Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biol Chem ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39331465

RESUMO

Cytochrome P450 monooxygenases are recognized as versatile biocatalysts due to their broad reaction capabilities. One important reaction is the hydroxylation of non-activated C-H bonds. The subfamily CYP153A is known for terminal hydroxylation reactions, giving access to functionalized aliphatics. Whilst fatty derivatives may be converted by numerous enzyme classes, midchain aliphatics are seldomly accepted, a prime property of CYP153As. We report here on a new CYP153A member from the genome of the mesophilic actinobacterium Gordonia rubripertincta CWB2 as an efficient biocatalyst. The gene was overexpressed in Escherichia coli and fused with a surrogate electron transport system from Acinetobacter sp. OC4. This chimeric self-sufficient whole-cell system could perform hydroxylation and epoxidation reactions: conversions of C6-C14 alkanes, alkenes, alcohols and of cyclic compounds were observed, yielding production rates of, e.g., 2.69 mM h-1 for 1-hexanol and 4.97 mM h-1 for 1,2-epoxyhexane. Optimizing the linker compositions between the protein units led to significantly altered activity. Balancing linker length and flexibility with glycine-rich and helix-forming linker units increased 1-hexanol production activity to 350 % compared to the initial linker setup with entirely helical linkers. The study shows that strategic coupling of efficient electron supply and a selective enzyme enables previously challenging monooxygenation reactions of midchain aliphatics.

2.
Angew Chem Int Ed Engl ; 62(41): e202307897, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37597259

RESUMO

Fungal unspecific peroxygenases (UPOs) have gained substantial attention for their versatile oxyfunctionalization chemistry paired with impressive catalytic capabilities. A major drawback, however, remains their sensitivity towards their co-substrate hydrogen peroxide, necessitating the use of smart in situ hydrogen peroxide generation methods to enable efficient catalysis setups. Herein, we introduce flavin-containing protein photosensitizers as a new general tool for light-controlled in situ hydrogen peroxide production. By genetically fusing flavin binding fluorescent proteins and UPOs, we have created two virtually self-sufficient photo-enzymes (PhotUPO). Subsequent testing of a versatile substrate panel with the two divergent PhotUPOs revealed two stereoselective conversions. The catalytic performance of the fusion protein was optimized through enzyme and substrate loading variation, enabling up to 24300 turnover numbers (TONs) for the sulfoxidation of methyl phenyl sulfide. The PhotUPO concept was upscaled to a 100 mg substrate preparative scale, enabling the extraction of enantiomerically pure alcohol products.


Assuntos
Peróxido de Hidrogênio , Fármacos Fotossensibilizantes , Biocatálise , Peróxido de Hidrogênio/metabolismo , Flavinas/metabolismo
3.
Angew Chem Int Ed Engl ; 62(24): e202302844, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37022339

RESUMO

A peroxygenase-catalysed hydroxylation of organosilanes is reported. The recombinant peroxygenase from Agrocybe aegerita (AaeUPO) enabled efficient conversion of a broad range of silane starting materials in attractive productivities (up to 300 mM h-1 ), catalyst performance (up to 84 s-1 and more than 120 000 catalytic turnovers). Molecular modelling of the enzyme-substrate interaction puts a basis for the mechanistic understanding of AaeUPO selectivity.

4.
Molecules ; 27(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36014538

RESUMO

Oxyfunctionalization of toluene to value-added benzaldehyde, benzyl alcohol and benzoic acid is of great significance. In this work, Co-Schiff bases were immobilized on commercial silica gel by covalent anchoring, and resulting catalysts were used to catalyze the oxidation of toluene in the presence of the cocatalyst N-hydroxyphthalimide (NHPI). The catalysts exhibited excellent textural and structural properties, reliable bonding and a predomination of the cobaltous ions. The catalyst synthesized by diethylamino salicylaldehyde (EASA) possessed a grafting density of 0.14 mmol/g and exhibited a toluene conversion of 37.5%, with predominant selectivities to benzaldehyde, benzyl alcohol and benzoic acid under solvent-free conditions. It is concluded that the effect of ligands on their catalytic performance might be related to their electron-donating or -withdrawing properties.


Assuntos
Bases de Schiff , Tolueno , Benzaldeídos , Ácido Benzoico/química , Álcool Benzílico/química , Tolueno/química
5.
Chembiochem ; 21(13): 1852-1855, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32017323

RESUMO

Cyclohexane was directly oxy-functionalised to ϵ-caprolactone through a cascade reaction sequence combining visible-light-driven photocatalysis with cyclohexanone monooxygenase (CHMO) whole-cell biocatalysis. Two available photocatalysts, Au-doped TiO2 (Au-TiO2 ) and graphitic carbonitride (g-C3 N4 ), were evaluated in the experiment and some optimisations to the cascade reaction were applied. In stepwise mode, the highest degree of conversion from cyclohexanol to ϵ-caprolactone can be up to 41 %, with use of g-C3 N4 . The cascade reaction from cyclohexane to ϵ-caprolactone is achievable under a light intensity of 149 µW cm-2 .


Assuntos
Caproatos/química , Cicloexanos/química , Lactonas/química , Luz , Oxigenases/metabolismo , Acinetobacter calcoaceticus/enzimologia , Biocatálise , Caproatos/metabolismo , Cicloexanos/metabolismo , Ouro/química , Grafite/química , Lactonas/metabolismo , Compostos de Nitrogênio/química , Oxirredução , Titânio/química
6.
Chemistry ; 26(71): 17005-17010, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-32783222

RESUMO

Previously unknown entities in the form of 1,2,3,4,5,6,7,8,9,10-decahydroxydecalins (DHDs) have been conceptualized and the first member of this class, an inosito-inositol, has been synthesized from aromatic hydrocarbon naphthalene following a flexible strategy that is amenable to diversity creation. The DHD accessed here has been subjected to preliminary in silico evaluation with Aß and may hold some promise in Alzheimer's disease therapeutics.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Peptídeos beta-Amiloides/metabolismo , Simulação por Computador , Formação de Conceito , Humanos , Inositol/química
7.
Angew Chem Int Ed Engl ; 59(23): 8969-8973, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32198829

RESUMO

Aliphatic synthetic intermediates with high added value are generally produced from alkane sources (e.g., petroleum) by inert carbon-hydrogen (C-H) bond activation using classical chemical methods (i.e. high temperature, rare metals). As an alternative approach for these reactions, alkane monooxygenase from Pseudomonas putida (alkB) is able to catalyze the difficult terminal oxyfunctionalization of alkanes selectively and under mild conditions. Herein, we report an electrosynthetic system using an alkB biocathode which produces alcohols, epoxides, and sulfoxides through bioelectrochemical hydroxylation, epoxidation, sulfoxidation, and demethylation. The capacity of the alkB binding pocket to protect internal functional groups is also demonstrated. By coupling our alkB biocathode with a hydrogenase bioanode and using H2 as a clean fuel source, we have developed and characterized a series of enzymatic fuel cells capable of oxyfunctionalization while simultaneously producing electricity.


Assuntos
Alcanos/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Oxigenases de Função Mista/metabolismo , Eletrodos , Transporte de Elétrons , Compostos de Epóxi/química , Hidroxilação , Metilação , Oxigênio/química , Pseudomonas putida/enzimologia , Safrol/análogos & derivados , Safrol/química , Especificidade por Substrato
8.
Angew Chem Int Ed Engl ; 59(10): 3982-3987, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31850622

RESUMO

In this study, we coupled a well-established whole-cell system based on E. coli via light-harvesting complexes to Rieske oxygenase (RO)-catalyzed hydroxylations in vivo. Although these enzymes represent very promising biocatalysts, their practical applicability is hampered by their dependency on NAD(P)H as well as their multicomponent nature and intrinsic instability in cell-free systems. In order to explore the boundaries of E. coli as chassis for artificial photosynthesis, and due to the reported instability of ROs, we used these challenging enzymes as a model system. The light-driven approach relies on light-harvesting complexes such as eosin Y, 5(6)-carboxyeosin, and rose bengal and sacrificial electron donors (EDTA, MOPS, and MES) that were easily taken up by the cells. The obtained product formations of up to 1.3 g L-1 and rates of up to 1.6 mm h-1 demonstrate that this is a comparable approach to typical whole-cell transformations in E. coli. The applicability of this photocatalytic synthesis has been demonstrated and represents the first example of a photoinduced RO system.


Assuntos
Escherichia coli/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Oxigenases/metabolismo , Biocatálise , Escherichia coli/citologia , Hidroxilação
9.
Biotechnol Bioeng ; 116(5): 1089-1101, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30636283

RESUMO

Solvent-tolerant bacteria represent an interesting option to deal with the substrate and product toxicity in bioprocesses. Recently, constitutive solvent tolerance was achieved for Pseudomonas taiwanensis VLB120 via knockout of the regulator TtgV, making tedious adaptation unnecessary. Remarkably, ttgV knockout increased styrene epoxidation activities of P. taiwanensis VLB120Δ C. With the aim to characterize and exploit the biocatalytic potential of P. taiwanensis VLB120Δ C and VLB120Δ CΔ ttgV, we investigated and correlated growth physiology, native styrene monooxygenase (StyAB) gene expression, whole-cell bioconversion kinetics, and epoxidation performance. Substrate inhibition kinetics was identified but was attenuated in two-liquid phase bioreactor setups. StyA fusion to the enhanced green fluorescent protein enabled precise enzyme level monitoring without affecting epoxidation activity. Glucose limitation compromised styAB expression and specific activities (30-40 U/g CDW for both strains), whereas unlimited batch cultivation enabled specific activities up to 180 U/g CDW for VLB120Δ CΔ ttgV strains, which is unrivaled for bioreactor-based whole-cell oxygenase biocatalysis. These extraordinarily high specific activities of constitutively solvent-tolerant P. taiwanensis VLB120∆ C∆ ttgV could be attributed to its high metabolic capacity, which also enabled high expression levels. This, together with the high product yields on glucose and biomass obtained qualifies the VLB120∆ ttgV strain as a highly attractive tool for the development of ecoefficient oxyfunctionalization processes and redox biocatalysis in general.


Assuntos
Proteínas de Bactérias/biossíntese , Reatores Biológicos , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Oxigenases/biossíntese , Pseudomonas/enzimologia , Estireno/metabolismo , Proteínas de Bactérias/genética , Cinética , Oxigenases/genética , Pseudomonas/genética
10.
Int J Mol Sci ; 20(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986901

RESUMO

Unspecific peroxygenases (UPOs) are highly promiscuous biocatalyst with self-sufficient mono(per)oxygenase activity. A laboratory-evolved UPO secreted by yeast was covalently immobilized in activated carriers through one-point attachment. In order to maintain the desired orientation without compromising the enzyme's activity, the S221C mutation was introduced at the surface of the enzyme, enabling a single disulfide bridge to be established between the support and the protein. Fluorescence confocal microscopy demonstrated the homogeneous distribution of the enzyme, regardless of the chemical nature of the carrier. This immobilized biocatalyst was characterized biochemically opening an exciting avenue for research into applied synthetic chemistry.


Assuntos
Evolução Molecular Direcionada , Enzimas Imobilizadas/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Animais , Bovinos , Fluoresceína-5-Isotiocianato/metabolismo , Mutação/genética , Engenharia de Proteínas , Saccharomyces cerevisiae
11.
Molecules ; 24(14)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331092

RESUMO

Hypervalent iodine reagents are of considerable relevance in organic chemistry as they can provide a complementary reaction strategy to the use of traditional transition metal chemistry. Over the past two decades, there have been an increasing number of applications including stoichiometric oxidation and catalytic asymmetric variations. This review outlines the main advances in the past 10 years in regard to alkene heterofunctionalization chemistry using achiral and chiral hypervalent iodine reagents and catalysts.


Assuntos
Alcenos/química , Iodetos/química , Catálise , Oxirredução
12.
Chembiochem ; 18(6): 563-569, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28103392

RESUMO

Unspecific peroxygenases (UPO, EC 1.11.2.1) secreted by fungi open an efficient way to selectively oxyfunctionalize diverse organic substrates, including less-activated hydrocarbons, by transferring peroxide-borne oxygen. We investigated a cell-free approach to incorporate epoxy and hydroxyl functionalities directly into the bulky molecule testosterone by a novel unspecific peroxygenase (UPO) that is produced by the ascomycetous fungus Chaetomium globosum in a complex medium rich in carbon and nitrogen. Purification by fast protein liquid chromatography revealed two enzyme fractions with the same molecular mass (36 kDa) and with specific activity of 4.4 to 12 U mg-1 . Although the well-known UPOs of Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) failed to convert testosterone in a comparative study, the UPO of C. globosum (CglUPO) accepted testosterone as substrate and converted it with total turnover number (TTN) of up to 7000 into two oxygenated products: the 4,5-epoxide of testosterone in ß-configuration and 16α-hydroxytestosterone. The reaction performed on a 100 mg scale resulted in the formation of about 90 % of the epoxide and 10 % of the hydroxylation product, both of which could be isolated with purities above 96 %. Thus, CglUPO is a promising biocatalyst for the oxyfunctionalization of bulky steroids and it will be a useful tool for the synthesis of pharmaceutically relevant steroidal molecules.


Assuntos
Chaetomium/enzimologia , Oxigenases de Função Mista/farmacologia , Oxigênio/metabolismo , Testosterona/metabolismo , Sequência de Aminoácidos , Catálise/efeitos dos fármacos , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Oxigenases de Função Mista/química , Oxigenases de Função Mista/isolamento & purificação
13.
Biotechnol Bioeng ; 114(2): 281-290, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27530691

RESUMO

The efficiency of biocatalytic reactions involving industrially interesting reactants is often constrained by toxification of the applied biocatalyst. Here, we evaluated the combination of biologically and technologically inspired strategies to overcome toxicity-related issues during the multistep oxyfunctionalization of (R)-(+)-limonene to (R)-(+)-perillic acid. Pseudomonas putida GS1 catalyzing selective limonene oxidation via the p-cymene degradation pathway and recombinant Pseudomonas taiwanensis VLB120 were evaluated for continuous perillic acid production. A tubular segmented-flow biofilm reactor was used in order to relieve oxygen limitations and to enable membrane mediated substrate supply as well as efficient in situ product removal. Both P. putida GS1 and P. taiwanensis VLB120 developed a catalytic biofilm in this system. The productivity of wild-type P. putida GS1 encoding the enzymes for limonene bioconversion was highly dependent on the carbon source and reached 34 g Ltube-1 day-1 when glycerol was supplied. More than 10-fold lower productivities were reached irrespective of the applied carbon source when the recombinant P. taiwanensis VLB120 harboring p-cymene monooxygenase and p-cumic alcohol dehydrogenase was used as biocatalyst. The technical applicability for preparative perillic acid synthesis in the applied system was verified by purification of perillic acid from the outlet stream using an anion exchanger resin. This concept enabled the multistep production of perillic acid and which might be transferred to other reactions involving volatile reactants and toxic end-products. Biotechnol. Bioeng. 2017;114: 281-290. © 2016 Wiley Periodicals, Inc.


Assuntos
Biofilmes , Cicloexenos/metabolismo , Monoterpenos/metabolismo , Terpenos/metabolismo , Reatores Biológicos/microbiologia , Clonagem Molecular , Cicloexenos/análise , Cicloexenos/isolamento & purificação , Limoneno , Monoterpenos/análise , Monoterpenos/isolamento & purificação , Pseudomonas/genética , Pseudomonas/metabolismo , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Terpenos/análise
14.
Biotechnol Bioeng ; 114(4): 874-884, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27883174

RESUMO

It is a common misconception in whole-cell biocatalysis to refer to an enzyme as the biocatalyst, thereby neglecting the structural and metabolic framework provided by the cell. Here, the low whole-cell biocatalyst stability, that is, the stability of specific biocatalyst activity, in a process for the terminal oxyfunctionalization of renewable fatty acid methyl esters was investigated. This reaction, which is difficult to achieve by chemical means, is catalyzed by Escherichia coli featuring the monooxygenase system AlkBGT and the uptake facilitator AlkL from Pseudomonas putida GPo1. Corresponding products, that is, terminal alcohols, aldehydes, and acids, constitute versatile bifunctional building blocks, which are of special interest for polymer synthesis. It could clearly be shown that extensive dodecanoic acid methyl ester uptake mediated by high AlkL levels leads to whole-cell biocatalyst toxification. Thus, cell viability constitutes the primary factor limiting biocatalyst stability and, as a result, process durability. Hence, a compromise had to be found between low biocatalyst activity due to restricted substrate uptake and poor biocatalyst stability due to AlkL-mediated toxification. This was achieved by the fine-tuning of heterologous alkL expression, which, furthermore, enabled the identification of the alkBGT expression level as another critical factor determining biocatalyst stability. Controlled synthesis of AlkL and reduced alkBGT expression finally enabled an increase of product titers by a factor of 4.3 up to 229 g Lorg-1 in a two-liquid phase bioprocess setup. Clearly, ω-oxyfunctionalization process performance was determined by cell viability and thus biocatalyst stability rather than the maximally achievable specific biocatalyst activity. Biotechnol. Bioeng. 2017;114: 874-884. © 2016 Wiley Periodicals, Inc.


Assuntos
Sobrevivência Celular/fisiologia , Ácidos Láuricos/metabolismo , Engenharia Metabólica/métodos , Oxigenases de Função Mista/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Biotransformação , Escherichia coli/genética , Escherichia coli/metabolismo , Microbiologia Industrial
15.
Angew Chem Int Ed Engl ; 56(47): 15146-15149, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-28945948

RESUMO

Gas-liquid mass transfer of gaseous reactants is a major limitation for high space-time yields, especially for O2 -dependent (bio)catalytic reactions in aqueous solutions. Herein, oxygenic photosynthesis was used for homogeneous O2 supply via in situ generation in the liquid phase to overcome this limitation. The phototrophic cyanobacterium Synechocystis sp. PCC6803 was engineered to synthesize the alkane monooxygenase AlkBGT from Pseudomonas putida GPo1. With light, but without external addition of O2 , the chemo- and regioselective hydroxylation of nonanoic acid methyl ester to ω-hydroxynonanoic acid methyl ester was driven by O2 generated through photosynthetic water oxidation. Photosynthesis also delivered the necessary reduction equivalents to regenerate the Fe2+ center in AlkB for oxygen transfer to the terminal methyl group. The in situ coupling of oxygenic photosynthesis to O2 -transferring enzymes now enables the design of fast hydrocarbon oxyfunctionalization reactions.

16.
Angew Chem Int Ed Engl ; 56(48): 15451-15455, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28994504

RESUMO

Selective oxyfunctionalizations of inert C-H bonds can be achieved under mild conditions by using peroxygenases. This approach, however, suffers from the poor robustness of these enzymes in the presence of hydrogen peroxide as the stoichiometric oxidant. Herein, we demonstrate that inorganic photocatalysts such as gold-titanium dioxide efficiently provide H2 O2 through the methanol-driven reductive activation of ambient oxygen in amounts that ensure that the enzyme remains highly active and stable. Using this approach, the stereoselective hydroxylation of ethylbenzene to (R)-1-phenylethanol was achieved with high enantioselectivity (>98 % ee) and excellent turnover numbers for the biocatalyst (>71 000).


Assuntos
Biocatálise , Carbono/química , Ouro/metabolismo , Peróxido de Hidrogênio/metabolismo , Hidrogênio/química , Oxigenases de Função Mista/metabolismo , Processos Fotoquímicos , Titânio/metabolismo , Ouro/química , Peróxido de Hidrogênio/química , Oxigenases de Função Mista/química , Estrutura Molecular , Estereoisomerismo , Titânio/química
17.
Chembiochem ; 17(15): 1391-8, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27194219

RESUMO

Monooxygenases are promising catalysts because they in principle enable the organic chemist to perform highly selective oxyfunctionalisation reactions that are otherwise difficult to achieve. For this, monooxygenases require reducing equivalents, to allow reductive activation of molecular oxygen at the enzymes' active sites. However, these reducing equivalents are often delivered to O2 either directly or via a reduced intermediate (uncoupling), yielding hazardous reactive oxygen species and wasting valuable reducing equivalents. The oxygen dilemma arises from monooxygenases' dependency on O2 and the undesired uncoupling reaction. With this contribution we hope to generate a general awareness of the oxygen dilemma and to discuss its nature and some promising solutions.


Assuntos
Oxigenases de Função Mista/metabolismo , Oxigênio/química , Catálise , Química Orgânica/métodos , Oxirredução
18.
Molecules ; 21(9)2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27649116

RESUMO

A chemoenzymatic method was applied to obtain optically pure alkyl-substituted δ-lactones. First, chemical Baeyer-Villiger oxidation of dihydrojasmone (1) was carried out, affording two new alkyl-substituted δ-lactones: 3,4-dihydro-5-methyl-6-pentyl-2H-pyran-2-one (2) and 5-methyl-6-pentyl-1,13-dioxabicyclo[4.1.0]heptan-2-one (3). In the next step, fungal strains were investigated as biocatalysts to enantioselective conversion of δ-lactones (2) and (3). The fungal cultures: Fusarium culmorum AM10, Fusarium equiseti AM15 and Beauveria bassiana AM278 catalyzed the stereoselective hydration of the double bond of lactone (2) (ee = 20%-99%) while Didymosphaeria igniaria KCh6670 proved to be the best biocatalyst for the reduction of carbonyl group in the epoxylactone (3) (ee = 99%). In both cases, chiral oxyderivatives were obtained in low to high yields (7%-91%). The synthetic lactones (2), (3) and its derivatives (4), (5) were tested for their antifeedant activity towards larvae and adults of lesser mealworm (Alphitobius diaperinus Panzer) and peach potato aphid (Myzus persicae [Sulzer]) and some of them were active towards studied insects.


Assuntos
Afídeos , Beauveria/metabolismo , Agentes de Controle Biológico , Ciclopentanos , Fusarium/metabolismo , Lactonas , Oxilipinas , Tenebrio , Animais , Agentes de Controle Biológico/química , Agentes de Controle Biológico/metabolismo , Agentes de Controle Biológico/farmacologia , Ciclopentanos/química , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Lactonas/química , Lactonas/metabolismo , Lactonas/farmacologia , Oxilipinas/química , Oxilipinas/metabolismo , Oxilipinas/farmacologia
19.
J Biol Chem ; 288(48): 34767-76, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24126915

RESUMO

Aromatic peroxygenases (APOs) represent a unique oxidoreductase sub-subclass of heme proteins with peroxygenase and peroxidase activity and were thus recently assigned a distinct EC classification (EC 1.11.2.1). They catalyze, inter alia, oxyfunctionalization reactions of aromatic and aliphatic hydrocarbons with remarkable regio- and stereoselectivities. When compared with cytochrome P450, APOs appear to be the choice enzymes for oxyfunctionalizations in organic synthesis due to their independence from a cellular environment and their greater chemical versatility. Here, the first two crystal structures of a heavily glycosylated fungal aromatic peroxygenase (AaeAPO) are described. They reveal different pH-dependent ligand binding modes. We model the fitting of various substrates in AaeAPO, illustrating the way the enzyme oxygenates polycyclic aromatic hydrocarbons. Spatial restrictions by a phenylalanine pentad in the active-site environment govern substrate specificity in AaeAPO.


Assuntos
Agrocybe/química , Cristalografia por Raios X , Oxigenases de Função Mista/química , Hidrocarbonetos Policíclicos Aromáticos/química , Agrocybe/enzimologia , Sítios de Ligação , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/química , Oxigenases de Função Mista/metabolismo , Simulação de Acoplamento Molecular , Oxirredução , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Conformação Proteica , Especificidade por Substrato
20.
Bioorg Med Chem ; 22(20): 5692-6, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24984939

RESUMO

An in situ H2O2 generation approach to promote P450 peroxygenases catalysis was developed through the use of the nicotinamide cofactor analogue 1-benzyl-1,4-dihydronicotinamide (BNAH) and flavin mononucleotide (FMN). Final productivity could be enhanced due to higher enzyme stability at low H2O2 concentrations. The H2O2 generation represented the rate-limiting step, however it could be easily controlled by varying both FMN and BNAH concentrations. Further characterization can result in an optimized ratio of FMN/BNAH/O2/biocatalyst enabling high reaction rates while minimizing H2O2-related inactivation of the enzyme.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Peróxido de Hidrogênio/metabolismo , Bacillus subtilis/enzimologia , Clostridium acetobutylicum/enzimologia , Sistema Enzimático do Citocromo P-450/química , Dinitrocresóis/química , Dinitrocresóis/metabolismo , Peróxido de Hidrogênio/química , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA