RESUMO
DNA is organized into chromatin-like structures that support the maintenance and regulation of genomes. A unique and poorly understood form of DNA organization exists in chloroplasts, which are organelles of endosymbiotic origin responsible for photosynthesis. Chloroplast genomes, together with associated proteins, form membrane-less structures known as nucleoids. The internal arrangement of the nucleoid, molecular mechanisms of DNA organization, and connections between nucleoid structure and gene expression remain mostly unknown. We show that Arabidopsis thaliana chloroplast nucleoids have a unique sequence-specific organization driven by DNA binding to the thylakoid membranes. DNA associated with the membranes has high protein occupancy, has reduced DNA accessibility, and is highly transcribed. In contrast, genes with low levels of transcription are further away from the membranes, have lower protein occupancy, and have higher DNA accessibility. Membrane association of active genes relies on the pattern of transcription and proper chloroplast development. We propose a speculative model that transcription organizes the chloroplast nucleoid into a transcriptionally active membrane-associated core and a less active periphery.
Assuntos
Arabidopsis , Cloroplastos , Tilacoides , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Tilacoides/metabolismo , Tilacoides/genética , Tilacoides/ultraestrutura , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transcrição Gênica , DNA de Cloroplastos/genética , DNA de Cloroplastos/metabolismoRESUMO
BACKGROUND: Myxozoa is a class of cnidarian parasites that encompasses over 2,400 species. Phylogenetic relationships among myxozoans remain highly debated, owing to both a lack of informative morphological characters and a shortage of molecular markers. Mitochondrial (mt) genomes are a common marker in phylogeny and biogeography. However, only five complete myxozoan mt genomes have been sequenced: four belonging to two closely related genera, Enteromyxum and Kudoa, and one from the genus Myxobolus. Interestingly, while cytochrome oxidase genes could be identified in Enteromyxum and Kudoa, no such genes were found in Myxobolus squamalis, and another member of the Myxobolidae (Henneguya salminicola) was found to have lost its entire mt genome. To evaluate the utility of mt genomes to reconstruct myxozoan relationships and to understand if the loss of cytochrome oxidase genes is a characteristic of myxobolids, we sequenced the mt genome of five myxozoans (Myxobolus wulii, M. honghuensis, M. shantungensis, Thelohanellus kitauei and, Sphaeromyxa zaharoni) using Illumina and Oxford Nanopore platforms. RESULTS: Unlike Enteromyxum, which possesses a partitioned mt genome, the five mt genomes were encoded on single circular chromosomes. An mt plasmid was found in M. wulii, as described previously in Kudoa iwatai. In all new myxozoan genomes, five protein-coding genes (cob, cox1, cox2, nad1, and nad5) and two rRNAs (rnl and rns) were recognized, but no tRNA. We found that Myxobolus and Thelohanellus species shared unidentified reading frames, supporting the view that these mt open reading frames are functional. Our phylogenetic reconstructions based on the five conserved mt genes agree with previously published trees based on the 18S rRNA gene. CONCLUSIONS: Our results suggest that the loss of cytochrome oxidase genes is not a characteristic of all myxobolids, the ancestral myxozoan mt genome was likely encoded on a single circular chromosome, and mt plasmids exist in a few lineages. Our findings indicate that myxozoan mt sequences are poor markers for reconstructing myxozoan phylogenetic relationships because of their fast-evolutionary rates and the abundance of repeated elements, which complicates assembly.
Assuntos
Evolução Molecular , Genoma Mitocondrial , Myxozoa , Filogenia , Animais , Myxozoa/genética , Myxozoa/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genéticaRESUMO
Phylogenomic conflicts are widespread among genomic data, with most previous studies primarily focusing on nuclear datasets instead of organellar genomes. In this study, we investigate phylogenetic conflict analyses within and between plastid and mitochondrial genomes using Potentilla as a case study. We generated three plastid datasets (coding, noncoding, and all-region) and one mitochondrial dataset (coding regions) to infer phylogenies based on concatenated and multispecies coalescent (MSC) methods. Conflict analyses were then performed using PhyParts and Quartet Sampling (QS). Both plastid and mitochondrial genomes divided the Potentilla into eight highly supported clades, two of which were newly identified in this study. While most organellar loci were uninformative for the majority of nodes (bootstrap value < 70%), PhyParts and QS detected conflicting signals within the two organellar genomes. Regression analyses revealed that conflict signals mainly occurred among shorter loci, whereas longer loci tended to be more concordant with the species tree. In addition, two significant disagreements between the two organellar genomes were detected, likely attributed to hybridization and/or incomplete lineage sorting. Our results demonstrate that mitochondrial genes can fully resolve the phylogenetic relationships among eight major clades of Potentilla and are not always linked with plastome in evolutionary history. Stochastic inferences appear to be the primary source of observed conflicts among the gene trees. We recommend that the loci with short sequence length or containing limited informative sites should be used cautiously in MSC analysis, and suggest the joint application of concatenated and MSC methods for phylogenetic inference using organellar genomes.
Assuntos
Genoma Mitocondrial , Genomas de Plastídeos , Potentilla , Rosaceae , Filogenia , Potentilla/genética , Rosaceae/genética , Plastídeos/genéticaRESUMO
KEY MESSAGE: TALE-based editors provide an alternative way to engineer the organellar genomes in plants. We update and discuss the most recent developments of TALE-based organellar genome editing in plants. Gene editing tools have been widely used to modify the nuclear genomes of plants for various basic research and biotechnological applications. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 editing platform is the most commonly used technique because of its ease of use, fast speed, and low cost; however, it encounters difficulty when being delivered to plant organelles for gene editing. In contrast, protein-based editing technologies, such as transcription activator-like effector (TALE)-based tools, could be easily delivered, expressed, and targeted to organelles in plants via Agrobacteria-mediated nuclear transformation. Therefore, TALE-based editors provide an alternative way to engineer the organellar genomes in plants since the conventional chloroplast transformation method encounters technical challenges and is limited to certain species, and the direct transformation of mitochondria in higher plants is not yet possible. In this review, we update and discuss the most recent developments of TALE-based organellar genome editing in plants.
Assuntos
Edição de Genes , Efetores Semelhantes a Ativadores de Transcrição , Edição de Genes/métodos , Efetores Semelhantes a Ativadores de Transcrição/genética , Sistemas CRISPR-Cas/genética , Plantas/genética , Organelas/genética , Expressão Gênica , Genoma de Planta/genéticaRESUMO
BACKGROUND: Date palm (Phoenix dactylifera L.) is the most widespread crop in arid and semi-arid regions and has great traditional and socioeconomic importance, with its fruit well-known for its high nutritional and health value. However, the genetic variation of date palm cultivars is often neglected. The advent of high-throughput sequencing has made possible the resequencing of whole organelle (mitochondria and chloroplast) genomes to explore the genetic diversity and phylogenetic relationships of cultivated plants with unprecedented detail. RESULTS: Whole organelle genomes of 171 Tunisian accessions (135 females and 36 males) were sequenced. Targeted bioinformatics pipelines were used to identify date palm haplotypes and genome variants, aiming to provide variant annotation and investigate patterns of evolutionary relationship. Our results revealed the existence of unique haplotypes, identified by 45 chloroplastic and 156 mitochondrial SNPs. Estimation of the effect of these SNPs on genes functions was predicted in silico. CONCLUSIONS: The results of this study have important implications, in the light of ongoing environmental changes, for the conservation and sustainable use of the genetic resources of date palm cultivars in Tunisia, where monoculture threatens biodiversity leading to genetic erosion. These data will be useful for breeding and genetic improvement programs of the date palm through selective cross-breeding.
Assuntos
Genoma de Cloroplastos , Phoeniceae , Phoeniceae/genética , Filogenia , Melhoramento Vegetal , Cloroplastos/genética , Mitocôndrias/genéticaRESUMO
The genus Cocconeiopsis was separated from Navicula, but its systematic position is in debate. We sequenced the complete chloroplast and mitochondrial genome of Cocconeidaceae for the first time with Cocconeiopsis kantsiensis and investigated its phylogeny and evolutionary history. Results showed that the plastid genome was 140,415 bp long with 167 genes. The mitochondrial genome was 43,732 bp long with 66 genes. Comparative analysis showed that the plastid genome structure of C. kantsiensis was most similar to those of three Navicula species and Halamphora americana, and its size was significantly smaller than that of a monoraphid species. Its mitochondrial genome was similar to that of related species except for Phaeodactylum tricornutum. The multigene phylogeny reconstruction showed that Cocconeiopsis was sister to Didymosphenia but distant from Naviculaceae. The two-gene phylogenetic analysis containing 255 species showed Cocconeiopsis was sister to Cocconeis, and distant from Naviculaceae as well. Divergence time estimation indicates the common ancestor of cocconeid species occurred about 62.8 Ma and Cocconeiopsis diverged with monoraphid Cocconeis about 58.9 Ma. Our results support the assignment of Cocconeiopsis to Cocconeidaceae and that monoraphid cocconeids were likely evolved from the lineage of Cocconeiopsis.
Assuntos
Diatomáceas , Genoma Mitocondrial , Genomas de Plastídeos , Filogenia , CloroplastosRESUMO
Mitochondrion-related organelles (MROs) are loosely defined as degenerated mitochondria in anaerobic and microaerophilic lineages. Opalinids are commonly regarded as commensals in the guts of cold-blooded amphibians. It may represent an intermediate adaptation stage between the conventional aerobic mitochondria and derived anaerobic MROs. In the present study, we sequenced and analyzed the MRO genome of Cepedea longa. It has a linear MRO genome with large inverted repeat gene regions at both ends. Compared to Blastocystis and Proteromonas lacertae, the MRO genome of C. longa has a higher G + C content and repeat sequences near the central region. Although three Opalinata species have different morphological characteristics, phylogenetic analyses based on eight concatenated nad genes indicate that they are close relatives. The phylogenetic analysis showed that C. longa clustered with P. lacertae with strong support. The 18S rRNA gene-based phylogeny resolved the Opalinea clade as a sister clade to Karotomorpha, which then further grouped with Proteromonas. The paraphyly of Proteromonadea needs to be verified due to the lack of MRO genomes for key species, such as Karotomorpha, Opalina and Protoopalina. Besides, our dataset and analyses offered slight support for the paraphyly of Bigyra.
Assuntos
Anuros , Estramenópilas , Animais , Filogenia , Anuros/genética , Estramenópilas/genética , Organelas/metabolismo , Mitocôndrias/genéticaRESUMO
We have sequenced the chloroplast genome of red spruce (Picea rubens) for the first time using the single-end, short-reads (44 bp) Illumina sequences, assembled and functionally annotated it, and identified simple sequence repeats (SSRs). The contigs were assembled using SOAPdenovo2 following the retrieval of chloroplast genome sequences using the black spruce (Picea mariana) chloroplast genome as the reference. The assembled genome length was 122,115 bp (gaps included). Comparatively, the P. rubens chloroplast genome reported here may be considered a near-complete draft. Global genome alignment and phylogenetic analysis based on the whole chloroplast genome sequences of Picea rubens and 10 other Picea species revealed high sequence synteny and conservation among 11 Picea species and phylogenetic relationships consistent with their known classical interrelationships and published molecular phylogeny. The P. rubens chloroplast genome sequence showed the highest similarity with that of P. mariana and the lowest with that of P. sitchensis. We have annotated 107 genes including 69 protein-coding genes, 28 tRNAs, 4 rRNAs, few pseudogenes, identified 42 SSRs, and successfully designed primers for 26 SSRs. Mononucleotide A/T repeats were the most common followed by dinucleotide AT repeats. A similar pattern of microsatellite repeats occurrence was found in the chloroplast genomes of 11 Picea species.
Assuntos
Genoma de Cloroplastos , Picea , Picea/genética , Filogenia , Repetições de Microssatélites/genética , Sintenia , Anotação de Sequência MolecularRESUMO
Valeriana sambucifolia f. dageletiana (Nakai. ex Maekawa) Hara is a broad-leaved valerian endemic to Ulleung Island, a noted hot spot of endemism in Korea. However, despite its widespread pharmacological use, this plant remains comparatively understudied. Plant cells generally contain two types of organellar genomes (the plastome and the mitogenome) that have undergone independent evolution, which accordingly can provide valuable information for elucidating the phylogenetic relationships and evolutionary histories of terrestrial plants. Moreover, the extensive mega-data available for plant genomes, particularly those of plastomes, can enable researchers to gain an in-depth understanding of the transfer of genes between different types of genomes. In this study, we analyzed two organellar genomes (the 155,179 bp plastome and the 1,187,459 bp mitogenome) of V. sambucifolia f. dageletiana and detected extensive changes throughout the plastome sequence, including rapid structural mutations associated with inverted repeat (IR) contraction and genetic variation. We also described features characterizing the first reported mitogenome sequence obtained for a plant in the order Dipsacales and confirmed frequent gene transfer in this mitogenome. We identified eight non-plastome-originated regions (NPRs) distributed within the plastome of this endemic plant, for six of which there were no corresponding sequences in the current nucleotide sequence databases. Indeed, one of these unidentified NPRs unexpectedly showed certain similarities to sequences from bony fish. Although this is ostensibly difficult to explain, we suggest that this surprising association may conceivably reflect the occurrence of gene transfer from a bony fish to the plastome of an ancestor of V. sambucifolia f. dageletiana mediated by either fungi or bacteria.
Assuntos
Transferência Genética Horizontal , Genoma de Cloroplastos , Genoma Mitocondrial , Filogenia , Valeriana/genética , MutaçãoRESUMO
BACKGROUND: The date palm is one of the oldest cultivated fruit trees. The tree can withstand high temperatures and low water and the fruit can be stored dry offering nutrition across the year. The first region of cultivation is believed to be near modern day Iraq, however, where and if the date palm was domesticated is still a topic of debate. Recent studies of chloroplast and genomic DNA revealed two major subpopulations of cultivars centered in both the Eastern range of date palm cultivation including Arabian Peninsula, Iraq and parts of South Asia, and the Western range, including North Africa. RESULTS: To better understand the origins of date palm cultivation we sequenced and analyzed over 200 mitochondrial and chloroplast genomes from a geographically diverse set of date palms. Here we show that, based on mitochondrial and chloroplast genome-wide genotyping data, the most common cultivated date palms contain 4 haplotypes that appear associated with geographical region of cultivar origin. CONCLUSIONS: These data suggest at least 3 and possibly 4 original maternal contributions to the current date palm population and doubles the original number. One new haplotype was found mainly in Tunisia, Algeria and Egypt and the second in Iraq, Iran and Oman. We propose that earliest date palm cultivation occurred independently in at least 3 distinct locations. This discovery will further inform understanding of the history and origins of cultivated date palm.
Assuntos
Organelas/genética , Phoeniceae/genética , Sequenciamento Completo do Genoma , Sequência de Bases , Haplótipos/genética , Phoeniceae/classificaçãoRESUMO
Rapid diversifications of plants are primarily documented and studied in angiosperms, which are perceived as evolutionarily dynamic. Recent studies have, however, revealed that bryophytes have also undergone periods of rapid radiation. The speciose family Funariaceae, including the model taxon Physcomitrella patens, is one such lineage. Here, we infer relationships among major lineages within the Entosthodon-Physcomitrium complex from virtually complete organellar exomes (i.e., 123 genes) obtained through high throughput sequencing of genomic libraries enriched in these loci via targeted locus capture. Based on these extensive exonic data we (1) reconstructed a robust backbone topology of the Funariaceae, (2) confirmed the monophyly of Funaria and the polyphyly of Entosthodon, Physcomitrella, and Physcomitrium, and (3) argue for the occurrence of a rapid radiation within the Entosthodon-Physcomitrium complex that began 28â¯mya and gave rise more than half of the species diversity of the family. This diversification may have been triggered by a whole genome duplication and coincides with global Eocene cooling that continued through the Oligocene and Miocene. The Funariaceae join a growing list of bryophyte lineages whose history is marked by at least one burst of diversification, and our study thereby strengthens the view that bryophytes are evolutionarily dynamic lineages and that patterns and processes characterizing the evolution of angiosperms may be universal among land plants.
Assuntos
Briófitas/classificação , Evolução Molecular , Briófitas/genética , Bryopsida/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA de Plantas/metabolismo , Éxons , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Plastídeos/classificação , Plastídeos/genética , Análise de Sequência de DNARESUMO
PREMISE OF THE STUDY: Interpreting relationships within groups containing polyploids, which are frequent in angiosperms, can be greatly assisted by genomic techniques. In this study, we used a genome-skimming approach to investigate the evolutionary relationships and origins of polyploids in the monophyletic group, Ludwigia section Macrocarpon (Onagraceae), which includes diploid, tetraploid, and hexaploid taxa. METHODS: We sampled all known taxa and ploidy levels in the section and conducted shotgun sequencing. We assembled plastomes, mitochondrial sequences, and completed nuclear ribosomal regions, reconstructed phylogenies, and conducted comparative genomic analyses for plastomes to gain insights into the relationships among studied taxa. KEY RESULTS: Within the section, results showed that the South American diploid taxa L. bonariensis and L. lagunae were closely related. We reported the first chromosome count (2n = 4× = 32) for L. neograndiflora, which is closely related to the two South American diploid taxa, although its exact origin remains unclear. The samples of the widespread, polyploid taxon L. octovalvis do not form a monophyletic group. Both tetraploid and hexaploid L. octovalvis lineages have originated more than once. At least one tetraploid in the L. octovalvis lineage may have been involved in the origins of hexaploids. One or more extinct/unsampled intermediate tetraploids in the L. octovalvis lineages had also likely been involved in the origins of hexaploids. CONCLUSIONS: Genome skimming provided important insights into the complex evolutionary relationships within sect. Macrocarpon, but additional sampling and data from single-copy nuclear regions are necessary to further elucidate the origins of the polyploids in this section.
Assuntos
Evolução Molecular , Genoma de Planta , Onagraceae/genética , Filogenia , Poliploidia , Análise de Sequência de DNARESUMO
The genus Lancea is native to the Qinghai-Tibetan Plateau and consists of two species, Lancea tibetica Hook. f. et Thoms. and Lancea hirsuta Bonati. Here, we report the complete sequences of the chloroplast genomes of L. tibetica and L. hirsuta, which were 153,665 and 154,045 bp in length, respectively, and each included a pair of inverted repeated regions (25,624 and 25,838 bp in length, respectively) that were separated by a large single copy region (84,401 and 84,588 bp in length, respectively) and a smaller single copy region (18,016 and 17,781 bp in length, respectively). A total of 106 genes in L. tibetica and 105 in L. hirsuta comprised 79 protein-coding genes, and 4 ribosomal RNA (rRNA) genes, as well as 23 and 22 transfer RNA (tRNA) genes in L. tibetica and L. hirsuta, respectively. The gene order, content, and orientation of the two Lancea chloroplast genomes exhibited high similarity. A large number of informative repetitive sequences, including SSRs, were observed in both genomes. Comparisons of the genomes with those of three other Lamiales species revealed 12 highly divergent regions in the intergenic spacers and in the matK, rpoA, rps19, ndhF, ccsA, ndhD, and ycf1 coding regions. A phylogenomic analysis suggested that Lancea forms a monophyletic group that is closely related to the clade composed of the families Phrymaceae, Paulowniaceae, and Rehmanniaceae.
Assuntos
Genoma de Cloroplastos , Genômica , Lamiales/classificação , Lamiales/genética , Biologia Computacional/métodos , Variação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Fases de Leitura Aberta , Filogenia , Sequências Repetitivas de Ácido NucleicoRESUMO
Ars longa, vita brevis -Hippocrates Chloroplasts and mitochondria are genetically semi-autonomous organelles inside the plant cell. These constructions formed after endosymbiosis and keep evolving throughout the history of life. Experimental evidence is provided for active non-coding RNAs (ncRNAs) in these prokaryote-like structures, and a possible functional imprinting on cellular electrophysiology by those RNA entities is described. Furthermore, updated knowledge on RNA metabolism of organellar genomes uncovers novel inter-communication bridges with the nucleus. This class of RNA molecules is considered as a unique ontogeny which transforms their biological role as a genetic rheostat into a synchronous biochemical one that can affect the energetic charge and redox homeostasis inside cells. A hypothesis is proposed where such modulation by non-coding RNAs is integrated with genetic signals regulating gene transfer. The implications of this working hypothesis are discussed, with particular reference to ncRNAs involvement in the organellar and nuclear genomes evolution since their integrity is functionally coupled with redox signals in photosynthetic organisms.
Assuntos
Metabolismo Energético , Evolução Molecular , Células Vegetais/classificação , Células Vegetais/metabolismo , RNA não Traduzido/metabolismo , Oxirredução , Fotossíntese , Transdução de SinaisRESUMO
Plastids and mitochondria are the only organelles that possess genomes of endosymbiotic origin. In recent decades, advances in sequencing technologies have contributed to a meteoric rise in the number of published organellar genomes, and have revealed greatly divergent evolutionary trajectories. In this review, we quantify the abundance and distribution of sequenced plant organellar genomes across the plant tree of life. We compare numerous genomic features between the two organellar genomes, with an emphasis on evolutionary trajectories, transfers, the current state of organellar genome editing by transcriptional activator-like effector nucleases (TALENs), transcription activator-like effector (TALE)-mediated deaminase, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas), as well as genetic transformation. Finally, we propose future research to understand these different evolutionary trajectories, and genome-editing strategies to promote functional studies and eventually improve organellar genomes.
Assuntos
Genoma de Planta , Genoma de Planta/genética , Edição de Genes/métodos , Plantas/genética , Organelas/genética , Plastídeos/genética , Mitocôndrias/genética , Evolução Molecular , Sistemas CRISPR-CasRESUMO
Serjania erecta Raldk is an essential genetic resource due to its anti-inflammatory, gastric protection, and anti-Alzheimer properties. However, the genetic and evolutionary aspects of the species remain poorly known. Here, we sequenced and assembled the complete chloroplast genome of S. erecta and used it in a comparative analysis within the Sapindaceae family. S. erecta has a chloroplast genome (cpDNA) of 159,297 bp, divided into a Large Single Copy region (LSC) of 84,556 bp and a Small Single Copy region (SSC) of 18,057 bp that are surrounded by two Inverted Repeat regions (IRa and IRb) of 28,342 bp. Among the 12 species used in the comparative analysis, S. erecta has the fewest long and microsatellite repeats. The genome structure of Sapindaceae species is relatively conserved; the number of genes varies from 128 to 132 genes, and this variation is associated with three main factors: (1) Expansion and retraction events in the size of the IRs, resulting in variations in the number of rpl22, rps19, and rps3 genes; (2) Pseudogenization of the rps2 gene; and (3) Loss or duplication of genes encoding tRNAs, associated with the duplication of trnH-GUG in X. sorbifolium and the absence of trnT-CGU in the Dodonaeoideae subfamily. We identified 10 and 11 mutational hotspots for Sapindaceae and Sapindoideae, respectively, and identified six highly diverse regions (tRNA-Lys - rps16, ndhC - tRNA-Val, petA - psbJ, ndhF, rpl32 - ccsA, and ycf1) are found in both groups, which show potential for the development of DNA barcode markers for molecular taxonomic identification of Serjania. We identified that the psaI gene evolves under neutrality in Sapindaceae, while all other chloroplast genes are under strong negative selection. However, local positive selection exists in the ndhF, rpoC2, ycf1, and ycf2 genes. The genes ndhF and ycf1 also present high nucleotide diversity and local positive selection, demonstrating significant potential as markers. Our findings include providing the first chloroplast genome of a member of the Paullinieae tribe. Furthermore, we identified patterns in variations in the number of genes and selection in genes possibly associated with the family's evolutionary history.
RESUMO
Plastome sequence data is most often extracted from plant whole genome sequencing data and need to be assembled and annotated separately from the nuclear genome sequence. In projects comprising multiple genomes, it is labour intense to individually process the plastomes as it requires many steps and software. This study developed Plastaumatic - an automated pipeline for both assembly and annotation of plastomes, with the scope of the researcher being able to load whole genome sequence data with minimal manual input, and therefore a faster runtime. The main structure of the current automated pipeline includes trimming of adaptor and low-quality sequences using fastp, de novo plastome assembly using NOVOPlasty, standardization and quality checking of the assembled genomes through a custom script utilizing BLAST+ and SAMtools, annotation of the assembled genomes using AnnoPlast, and finally generating the required files for NCBI GenBank submissions. The pipeline is demonstrated with 12 potato accessions and three soybean accessions.
RESUMO
The genus Broussonetia (Moraceae) is comprised of three non-hybrid recognized species that all produce high quality fiber essential in the development of papermaking and barkcloth-making technology. In addition, these species also have medicinal value in several countries. Despite their important economical, medicinal, and ecological values, the complete mitogenome of Broussonetia has not been reported and investigated, which would greatly facilitate molecular phylogenetics, species identification and understanding evolutionary processes. Here, we assembled the first-reported three complete Broussonetia (B. papyrifera, B. kaempferi, and B. monoica) mitochondrial genomes (mitogenome) based on a hybrid strategy using Illumina and Oxford Nanopore Technology sequencing data, and performed comprehensive comparisons in terms of their structure, gene content, synteny, intercellular gene transfer, phylogeny, and RNA editing. Our results showed their huge heterogeneities among the three species. Interestingly, the mitogenomes of B. monoica and B. papyrifera consisted of a single circular structure, whereas the B. kaempferi mitogenome was unique and consisted of a double circular structure. Gene content was consistent except for a few transfer RNA (tRNA) genes. The Broussonetia spp. mitogenomes had high sequence conservation but B. monoica with B. kaempferi contained more synteny blocks and were more related, a finding that was well-supported in organellar phylogeny. Fragments that had been transferred between mitogenomes were detected at plastome hotspots that had integrated under potential mediation of tRNA genes. In addition, RNA editing sites showed great differences in abundance, type, location and efficiency among species and tissues. The availability of these complete gap-free mitogenomes of Broussonetia spp. will provide a valuable genetic resource for evolutionary research and understanding the communications between the two organelle genomes.
RESUMO
BACKGROUND: The endosymbiosis of the bacterial progenitors of the mitochondrion and the chloroplast are landmark events in the evolution of life on Earth. While both organelles have retained substantial proteomic and biochemical complexity, this complexity is not reflected in the content of their genomes. Instead, the organellar genomes encode fewer than 5% of the genes found in living relatives of their ancestors. While many of the 95% of missing organellar genes have been discarded, others have been transferred to the host nuclear genome through a process known as endosymbiotic gene transfer. RESULTS: Here, we demonstrate that the difference in the per-cell copy number of the organellar and nuclear genomes presents an energetic incentive to the cell to either delete organellar genes or transfer them to the nuclear genome. We show that, for the majority of transferred organellar genes, the energy saved by nuclear transfer exceeds the costs incurred from importing the encoded protein into the organelle where it can provide its function. Finally, we show that the net energy saved by endosymbiotic gene transfer can constitute an appreciable proportion of total cellular energy budgets and is therefore sufficient to impart a selectable advantage to the cell. CONCLUSION: Thus, reduced cellular cost and improved energy efficiency likely played a role in the reductive evolution of mitochondrial and chloroplast genomes and the transfer of organellar genes to the nuclear genome.
Assuntos
Bactérias/genética , Genoma de Cloroplastos , Genoma Mitocondrial , Simbiose/genética , Arabidopsis/genética , Núcleo Celular , Cloroplastos , Transferência Genética Horizontal , Genoma de Planta , Interações entre Hospedeiro e Microrganismos/genética , Mitocôndrias/genética , ProteômicaRESUMO
Size, structure, and sequence content lability of plant mitochondrial genome (mtDNA) across species has sharply limited its use in taxonomic studies. Historically, mtDNA variation has been first investigated with RFLPs, while the development of universal primers then allowed studying sequence polymorphisms within short genomic regions (<3 kb). The recent advent of NGS technologies now offers new opportunities by greatly facilitating the assembly of longer mtDNA regions, and even full mitogenomes. Phylogenetic works aiming at comparing signals from different genomic compartments (i.e., nucleus, chloroplast, and mitochondria) have been developed on a few plant lineages, and have been shown especially relevant in groups with contrasted inheritance of organelle genomes. This chapter first reviews the main characteristics of mtDNA and the application offered in taxonomic studies. It then presents tips for best sequencing protocol based on NGS data to be routinely used in mtDNA-based phylogenetic studies.