Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Dis ; 106(11): 2911-2919, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35259308

RESUMO

Macrophomina phaseolina, a fungus that causes dry root rot, is a relatively new threat to blackgram in South Asia. Because this pathogen is a polyphagic necrotroph, it remains viable in the soil for several years, making disease management challenging. One of the most economical methods for managing dry root rot in blackgram is through an integrated approach that uses resistant varieties. This study examined M. phaseolina associated with dry root rot in blackgram and screened 41 blackgram genotypes for dry root rot resistance. The present work also characterized morphological features and internal transcribed sequence regions of the nuclear rDNA operon to identify M. phaseolina from blackgram. Evaluation of the 41 blackgram genotypes against M. phaseolina by the paper towel technique identified two genotypes, CO-5 and IPU 07-3, with dry root rot resistance (disease scores: ≤3) and 18 genotypes with moderate resistance (disease scores: >3 to ≤5). Five genotypes with disease scores <4.0 and two susceptible genotypes were reevaluated using the paper towel method, which revealed moderate resistance reactions of CO-5, IPU 07-3, and MASH 1-1. To confirm dry root rot resistance of these seven genotypes, further screening was done in a greenhouse using the sick pot assay. Results revealed moderate resistance of CO-5, IPU 07-3, and MASH 1-1 genotypes. As compared with susceptible check (VO 2135-B-BL), CO-5 consistently excelled in plant survival with 13.4% disease incidence, followed by IPU 07-3 (16.7%) and MASH 1-1 (19.9%). Therefore, these three genotypes can be used as parents in blackgram breeding programs for developing blackgram cultivars with improved dry root rot resistance.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Vigna , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Ascomicetos/genética
2.
J Appl Microbiol ; 130(1): 25-39, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32794646

RESUMO

Numerous studies are published on the benefits of electric hand dryers vs paper towels (PT) for drying hands after washing. Data are conflicting and lacking key variables needed to assess infection risks. We provide a rapid scoping review on hand-drying methods relative to hygiene and health risks. Controlled vocabulary terms and keywords were used to search PubMed (1946-2018) and Embase (1947-2018). Multiple researchers independently screened abstracts for relevance using predetermined criteria and created a quality assessment scoring system for relative study comparisons. Of 293 papers, 23 were included in the final analysis. Five studies did not compare multiple methods; however, 2 generally favoured electric dryers (ED); 7 preferred PT; and 9 had mixed or statistically insignificant results (among these, 3 contained scenarios favourable to ED, 4 had results supporting PT, and the remaining studies had broadly conflicting results). Results were mixed among and within studies and many lacked consistent design or statistical analysis. The breadth of data does not favour one method as being more hygienic. However, some authors extended generalizable recommendations without sufficient scientific evidence. The use of tools in quantitative microbial risk assessment is suggested to evaluate health exposure potentials and risks relative to hand-drying methods. We found no data to support any human health claims associated with hand-drying methods. Inconclusive and conflicting results represent data gaps preventing the advancement of hand-drying policy or practice recommendations.


Assuntos
Higiene das Mãos/instrumentação , Higiene das Mãos/métodos , Eletricidade , Mãos/microbiologia , Humanos , Papel
3.
Sensors (Basel) ; 17(10)2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28972566

RESUMO

Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M® (Heathrow Scientific, Vernon Hills, IL, USA) as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

5.
J Med Ultrason (2001) ; 39(1): 11-4, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27278699

RESUMO

PURPOSE: To determine suitable procedures for decontaminating ultrasound probes. METHODS: We investigated bacterial transmission via ultrasound probes that were not wiped, wiped with a plain paper towel, or wiped with an ethanol-soaked paper towel. RESULTS: The unwiped probes transmitted large numbers of bacteria, which were markedly reduced by wiping the probes with a plain paper towel, and almost completely eliminated by wiping with an ethanol-soaked paper towel. CONCLUSION: Improperly decontaminated ultrasound probes can transmit bacteria among patients. Ultrasound probes should be decontaminated by wiping with a paper towel after examinations to prevent bacterial transmission. Plain or ethanol-soaked paper towels should be used depending on the situation.

6.
Front Public Health ; 10: 804825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198523

RESUMO

Effective hand drying is an important part of hand hygiene that can reduce the risk of infectious disease transmission through cross-contamination of surfaces by wet hands. However, hand drying methods may also cause aerosolisation of pathogenic microorganisms if they are present in washed hands. This study investigated experimentally the impact of washing hands and different hand drying methods on the concentration and size distribution of aerosols and bacteria in indoor air. In this experiment, aerosol and bacteria concentrations were measured in indoor air while volunteers rinsed their hands with water or washed with soap and water prior to drying them with paper towels or jet air dryers. Results showed that the concentration of aerosols and bacteria in air increased with people walking in the room and washing hands, with a further increase during the hand drying process. The concentration of aerosols decreased with particle size, with maximum concentrations after drying hands of 6.63 × 106 ± 6.49 × 105 and 2.28 × 104 ± 9.72 × 103 particles m-3 for sizes 0.3 to <0.5 and ≥5.0 µm, respectively. The concentration of bacteria in indoor air after drying hands increased to a maximum of 3.81 × 102 ± 1.48 × 102 CFU m-3 (jet air dryers) and 4.50 × 102 ± 4.35 × 101 CFU m-3 (paper towels). This study indicates that the increase of aerosols and bacteria in air after drying hands with jet air dryers or paper towels are comparable and not statistically different from concentrations associated with walking and washing hands in the same environment. This work can support the development of hand hygiene practices and guidelines for public washrooms.


Assuntos
Poluição do Ar em Ambientes Fechados , Desinfecção das Mãos , Aerossóis , Poluição do Ar em Ambientes Fechados/prevenção & controle , Bactérias , Desinfecção das Mãos/métodos , Humanos , Água
7.
Biotechniques ; 70(4): 194-201, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749333

RESUMO

The aim of this study was to assess the DNA preservation capability of cellulose paper towel and blotting paper as low-cost alternatives to commercial DNA preservation products. Chicken blood was applied as DNA source to each paper towel, blotting paper, FTA® cards and DNA/RNA Shield™. All samples were stored at room temperature for 130 days. DNA extraction from dried blood spots was performed after various time periods using Tris-EDTA and NaOH protocols. PCR activity and the mean amount of DNA isolated from paper towels were reliable. The results of this study demonstrated that cellulose-based blotting paper and especially paper towel had considerable DNA binding and preservation capacity for at least 130 days at room temperature without DNA degradation.


Assuntos
DNA , Manejo de Espécimes , Celulose , DNA/genética , Genômica , Reação em Cadeia da Polimerase
8.
Sci Bull (Beijing) ; 63(10): 621-628, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36658882

RESUMO

Designing and fabricating cheap and active bifunctional materials is crucial for the development of renewable energy technologies. In this article, three-dimensional nitrogen-doped porous carbon materials (NDPC-X, in which X represents the pyrolysis temperature) were fabricated by simultaneous carbonization and activation of polypyrrole-coated paper towel protected by a silica layer followed by acid etching. The material had a high specific surface area (1,123.40 m2/g). The as-obtained NDPC-900 displayed outstanding activity as a catalyst for the oxygen reduction reaction (ORR) as well as an electrode with a high specific capacitance in a supercapacitor in an alkaline medium. The NDPC-900 catalyst for the ORR exhibited a more positive reduction peak potential of -0.068 V (vs. Hg|HgCl2) than that of Pt/C (-0.121 V), as well as better cycling stability and stronger methanol tolerance. Moreover, the NDPC-900 had a high specific capacitance of 379.50 F/g at a current density of 1 A/g, with a retention rate of 94.5% after 10,000 cycles in 6 mol/L KOH electrolyte when used as an electrode in a supercapacitor. All these results were attributed to the effect of a large surface area, which provided electrochemically active sites. This work introduces an effective way to use biomass-derived materials for the synthesis of promising bifunctional carbon material for electrochemical energy conversion and storage devices.

9.
J Forensic Sci ; 61(3): 828-832, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27122427

RESUMO

Contact-based evidence is likely to have limited quantities of DNA and may yield mixed profiles due to preexisting or contaminating DNA. In a recent arson investigation, a paper towel was collected and used as circumstantial evidence. The paper towel was partially burned and was likely set on fire with flammable liquid. As part of the investigation, the paper towel was treated with ninhydrin to visualize fingerprint evidence. Initial DNA analysis of two swabs was negative for short tandem repeat (STR) markers and revealed a mixture of mitochondrial DNA (mtDNA). Analysis of 13 additional cuttings yielded four more mixed profiles, but also two samples with a common single-source profile. The single-source mtDNA profile matched that of the primary suspect in the case. Thus, even if initial mtDNA analysis yields a mixed profile, a sampling strategy involving multiple locations can improve the chance of obtaining valuable single-source mtDNA profiles from compromised evidence in criminal casework.

10.
Sci Total Environ ; 515-516: 109-17, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25704267

RESUMO

A comparative life cycle assessment, under a cradle to gate scope, was carried out between two hand drying methods namely conventional hand dryer use and dispenser issued roll paper towel use. The inventory analysis for this study was aided by the deconstruction of a hand dryer and dispenser unit besides additional data provided by the Physical Resources department, from the product system manufacturers and information from literature. The LCA software SimaPro, supported by the ecoinvent and US-EI databases, was used towards establishing the environmental impacts associated with the lifecycle stages of both the compared product systems. The Impact 2002+ method was used for classification and characterization of these environmental impacts. An uncertainty analysis addressing key input data and assumptions made, a sensitivity analysis covering the use intensity of the product systems and a scenario analysis looking at a US based use phase for the hand dryer were also conducted. Per functional unit, which is to achieve a pair of dried hands, the dispenser product system has a greater life cycle impact than the dryer product system across three of four endpoint impact categories. The use group of lifecycle stages for the dispenser product system, which represents the cradle to gate lifecycle stages associated with the paper towels, constitutes the major portion of this impact. For the dryer product system, the use group of lifecycle stages, which essentially covers the electricity consumption during dryer operation, constitutes the major stake in the impact categories. It is evident from the results of this study that per dry, for a use phase supplied by Ontario's grid (2010 grid mix scenario) and a United States based manufacturing scenario, the use of a conventional hand dryer (rated at 1800 W and under a 30s use intensity) has a lesser environmental impact than with using two paper towels (100% recycled content, unbleached and weighing 4 g) issued from a roll dispenser.

11.
Int J Nanomedicine ; 8: 407-11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23378762

RESUMO

Bacterial infections are commonly found on paper towels and other paper products, leading to the potential spread of bacteria and consequent health concerns. The objective of this in vitro study was to introduce antibacterial properties to standard paper towel surfaces by coating them with selenium nanoparticles. Scanning electron microscopy was used to measure the size and distribution of the selenium coatings on the paper towels. Atomic force microscopy was used to measure the surface roughness of paper towels before and after they were coated with selenium nanoparticles. The amount of selenium precipitated on the paper towels was measured by atomic absorption spectroscopy. In vitro bacterial studies with Staphylococcus aureus were conducted to assess the effectiveness of the selenium coating at inhibiting bacterial growth. Results showed that the selenium nanoparticles coated on the paper towel surface were well distributed with semispherical geometries about 50 nm in diameter. Most importantly, the selenium nanoparticle-coated paper towels inhibited S. aureus growth by 90% after 24 and 72 hours compared with the uncoated paper towels. Thus, the study showed that nanoparticle selenium-coated paper towels may lead to an increased eradication of bacteria in a wider range of clinical environments and in the food industry, thus improving human health.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nanopartículas/química , Papel , Selênio/farmacologia , Antibacterianos/química , Equipamentos e Provisões , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Selênio/química , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA