilt. The tilt is specific for the particular imager design used, but correcting it may be beneficial for other similar devices. The tilt and spectral smile were reduced to zero in terms of used metrics. The software artifact is available as an open-source Github repository. We also present improved casing for the imager design, and, for those readers interested in building their own HSI, we provide print-ready and modifiable versions of the 3D-models required in manufacturing the imager. To our best knowledge, solving the spectral smile correction problem without an optical laboratory has not been previously reported. This study re-solved the problem with simpler and cheaper tools than those commonly utilized. We hope that this study will promote easier access to hyperspectral imaging for all audiences regardless of their financial status and availability of an optical laboratory.

4.
Ophthalmic Physiol Opt ; 40(5): 549-556, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32808381

RESUMO

PURPOSE: High sampling density optical metrology combined with pupil- and image-plane numerical analyses were applied to evaluate a novel spectacle lens containing multiple small zones designed to slow myopia progression. METHODS: High-resolution aberrometry (ClearWave, www.lumetrics.com) was used to sample wavefront slopes of a novel spectacle lens, Defocus Incorporated Multiple Segments (DIMS) (www.hoya.com), incorporating many small, positive-powered lenslets in its periphery. Using wavefront slope and error maps, custom MATLAB software ('Indiana Wavefront Analyzer') was used to compute image-plane point-spread functions (PSF), modulation transfer functions (MTF), simulated images and power distributions created by the dual-focus optic for different pupil sizes and target vergences. RESULTS: Outside of a central 10 mm zone containing single distance optical power, a hexagonal array of small 1 mm lenslets with nearest-neighbour separations of 0.5 mm were distributed over the lens periphery. Sagittal and curvature-based measures of optical power imperfectly captured the consistent +3.50 D add produced by the lenslets. Image plane simulations revealed multiple PSFs and poor image quality at the lenslet focal plane. Blur at the distance optic focal plane was consistent with a combination of diffraction blur from the distance optic and the approximately +3.50 D of defocus from the 1 mm diameter near optic zones. CONCLUSION: Converging the defocused beams generated by the multiple small (1 mm diameter) lenslets to a blurred image at the distance focal plane produced a blur magnitude determined by the small lenslet diameter and not the overall pupil diameter. The distance optic located in between the near-add lenslets determines the limits of the optical quality achievable by the lens. When compared to the optics of a traditional concentric-zone dual-focus contact lens, the optics of the DIMS lens generates higher-contrast images at low spatial frequencies (<7 cycles per degree), but lower-contrast at high spatial frequencies.


Assuntos
Lentes de Contato , Óculos , Miopia/terapia , Óptica e Fotônica , Refração Ocular/fisiologia , Acuidade Visual , Aberrometria , Desenho de Equipamento , Humanos , Miopia/fisiopatologia
5.
J Synchrotron Radiat ; 26(Pt 4): 1058-1068, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274428

RESUMO

The optical design of a novel spectrometer is presented, combining a cylindrically convex pre-mirror with a cylindrically concave varied-line-spacing grating (both in the meridional) to deliver a resolving power of 100000-200000 in the `water window' (2-5 nm). Most remarkably, the extremely high spectral resolution is achieved for an effective meridional source size of 50 µm (r.m.s.); this property could potentially be applied to diagnose SASE-FEL and well resolve individual single spikes in its radiation spectrum. The overall optical aberrations of the system are well analysed and compensated, providing an excellent flat-field at the detector domain throughout the whole spectral range. Also, a machine-learning scheme - SVM - is introduced to explore and reconstruct the optimal system with high efficiency.

6.
J Synchrotron Radiat ; 25(Pt 3): 738-747, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714183

RESUMO

The authors report a novel scheme for a grazing-incidence spectrometer forming an excellent meridional flat field in its detector domain to deliver the desired spectral resolution throughout the full designated spectral range, while reducing the sagittal astigmatism substantially to enhance the spectral intensity. The optical properties of the system are thoroughly investigated and optimized, and the detector plane is fitted well to the meridional or sagittal focal curves. The authors demonstrated that a resolving power of 6000-18000 could be achieved within the `water window' (2-5 nm) for an effective meridional source size of 200 µm (r.m.s.), and it would be further improved to 20000-40000 if the source size was confined to 50 µm (r.m.s.).

7.
Pak J Med Sci ; 29(4): 982-5, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24353672

RESUMO

OBJECTIVE: To assess high order and spherical aberrations results of hydrophobic acrylic AMO Sensar AR40E and hydrophobic acrylic Alcon AcrySof SA60AT intraocular lenses after implantation in cases with bilateral cataract. METHODS: Cases diagnosed as bilateral cataract were included in the study and preoperative aberration measurements were recorded by using Nidek OPD SCAN-ARK 1000. Groups were created by implanting AMO Sensar AR40E to one eye of the patients, while Alcon AcrySof SA60AT into the other in a prospective and randomized manner. Aberration measurements were recorded after one and two months of surgery. RESULTS: Overall, 40 eyes in 20 patients (11 women and 9 men) were included in the study. All patients underwent bilateral phacoemulsification surgery due to cataract. There were 20 eyes in both groups. Mean age was 62.4 (range: 31-82) years. There was no significant difference in aberrations recorded before surgery and one and two months after surgery in both groups. (p<0.05). CONCLUSION: There was no difference among spherical intraocular lenses used in this study.

8.
Ophthalmol Ther ; 12(3): 1569-1582, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36856979

RESUMO

INTRODUCTION: This study performs optical aberration assessment in patients using a novel ultra-high-resolution device. The objective of this study is to analyze optical aberrations, especially the very high order wavefront (more than 10th order of Zernike coefficients), and compare between keratoconus and healthy patients. METHODS: In this cross-sectional study, we analyzed 43 eyes from 25 healthy patients and 43 eyes from 27 patients with keratoconus using corneal tomography and a very high-resolution (8.55 µm) aberrometer prototype (T-eyede) outfitted with a sensor originally developed for use in the field of astrophysics. Corneal aberration values were assessed using an optical model built with Zemax optical software, while ocular aberrations were assessed using T-eyede. In addition, image-processing analysis was performed of the wavefront phase, creating a high-pass filter map. RESULTS: We found lower values for ocular aberrations than corneal aberrations in both groups (p < 0.001). Specifically, we found a reduction in primary astigmatism (0.145 µm) and primary coma (0.017 µm). Also, the keratoconus group showed significantly higher wavefront aberration values compared with controls (p < 0.001). An analysis of the high-pass filter map revealed 2 contrasting results: one smooth or clear, while the other presented a banding pattern. Almost all in the control group (95%) showed the first pattern, while 77% of the keratoconus group showed a banding pattern on the filtered map (chi-squared test, p < 0.001). CONCLUSION: This device provides reliable, precise measurements of ocular aberrations that correlate well with corneal aberrations. Furthermore, the extraordinary high-resolution measurements revealed unprecedented micro changes in the wavefront phase of patients with keratoconus that varied with disease stage. These findings could lead to new screening or follow-up methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA