RESUMO
Psychrophily is a phenotype describing microbial growth at low temperatures; elucidating the biomolecular and genomic adaptations necessary for survival in the cold is important for understanding life in extreme environments on Earth and in outer space. We used comparative genomics and temperature growth experiments of bacteria from the family Colwelliaceae to identify genomic factors correlated with optimal growth temperature (OGT). A phylogenomic analysis of 67 public and 39 newly sequenced strains revealed three main clades of Colwelliaceae. Temperature growth experiments revealed significant differences in mean OGT by clade, wherein strains of Colwelliaceae had similar growth rates at -1 °C but varied in their ability to tolerate 17 °C. Using amino acid compositional indices, a multiple linear regression model was constructed to predict the OGT of these organisms (RMSE 5.2 °C). Investigation of Colwelliaceae functional genes revealed a putative cold-adaptive gene cassette that was present in psychrophilic strains but absent in a closely related strain with a significantly higher OGT. This study also presents genomic evidence suggesting that the clade of Colwelliaceae containing Colwellia hornerae should be investigated as a new genus. These contributions offer key insights into the psychrophily phenotype and its underlying genomic foundation in the family Colwelliaceae.
Assuntos
Adaptação Fisiológica , Temperatura Baixa , Genoma Bacteriano , Filogenia , Aclimatação , Alteromonadaceae/genéticaRESUMO
The standard genetic code determines that in most species, including viruses, there are 20 amino acids that are coded by 61 codons, while the other three codons are stop triplets. Considering the whole proteome each species features its own amino acid frequencies, given the slow rate of change, closely related species display similar GC content and amino acids usage. In contrast, distantly related species display different amino acid frequencies. Furthermore, within certain multicellular species, as mammals, intragenomic differences in the usage of amino acids are evident. In this communication, we shall summarize some of the most prominent and well-established factors that determine the differences found in the amino acid usage, both across evolution and intragenomically.
Assuntos
Aminoácidos , Código Genético , Animais , Aminoácidos/genética , Códon/genética , Composição de Bases , Proteoma/genética , Evolução Molecular , Mamíferos/genéticaRESUMO
In order to grow in any given environment, bacteria need to collect information about the medium composition and implement suitable growth strategies by adjusting their regulatory and metabolic degrees of freedom. In the standard sense, optimal strategy selection is achieved when bacteria grow at the fastest rate possible in that medium. While this view of optimality is well suited for cells that have perfect knowledge about their surroundings (e.g. nutrient levels), things are more involved in uncertain or fluctuating conditions, especially when changes occur over timescales comparable to (or faster than) those required to organize a response. Information theory however provides recipes for how cells can choose the optimal growth strategy under uncertainty about the stress levels they will face. Here we analyse the theoretically optimal scenarios for a coarse-grained, experiment-inspired model of bacterial metabolism for growth in a medium described by the (static) probability density of a single variable (the 'stress level'). We show that heterogeneity in growth rates consistently emerges as the optimal response when the environment is sufficiently complex and/or when perfect adjustment of metabolic degrees of freedom is not possible (e.g. due to limited resources). In addition, outcomes close to those achievable with unlimited resources are often attained effectively with a modest amount of fine tuning. In other terms, heterogeneous population structures in complex media may be rather robust with respect to the resources available to probe the environment and adjust reaction rates.
Assuntos
Bactérias , Modelos TeóricosRESUMO
Growth measurements are largely uninterpretable without comparison to a growth chart. Consequently, the characteristics of a growth chart become an integral component of the interpretation of growth measurements. The concepts of optimal growth and tempo are well recognised by auxologists, yet their implications for interpretation of growth measurements remain problematic. This narrative review discusses the concept of optimal growth and how it serves as a guiding principle in the development and use of growth charts. The challenges of operationalising tempo for growth assessment are also discussed. Illustrative examples highlight the importance of these two central concepts in the use and interpretation of growth measurements.
Assuntos
Gráficos de Crescimento , HumanosRESUMO
BACKGROUND: GC pairs are generally more stable than AT pairs; GC-rich genomes were proposed to be more adapted to high temperatures than AT-rich genomes. Previous studies consistently showed positive correlations between growth temperature and the GC contents of structural RNA genes. However, for the whole genome sequences and the silent sites of the codons in protein-coding genes, the relationship between GC content and growth temperature is in a long-lasting debate. RESULTS: With a dataset much larger than previous studies (681 bacteria and 155 archaea with completely assembled genomes), our phylogenetic comparative analyses showed positive correlations between optimal growth temperature (Topt) and GC content both in bacterial and archaeal structural RNA genes and in bacterial whole genome sequences, chromosomal sequences, plasmid sequences, core genes, and accessory genes. However, in the 155 archaea, we did not observe a significant positive correlation of Topt with whole-genome GC content (GCw) or GC content at four-fold degenerate sites. We randomly drew 155 samples from the 681 bacteria for 1000 rounds. In most cases (> 95%), the positive correlations between Topt and genomic GC contents became statistically nonsignificant (P > 0.05). This result suggested that the small sample sizes might account for the lack of positive correlations between growth temperature and genomic GC content in the 155 archaea and the bacterial samples of previous studies. Comparing the GC content among four categories (psychrophiles/psychrotrophiles, mesophiles, thermophiles, and hyperthermophiles) also revealed a positive correlation between GCw and growth temperature in bacteria. By including the GCw of incompletely assembled genomes, we expanded the sample size of archaea to 303. Positive correlations between GCw and Topt appear especially after excluding the halophilic archaea whose GC contents might be strongly shaped by intense UV radiation. CONCLUSIONS: This study explains the previous contradictory observations and ends a long debate. Prokaryotes growing in high temperatures have higher GC contents. Thermal adaptation is one possible explanation for the positive association. Meanwhile, we propose that the elevated efficiency of DNA repair in response to heat mutagenesis might have the by-product of increasing GC content like that happens in intracellular symbionts and marine bacterioplankton.
Assuntos
Archaea , Células Procarióticas , Archaea/genética , Composição de Bases , Filogenia , TemperaturaRESUMO
AIMS: Bacterial response to temperature changes can influence their pathogenicity to plants and humans. Changes in temperature can affect cellular and physiological responses in bacteria that can in turn affect the evolution and prevalence of antibiotic-resistance genes. Yet, how antibiotic-resistance genes influence microbial temperature response is poorly understood. METHODS AND RESULTS: We examined growth rates and physiological responses to temperature in two species-E. coli and Staph. epidermidis-after evolved resistance to 13 antibiotics. We found that evolved resistance results in species-, strain- and antibiotic-specific shifts in optimal temperature. When E. coli evolves resistance to nucleic acid and cell wall inhibitors, their optimal growth temperature decreases, and when Staph. epidermidis and E. coli evolve resistance to protein synthesis and their optimal temperature increases. Intriguingly, when Staph. epidermidis evolves resistance to Teicoplanin, fitness also increases in drug-free environments, independent of temperature response. CONCLUSION: Our results highlight how the complexity of antibiotic resistance is amplified when considering physiological responses to temperature. SIGNIFICANCE: Bacteria continuously respond to changing temperatures-whether through increased body temperature during fever, climate change or other factors. It is crucial to understand the interactions between antibiotic resistance and temperature.
Assuntos
Infecções por Escherichia coli , Ácidos Nucleicos , Infecções Estafilocócicas , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos , Escherichia coli , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus epidermidis/genética , Teicoplanina , TemperaturaRESUMO
The yeasts involved in the ripening process of artisanal soft raw ewe milk Protected Designation of Origin (PDO) Torta del Casar and Queso de la Serena cheeses produced in Extremadura, Spain, were isolated throughout their ripening process, strain typed, and characterized for some important technological properties. A total of 508 yeast isolates were obtained and identified by inter-single sequence repeat anchored PCR amplification analysis and subsequent sequencing of the internal transcribed spacer ITS1/ITS2 5.8S rRNA. A total of 19 yeast species representing 8 genera were identified. Debaryomyces hansenii, Pichia kudriavzevii, Kluyveromyces lactis, and Yarrowia lipolytica were the predominant species. We selected 157 isolates, by genotyping and origin, for technological characterization. The evaluation of yeast isolates' growth under stress conditions of cheese ripening showed that 87 presented better performance. Among them, 71 isolates were not able to catabolize tyrosine to produce a brown pigment. Principal component analysis of the biochemical features of these isolates showed that 9 strains stood out, 3 K. lactis strains (2287, 2725, and 1507), 2 Pichia jadinii (1731 and 433), 2 Yarrowia alimentaria (1204 and 2150), Y. lipolytica 2495 and P. kudriavzevii 373. These strains displayed strong extracellular proteolytic activity on skim milk agar as well as an adequate enzymatic profile (strong aminopeptidase and weak protease activity), suggesting their great potential for cheese proteolysis. Extracellular lipolytic activity was mainly restricted to Yarrowia spp. isolates and weakly present in P. kudriavzevii 373 and K. lactis 2725, although enzymatic characterization by API-ZYM (bioMérieux SA) evidenced that all may contribute, at least in part, to the lipolysis process. Moreover, these strains were able to assimilate lactose, galactose, and glucose at NaCl concentrations higher than that usually found in cheese. However, lactate and citrate assimilation were limited to Y. lipolytica 2495, P. kudriavzevii 373, and P. jadinii 433, and may contribute to the alkalinizing process relevant to biochemical processes that take place in the last stages of ripening. By contrast, K. lactis strains showed acidifying capacity and ß-galactosidase activity and may take part in the initial stages of ripening, together with lactic acid bacteria. Thus, considering the technological characteristics studied, the 9 selected strains presented biochemical features well suited to their potential use as adjunct cultures, alone or in combination with autochthonous starter bacteria in the cheesemaking process, to overcome the heterogeneity of these PDO cheeses, preserving their unique sensory characteristics.
Assuntos
Queijo , Animais , Candida , Queijo/microbiologia , Microbiologia de Alimentos , Leite/microbiologia , Ovinos , LevedurasRESUMO
This study addresses the need to examine the thermally mediated interactions of fish with their natural environment by investigating the shift in thermal habitat occupation for sympatric Brook and Brown Trout populations. We observed upstream Brook Trout and Brown Trout population shifts during the summer, with thermal habitats showing an increased number of Brown Trout, while some sites also displayed a decrease in the number of Brook Trout. Overall, there was an increased incidence of overlapping habitat occupation at the end of the summer. Brown Trout occupied optimal resting and feeding thermal habitat locations, which can potentially affect growth rates and Brook Trout's survival. Population shifts did not occur at elevated water temperatures as expected but seem driven by temperatures that are optimal for growth. Observed population shifts can lead to increased interactions between the two species throughout the summer. The results provide a better understanding of how future, longer-term, thermal habitat modifications may modify species interactions, which are critical for salmonid conservation efforts.
Assuntos
Ecossistema , Estações do Ano , Temperatura , Truta , Água , Animais , Pennsylvania , Dinâmica Populacional , Rios , SimpatriaRESUMO
The aquaculture of tilapia (Oreochromis sp.) is adversely affected by the sensitivity to cold stress. A large number of genes in tilapia were found to be regulated by cold stress, but their functions and mechanisms in cold tolerance remain largely unknown, partially due to the lack of a suitable in vitro model. An immortal neural cell line designated as tilapia brain neural (TBN) was established from brain tissue of the genetically improved farmed tilapia strain of Nile tilapia (Oreochromis niloticus). The TBN cells show a neuron-like morphology at low density and form a fibroblast-like monolayer at high density. Transcriptome profiling through RNA-sequencing revealed that a total of 15,011 genes were expressed in the TBN cells. The TBN cells express a wide array of marker genes for neural cells. A comparative analysis of the featured genes among the 17 cell clusters isolated from the subventricular zone of mouse brain revealed the highest transcriptome similarity between the TBN cells and the transient amplifying progenitors (TAPs). The TBN cells tolerate relatively high culture temperatures, and the highest growth rate was observed for the cells cultured at 32°C compared with those at 30°C, 28°C and 26°C. Nonetheless, this cell line is cold sensitive. Exposure of the cells to 16°C or lower temperatures significantly decreased cell confluences and induced apoptosis. The TBN cells were more sensitive to cold stress than the ZF4 cells (embryonic zebrafish fibroblasts). Moreover, the TBN cells can be efficiently transfected through electroporation. This study provides an invaluable research tool to understand the nature of cold sensitivity of tilapia and to dissect the function and mechanism of genes in regulating cold tolerance of fish.
Assuntos
Encéfalo/citologia , Linhagem Celular , Ciclídeos/fisiologia , Animais , Temperatura Baixa , Perfilação da Expressão Gênica , Camundongos , Neurônios/citologia , TranscriptomaRESUMO
Tumor organoids mimic the architecture and heterogeneity of in vivo tumors and enable studies of collective interactions between tumor cells as well as with their surrounding microenvironment. Although tumor organoids hold significant promise as cancer models, they are also more costly and labor-intensive to cultivate than traditional 2D cell culture. We sought to identify critical factors regulating organoid growth ex vivo, and to use these observations to develop a more efficient organoid expansion method. Using time-lapse imaging of mouse mammary tumor organoids in 3D culture, we observed that outgrowth potential varies non-linearly with initial organoid size. Maximal outgrowth occurred in organoids with a starting size between ~10 to 1000 cells. Based on these observations, we developed a suspension culture method that maintains organoids in the ideal size range, enabling expansion from 1 million to over 100 million cells in less than 2 weeks and less than 3 hours of hands-on time. Our method facilitates the rapid, cost-effective expansion of organoids for CRISPR based studies and other assays requiring a large amount of organoid starting material.
Assuntos
Neoplasias da Mama/patologia , Técnicas de Cultura de Células/métodos , Organoides/patologia , Esferoides Celulares/patologia , Animais , Neoplasias da Mama/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Microscopia Intravital , Camundongos , Imagem com Lapso de Tempo , Microambiente Tumoral/genéticaRESUMO
BACKGROUND: The question of appropriate discount rates in health economic evaluations has been a point of continuous scientific debate. Today, it is widely accepted that, under certain conditions regarding the social objective of the healthcare decision maker and the fixity of the budget for healthcare, a lower discount rate for health gains than for costs is justified if the consumption value of health is increasing over time. To date, however, there is neither empirical evidence nor a strong theoretical a priori supporting this assumption. Given this lack of evidence, we offer an additional approach to check the appropriateness of differential discounting. METHODS: Our approach is based on a two-goods extension of Ramsey's optimal growth model which allows accounting for changing relative values of goods explicitly. Assuming a constant elasticity of substitution (CES) utility function, the growth rate of the consumption value of health depends on three variables: the growth rate of consumption, the growth rate of health, and the income elasticity of the willingness to pay for health. Based on a review of the empirical literature on the monetary value of health, we apply the approach to obtain an empirical value of the growth rate of the consumption value of health in Germany. RESULTS: The empirical literature suggests that the income elasticity of the willingness to pay for health is probably not larger but rather smaller than 1 and probably not smaller but rather larger than 0.2. Combining this finding with reasonable values of the annual growth rates in consumption (1.5-1.6%) and health (0.1%) suggests, for Germany, an annual growth rate of the consumption value of health between 0.3 and 1.5%. CONCLUSION: In the light of a two-goods extension of Ramsey's optimal growth model, the available empirical evidence makes the case for a growing consumption value of health. Therefore, the current German practice of applying the same discount rate to costs and health gains introduces a systematic bias against healthcare technologies with upfront costs and long-term health effects. Differential discounting with a lower rate for health effects appears to be a more appropriate discounting model.
RESUMO
BACKGROUND: The ambient temperature of all habitats is a key physical property that shapes the biology of microbes inhabiting them. The optimal growth temperature (OGT) of a microbe, is therefore a key piece of data needed to understand evolutionary adaptations manifested in their genome sequence. Unfortunately there is no growth temperature database or easily downloadable dataset encompassing the majority of cultured microorganisms. We are thus limited in interpreting genomic data to identify temperature adaptations in microbes. RESULTS: In this work I significantly contribute to closing this gap by mining data from major culture collection centres to obtain growth temperature data for a nonredundant set of 21,498 microbes. The dataset ( https://doi.org/10.5281/zenodo.1175608 ) contains mainly bacteria and archaea and spans psychrophiles, mesophiles, thermophiles and hyperthermophiles. Using this data a full 43% of all protein entries in the UniProt database can be annotated with the growth temperature of the species from which they originate. I validate the dataset by showing a Pearson correlation of up to 0.89 between growth temperature and mean enzyme optima, a physiological property directly influenced by the growth temperature. Using the temperature dataset I correlate the genomic occurance of enzyme functional annotations with growth temperature. I identify 319 enzyme functions that either increase or decrease in occurrence with temperature. Eight metabolic pathways were statistically enriched for these enzyme functions. Furthermore, I establish a correlation between 33 domains of unknown function (DUFs) with growth temperature in microbes, four of which (DUF438, DUF1524, DUF1957 and DUF3458_C) were significant in both archaea and bacteria. CONCLUSIONS: The growth temperature dataset enables large-scale correlation analysis with enzyme function- and domain-level annotations. Growth-temperature dependent changes in their occurrence highlight potential evolutionary adaptations. A few of the identified changes are previously known, such as the preference for menaquinone biosynthesis through the futalosine pathway in bacteria growing at high temperatures. Others represent important starting points for future studies, such as DUFs where their occurrence change with temperature. The growth temperature dataset should become a valuable community resource and will find additional, important, uses in correlating genomic, transcriptomic, proteomic, metabolomic, phenotypic or taxonomic properties with temperature in future studies.
Assuntos
Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Adaptação Fisiológica , Bactérias/classificação , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Filogenia , TemperaturaRESUMO
The purpose of the INTERGROWTH-21st project was to develop international, prescriptive standards for fetal growth assessed by ultrasound and fundal height, preterm postnatal growth, newborn size and body composition, maternal weight gain, and infant development at the age of 2 years. Hence, we have produced, based on World Health Organization recommendations, the first comprehensive set of international standards of optimal fetal and newborn growth that perfectly match the existing World Health Organization child growth standards. Uniquely, the same population was followed up longitudinally from 9 weeks of fetal life to 2 years of age, with growth, health, and nutritional status assessment at 2 years supporting the appropriateness of the population for construction of growth standards. The resulting package of clinical tools allows, for the first time, growth and development to be monitored from early pregnancy to infancy. The INTERGROWTH-21st fetal growth standards, which are based on observing >4500 healthy pregnancies, nested in a study of >59,000 pregnancies from populations with low rates of adverse perinatal outcomes, show how fetuses should grow-rather than the more limited objective of past references, which describe how they have grown at specific times and locations. Our work has confirmed the fundamental biological principle that variation in human growth across different populations is mostly dependent on environmental, nutritional, and socioeconomic factors. We found that when mothers' nutritional and health needs are met and there are few environmental constraints on growth, <3.5% of the total variability of skeletal growth was due to differences between populations. We propose that not recognizing the concept of optimal growth could deprive the most vulnerable mothers and their babies of optimal care, because local growth charts normalize those at highest risk for growth restriction and overweight, and can be valuable for policymakers to ensure rigorous evaluation and effective resource allocation. We strongly encourage colleagues to join efforts to provide integrated, evidence-based growth monitoring to pregnant women and their infants worldwide. Presently, there are 23.3 million infants born small for gestational age in low- to middle-income countries according to the INTERGROWTH-21st newborn size standards. We suggest that misclassification of these infants by using local charts could affect the delivery of optimal health care.
Assuntos
Desenvolvimento Infantil , Desenvolvimento Fetal , Ganho de Peso na Gestação , Gráficos de Crescimento , Adulto , Composição Corporal , Cefalometria , Estatura Cabeça-Cóccix , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Recém-Nascido Pequeno para a Idade Gestacional , Gravidez , Valores de Referência , Ultrassonografia Pré-Natal , Útero , Organização Mundial da SaúdeRESUMO
A strictly anaerobic, thermophilic bacterium, designated strain YS13, was isolated from a geothermal hot spring. Phylogenetic analysis using the 16S rRNA genes and cpn60 UT genes suggested strain YS13 as a species of Thermoanaerobacter. Using cellobiose or xylose as carbon source, YS13 was able to grow over a wide range of temperatures (45-70 °C), and pHs (pH 5.0-9.0), with optimum growth at 65 °C and pH 7.0. Metabolic profiling on cellobiose, glucose, or xylose in 1191 medium showed that H2, CO2, ethanol, acetate, and lactate were the major metabolites. Lactate was the predominant end product from glucose or cellobiose fermentations, whereas H2 and acetate were the dominant end products from xylose fermentation. The metabolic balance shifted away from ethanol to H2, acetate, and lactate when YS13 was grown on cellobiose as temperatures increased from 45 to 70 °C. When YS13 was grown on xylose, a metabolic shift from lactate to H2, CO2, and acetate was observed in cultures as the temperature of incubation increased from 45 to 65 °C, whereas a shift from ethanol and CO2 to H2, acetate, and lactate was observed in cultures incubated at 70 °C.
Assuntos
Thermoanaerobacter/crescimento & desenvolvimento , Thermoanaerobacter/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , Celobiose/metabolismo , Fontes Termais/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Temperatura , Thermoanaerobacter/classificação , Thermoanaerobacter/isolamento & purificaçãoRESUMO
Optimal husbandry techniques are desirable for any headstart program, but frequently are unknown for rare species. Here we describe key reproductive variables and determine optimal incubation temperature and diet diversity for Eastern Indigo Snakes (Drymarchon couperi) grown in laboratory settings. Optimal incubation temperature was estimated from two variables dependent on temperature, shell dimpling, a surrogate for death from fungal infection, and deviation of an egg from an ovoid shape, a surrogate for death from developmental anomalies. Based on these relationships and size at hatching we determined optimal incubation temperature to be 26°C. Additionally, we used incubation data to assess the effect of temperature on duration of incubation and size of hatchlings. We also examined hatchling diets necessary to achieve optimal growth over a 21-month period. These snakes exhibited a positive linear relationship between total mass eaten and growth rate, when individuals were fed less than 1711 g of prey, and displayed constant growth for individuals exceeding 1711 g of prey. Similarly, growth rate increased linearly with increasing diet diversity up to a moderately diverse diet, followed by constant growth for higher levels of diet diversity. Of the two components of diet diversity, diet evenness played a stronger role than diet richness in explaining variance in hatchling growth. These patterns document that our goal of satiating snakes was achieved for some individuals but not others and that diets in which total grams consumed over the first 21 months of life is distributed equivalently among at least three prey genera yielded the fastest growth rates for hatchling snakes.
Assuntos
Criação de Animais Domésticos/normas , Animais de Zoológico/fisiologia , Dieta/veterinária , Serpentes/fisiologia , Animais , Animais de Zoológico/crescimento & desenvolvimento , Tamanho Corporal/fisiologia , Casca de Ovo/anatomia & histologia , Serpentes/crescimento & desenvolvimento , TemperaturaRESUMO
Thermus thermophilus is an extremely thermophilic bacterium with significant biotechnological potential. In this work, we have characterized aerobic growth characteristics of T. thermophilus HB8 at temperatures between 50 and 85°C, constructed a metabolic network model of its central carbon metabolism and validated the model using (13)C-metabolic flux analysis ((13)C-MFA). First, cells were grown in batch cultures in custom constructed mini-bioreactors at different temperatures to determine optimal growth conditions. The optimal temperature for T. thermophilus grown on defined medium with glucose was 81°C. The maximum growth rate was 0.25h(-1). Between 50 and 81°C the growth rate increased by 7-fold and the temperature dependence was described well by an Arrhenius model with an activation energy of 47kJ/mol. Next, we performed a (13)C-labeling experiment with [1,2-(13)C] glucose as the tracer and calculated intracellular metabolic fluxes using (13)C-MFA. The results provided support for the constructed network model and highlighted several interesting characteristics of T. thermophilus metabolism. We found that T. thermophilus largely uses glycolysis and TCA cycle to produce biosynthetic precursors, ATP and reducing equivalents needed for cells growth. Consistent with its proposed metabolic network model, we did not detect any oxidative pentose phosphate pathway flux or Entner-Doudoroff pathway activity. The biomass precursors erythrose-4-phosphate and ribose-5-phosphate were produced via the non-oxidative pentose phosphate pathway, and largely via transketolase, with little contribution from transaldolase. The high biomass yield on glucose that was measured experimentally was also confirmed independently by (13)C-MFA. The results presented here provide a solid foundation for future studies of T. thermophilus and its metabolic engineering applications.
Assuntos
Ciclo do Ácido Cítrico/fisiologia , Glicólise/fisiologia , Temperatura Alta , Via de Pentose Fosfato/fisiologia , Thermus thermophilus/crescimento & desenvolvimento , Isótopos de Carbono/metabolismo , Isótopos de Carbono/farmacologia , Marcação por Isótopo/métodosRESUMO
Livestock manure is a major reservoir for pathogens, posing significant environmental risks if used untreated. The efficacy of composting in fully inactivating pathogens remains controversial, particularly regarding the influence of their optimal growth temperature (OGT). This study investigated the composition and dynamic changes of pathogen communities and virulence factors (VFs) during the composting of chicken, bovine, ovine, and swine manure. We identified 134 pathogens across 16 composting piles, with ten pathogens exhibited increased abundance and transcriptional activity in curing phase. They included high-risk VFs-carrying pathogens, such as Mycolicibacterium thermoresistibile and Mycolicibacterium phlei, indicating the hidden pathogen risk in mature compost. Community-scale analyses revealed a linkage of these pathogens' survival with their low OGT and an increased number of heat shock proteins (HSPs), enabling them to tolerate high temperatures and regrow. Integrating our data with prior composting studies, we found that the surviving pathogens express 42 VFs and their persistence in mature compost was a widespread issue, highlighting a greater risk of pathogen spread than previously thought. Finally, we compiled the 134 pathogens and 1009 VFs into a comprehensive Environmental Risk of Compost Pathogens (ERCP) catalog, providing a valuable resource for routine pathogen surveillance.
RESUMO
The exploration of the western forests of Algeria led to the remarkable discovery of the first occurrence of Lepista sordida, an edible wild mushroom of significant culinary importance for the local community, traditionally consumed in its natural state. This discovery was made possible through the use of various methods, including macroscopic observations (revealing a violet color) as well as microscopic observations conducted using scanning electron microscopy (SEM), revealing a cylindrical shape with distinct contours. Additionally, molecular analyses were conducted. Genomic DNA was extracted from the mycelium, followed by DNA amplification using specific primers targeting the internal transcribed spacer region (ITS1 and ITS2). After PCR reactions and sequencing of the obtained amplicons, the nucleotide sequences of the mycelium were submitted to the GenBank database of NCBI with the assigned accession number: MZ928450.1. These sequences were subsequently used to construct the phylogenetic tree. Furthermore, an in-depth study of physicochemical parameters was undertaken to determine the optimal conditions for cultivating the mycelium of this edible wild mushroom, including pH, temperature, relative humidity, and light. Different temperatures were examined: 20, 25, 30, 35, 40, and 45 °C. The effect of pH on mycelium growth was studied using a PDA agar medium with buffered values of 4, 5, 5.6, 6, 7, and 8. Similarly, six levels of relative humidity were tested: 14, 50, 74, 80, 95, and 100%. A study on the impact of light on mycelium growth was conducted by exposing Petri dishes inoculated with PDA to a light intensity of 500 lux for 5, 10, 15, 20, and 24 h. The results clearly demonstrated that variations in these different physicochemical parameters significantly influenced mycelium growth. For the Lepista sordida strain, growth was favored at pH levels of 4, 5, 6, and 6, with no growth observed at pH 7 and 8. The optimal temperature range for mycelium growth of Lepista sordida was 20-25 °C, while no growth was observed at 30, 35, 40, and 45 °C. Relative humidity levels of 74, 80, and 95% showed no significant differences. Optimization of mycelium growth and primordia production in Lepista sordida were successfully achieved. Optimal conditions for the primordia phase were identified as 25 °C, with humidity ranging from 90 to 95%. A nutritional analysis of fresh sporophores was conducted using established analytical methods. Notably, the nutritional composition of Lepista sordida sporophores exhibited high significance for the following parameters: moisture content (67.23 ± 1.90%), ash content (9.35 ± 0.66%), fat content (3.25 ± 0.24%), protein content (17.22 ± 0.38%), and carbohydrate content (63.83 ± 1.23%).
RESUMO
While microbiome alterations are increasingly proposed as a rapid mechanism to buffer organisms under changing environmental conditions, studies of these processes in the marine realm are lagging far behind their terrestrial counterparts. Here, we used a controlled laboratory experiment to examine whether the thermal tolerance of the brown seaweed Dictyota dichotoma, a common species in European coastal ecosystems, could be enhanced by the repeated addition of bacteria from its natural environment. Juvenile algae from three genotypes were subjected for two weeks to a temperature gradient, spanning almost the entire thermal range that can be tolerated by the species (11-30 °C). At the start of the experiment and again in the middle of the experiment, the algae were inoculated with bacteria from their natural environment or left untouched as a control. Relative growth rate was measured over the two-week period, and we assessed bacterial community composition prior to and at the end of the experiment. Since the growth of D. dichotoma over the full thermal gradient was not affected by supplementing bacteria, our results indicate no scope for bacterial-mediated stress alleviation. The minimal changes in the bacterial communities linked to bacterial addition, particularly at temperatures above the thermal optimum (22-23 °C), suggest the existence of a barrier to bacterial recruitment. These findings indicate that ecological bacterial rescue is unlikely to play a role in mitigating the effects of ocean warming on this brown seaweed.
Assuntos
Phaeophyceae , Alga Marinha , Ecossistema , Temperatura , Concentração de Íons de HidrogênioRESUMO
Over the last few decades, there has been an ongoing debate over both the optimal feeding mode for very premature neonates (VPN) as well as what their optimal growth should be. Despite the American Academy of Pediatric declaring since 1997 that the growth of VPN should follow the trajectory of intrauterine fetal growth, differences of opinion persist, feeding policies keep changing, and the growth and development of VPN remains extremely variable not only between countries, but even between neighboring neonatal units. Even the appropriate terminology to express poor postnatal growth (extrauterine growth restriction (EGR) and postnatal growth failure (PGF)) remains a subject of ongoing discussion. A number of recent publications have shown that by implementing breast milk fortification and closely following growth and adjusting nutrition accordingly, as per the consensus guidelines of the major Neonatal Societies, we could achieve growth that closely follows birth centiles. A recent position paper from EPSGAN recommending targeted nutritional support to cover the energy and protein deficits sustained by VPN during periods of critical illness further strengthens the above findings. Conclusion: We can promote better growth of VPN by ensuring a stable administration of sufficient calories and protein, especially in the first 2 weeks of life, implementing breast milk fortification, covering energy and protein deficits due to critical illness, and increasing feeding volumes as per the latest guidelines. The adoption of universal protocol for nutrition and growth of VPN is essential and will enable better monitoring of long-term outcomes for this population.