RESUMO
The need for robust estimates of times of divergence is essential for downstream analyses, yet assessing this robustness is still rare. We generated a time-calibrated genus-level phylogeny of butterflies (Papilionoidea), including 994 taxa, up to 10 gene fragments and an unprecedented set of 12 fossils and 10 host-plant node calibration points. We compared marginal priors and posterior distributions to assess the relative importance of the former on the latter. This approach revealed a strong influence of the set of priors on the root age but for most calibrated nodes posterior distributions shifted from the marginal prior, indicating significant information in the molecular data set. Using a very conservative approach we estimated an origin of butterflies at 107.6 Ma, approximately equivalent to the latest Early Cretaceous, with a credibility interval ranging from 89.5 Ma (mid Late Cretaceous) to 129.5 Ma (mid Early Cretaceous). In addition, we tested the effects of changing fossil calibration priors, tree prior, different sets of calibrations and different sampling fractions but our estimate remained robust to these alternative assumptions. With 994 genera, this tree provides a comprehensive source of secondary calibrations for studies on butterflies.
Assuntos
Borboletas/classificação , Filogenia , Animais , Fósseis , TempoRESUMO
Relationships within satyrine butterflies have been notoriously difficult to resolve using both morphology and Sanger sequencing methods, and this is particularly true for the mainly Neotropical subtribe Euptychiina, which contains about 400 described species. Known larvae of Euptychiina feed on grasses and sedges, with the exception of the genus Euptychia, which feed on mosses and lycopsids, and the butterflies occur widely in rainforest, cloudforest and grassland habitats, where they are often abundant. Several previous molecular and morphological studies have made significant progress in tackling the systematics of the group, but many relationships remain unresolved, with long-branch-attraction artifacts being a major problem. Additionally, the monophyly of the clade remains uncertain, with Euptychia possibly not being closely related to the remainder of the clade. Here we present a backbone phylogeny of the subtribe based on 106 taxa, 368 nuclear loci, and over 180,000â¯bps obtained through hybrid enrichment. Using both concatenation and species tree approaches (IQ-TREE, EXABAYES, ASTRAL), we can for the first time strongly confirm the monophyly of Euptychiina with Euptychia being the sister group to the remainder of the clade. The Euptychiina is divided into nine well supported clades, but the placement of a few genera such as Hermeuptychia, Pindis and the Chloreuptychia catharina group still remain uncertain. As partially indicated in previous studies, the genera Cissia, Chloreuptychia, Magneuptychia, Megisto, Splendeuptychia and Euptychoides, among others, were found to be highly polyphyletic and revisions are in preparation. The phylogeny will provide a strong backbone for the analysis of datasets in development that are much more taxonomically comprehensive but have orders of magnitude fewer loci. This study therefore represents a critical step towards resolving the higher classification and studying the evolution of this highly diverse lineage.
Assuntos
Borboletas/classificação , Borboletas/genética , Hibridização Genética , Filogenia , Pigmentação , Animais , Funções VerossimilhançaRESUMO
BACKGROUND: Butterflies (Papilionoidea) are perhaps the most charismatic insect lineage, yet phylogenetic relationships among them remain incompletely studied and controversial. This is especially true for skippers (Hesperiidae), one of the most species-rich and poorly studied butterfly families. METHODS: To infer a robust phylogenomic hypothesis for Hesperiidae, we sequenced nearly 400 loci using Anchored Hybrid Enrichment and sampled all tribes and more than 120 genera of skippers. Molecular datasets were analyzed using maximum-likelihood, parsimony and coalescent multi-species phylogenetic methods. RESULTS: All analyses converged on a novel, robust phylogenetic hypothesis for skippers. Different optimality criteria and methodologies recovered almost identical phylogenetic trees with strong nodal support at nearly all nodes and all taxonomic levels. Our results support Coeliadinae as the sister group to the remaining skippers, the monotypic Euschemoninae as the sister group to all other subfamilies but Coeliadinae, and the monophyly of Eudaminae plus Pyrginae. Within Pyrginae, Celaenorrhinini and Tagiadini are sister groups, the Neotropical firetips, Pyrrhopygini, are sister to all other tribes but Celaenorrhinini and Tagiadini. Achlyodini is recovered as the sister group to Carcharodini, and Erynnini as sister group to Pyrgini. Within the grass skippers (Hesperiinae), there is strong support for the monophyly of Aeromachini plus remaining Hesperiinae. The giant skippers (Agathymus and Megathymus) once classified as a subfamily, are recovered as monophyletic with strong support, but are deeply nested within Hesperiinae. CONCLUSIONS: Anchored Hybrid Enrichment sequencing resulted in a large amount of data that built the foundation for a new, robust evolutionary tree of skippers. The newly inferred phylogenetic tree resolves long-standing systematic issues and changes our understanding of the skipper tree of life. These resultsenhance understanding of the evolution of one of the most species-rich butterfly families.
Assuntos
Borboletas/classificação , Genômica , Filogenia , Animais , Sequência de Bases , Borboletas/genética , Funções Verossimilhança , Especificidade da EspécieRESUMO
The Neotropical moth-like butterflies (Hedylidae) are perhaps the most unusual butterfly family. In addition to being species-poor, this family is predominantly nocturnal and has anti-bat ultrasound hearing organs. Evolutionary relationships among the 36 described species are largely unexplored. A new, target capture, anchored hybrid enrichment probe set ('BUTTERFLY2.0') was developed to infer relationships of hedylids and some of their butterfly relatives. The probe set includes 13 genes that have historically been used in butterfly phylogenetics. Our dataset comprised of up to 10,898 aligned base pairs from 22 hedylid species and 19 outgroups. Eleven of the thirteen loci were successfully captured from all samples, and the remaining loci were captured from ≥94% of samples. The inferred phylogeny was consistent with recent molecular studies by placing Hedylidae sister to Hesperiidae, and the tree had robust support for 80% of nodes. Our results are also consistent with morphological studies, with Macrosoma tipulata as the sister species to all remaining hedylids, followed by M. semiermis sister to the remaining species in the genus. We tested the hypothesis that nocturnality evolved once from diurnality in Hedylidae, and demonstrate that the ancestral condition was likely diurnal, with a shift to nocturnality early in the diversification of this family. The BUTTERFLY2.0 probe set includes standard butterfly phylogenetics markers, captures sequences from decades-old museum specimens, and is a cost-effective technique to infer phylogenetic relationships of the butterfly tree of life.
Assuntos
Borboletas/classificação , Sondas de DNA/genética , Loci Gênicos , Mariposas/classificação , Filogenia , Animais , Sequência de Bases , Funções Verossimilhança , Mariposas/genéticaRESUMO
Mid-Mesozoic kalligrammatid lacewings (Neuroptera) entered the fossil record 165 million years ago (Ma) and disappeared 45 Ma later. Extant papilionoid butterflies (Lepidoptera) probably originated 80-70 Ma, long after kalligrammatids became extinct. Although poor preservation of kalligrammatid fossils previously prevented their detailed morphological and ecological characterization, we examine new, well-preserved, kalligrammatid fossils from Middle Jurassic and Early Cretaceous sites in northeastern China to unravel a surprising array of similar morphological and ecological features in these two, unrelated clades. We used polarized light and epifluorescence photography, SEM imaging, energy dispersive spectrometry and time-of-flight secondary ion mass spectrometry to examine kalligrammatid fossils and their environment. We mapped the evolution of specific traits onto a kalligrammatid phylogeny and discovered that these extinct lacewings convergently evolved wing eyespots that possibly contained melanin, and wing scales, elongate tubular proboscides, similar feeding styles, and seed-plant associations, similar to butterflies. Long-proboscid kalligrammatid lacewings lived in ecosystems with gymnosperm-insect relationships and likely accessed bennettitalean pollination drops and pollen. This system later was replaced by mid-Cretaceous angiosperms and their insect pollinators.
Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Insetos/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Borboletas/anatomia & histologiaRESUMO
Butterflies are charismatic insects and have been well studied, particularly in Europe. They are disproportionately used in generating and testing hypotheses; on everything from general evolutionary processes, such as speciation or host association dynamics; to conservation-related studies, such as climate change or habitat loss. Accurate lists of the larval foodplants for European butterflies are not readily available. Mistakes are propagated and information cannot be checked for accuracy. The level of evidence is unknown, and how usage varies between countries is poorly understood. The study consulted 1119 references to produce 19,488 records of larval foodplants for European butterflies. This resulted in 5589 larval host plant records for 464 European butterfly species, with multiple references, enabling information to be checked. Information was unavailable for 59 species. The level of evidence for each relationship shows the current state of knowledge. Significant issues were identified for 3.9% of records extracted from references due to mistakes, ambiguous or unknown plant names, distribution issues, resulting in information being lost. Plants with questionable distributions suggest either mis-identification or species that have been split. Little is known about plant usage in Eastern Europe. The larval foodplants of many monophagous and Satyrinae butterflies are poorly studied. Only 63% of threatened 2010 Red Listed butterflies have reliable host plant records. The study has provided ecologists with a valuable resource, of a more accurate checklist of the larval foodplants for each European country. Why plant usage varies over a butterfly's distribution opens up some interesting research questions.
RESUMO
The phylogenetic relationships among the nymphalid subfamilies have largely been resolved using both morphological and molecular datasets, with the exception of a conflicting basal clade position for Libytheinae or Danainae that remains contentious between morphological and molecular studies. Several phylogenomic analyses have found that the danaine clade is sister to other nymphalid subfamilies; however, it largely depends on utilizing different molecular datasets, analysis methods, and taxon sampling. This study aimed to resolve the basal clade position and relationships among subfamilies and tribes of Nymphalinae by combining the most comprehensive available mitogenomic datasets with various analyses methods by incorporating a new Symbrenthia lilaea Hewitson sequence data. Phylogenetic relationships among 11 nymphalid subfamilies and the tribes of Nymphalinae were inferred by combining new and available mitogenomic sequence data from 80 ingroup and six outgroup species. The phylogenetic trees were reconstructed using maximum-likelihood (ML) and Bayesian inference (BI) methods based on five concatenated datasets: amino acid sequences and nucleotides from different combinations of protein-coding genes (PCGs), ribosomal RNA (rRNAs), and transfer RNA (tRNAs). Danainae is well-supported as the basal clade and sister to the remaining nymphalid subfamilies, except for the paraphyletic Libytheinae. Libytheinae was either recovered as a sister to the danaine clade followed by the satyrine clade or sister to the nymphaline + heliconiine clades, and is consistent with recent phylogenetic studies on Nymphalidae. The monophyletic Nymphalinae has been recovered in all analyses and resolves tribal-level relationships with high support values in both BI and ML analyses. We supported the monophyletic Nymphalini as a sister clade to Victorini, Melitaeini, and Kallimini + Junoniini with high supporting values in BI and ML analyses, which is consistent with previously published morphological and molecular studies.
RESUMO
The mitogenome of the species belonging to the Papilionodea (Lepidoptera) is a double stranded circular molecule containing the 37 genes shared by Metazoa. Eight mitochondrial gene orders are known in the Papilionoidea. MIQGO is the plesiomorphic gene order for this superfamily, while other mitochondrial arrangements have a very limited distribution. 2S1GO gene order is an exception and is present in several Lycaenidae and one species of Hesperiidae. We studied the macrostructural changes generating the gene orders of butterflies by analysing a large data set (611 taxa) containing 5 new mitochondrial sequences/assemblies and 87 de novo annotated mitogenomes. Our analysis supports a possible origin of the intergenic spacer trnQ-nad2, characterising MIQGO, from trnM. We showed that the homoplasious gene order IMQGO, shared by butterflies, species of ants, beetles and aphids, evolved through different transformational pathways. We identify a complicated evolutionary scenario for 2S1GO in Lycaenidae, characterised by multiple events of duplication/loss and change in anticodon of trnS1. We show that the gene orders ES1GO and S1NGO originated through a tandem duplication random loss mechanism. We describe two novel gene orders. Ampittia subvittatus (Hesperiidae) exhibits the gene order 2FFGO, characterised by two copies of trnF, one located in the canonical position and a second placed in the opposite strand between trnR and trnN. Bhutanitis thaidina (Papilionidae) exhibits the gene order 4QGO, characterised by the quadruplication of trnQ.
RESUMO
Background: This study investigates the butterfly fauna (Lepidoptera, Papilionoidea) of Sulaymaniyah Province, in Kurdistan Region, Iraq. Investigations were carried out between April 2016 and April 2021, during which butterfly specimens were collected from 34 different localities throughout Sulaymaniyah Province. The collected butterflies belonged to 103 species within five families: five species of Papilionidae, 19 species of Hesperiidae, 18 species of Pieridae, 25 species of Lycaenidae and 36 species of Nymphalidae. New information: Eight species, Carcharodusstauderi Reverdin, 1913, Thymelicushyrax Lederer, 1861, Gonepteryxrhamni (Linnaeus, 1758) Pieriskrueperi Staudinger, 1860, Coliaserate Esper, 1803, Polyommatusthersites (Cantener, 1835), Brenthismofidii Wyatt, 1968 and Pseudochazaramamurra Herrich-Schäffer, 1852 have been added as new records to the fauna of Iraqi butterflies.
RESUMO
The Old World swallowtail Papilio machaon Linnaeus, 1758 is one of the most well-known and most characteristic members of the family Papilionidae. Over the past two centuries, the butterfly has been the subject of many studies. P. machaon is characterised by a tendency to change the wing colour pattern. In turn, due to the great interest of collectors and amateur entomologists, these studies have been converted into the description of over 100 colour forms, aberrations and subspecies. In this study, mitochondrial DNA (mtDNA), 16S rDNA and cytochrome b sequences were used to examine the correlation between the intraspecific classification and genetic structure of P. machaon. The study used 87 specimens from 59 different localities covering the geographic distribution of this species in the Palaearctic. The phylogenetic relationships within and between the Old World swallowtail subspecies showed that the intraspecific classification proposed by various authors does not correlate with the variability in mitochondrial DNA sequences. In addition, populations occurring at the species distribution borders in the Palaearctic Region (i.e., Japan, Kamchatka, Morocco and Sakhalin) are genetically distinct from other species.
RESUMO
BACKGROUND: The availability of thousands of genomes has enabled new advancements in biology. However, many genomes have not been investigated for their quality. Here we examine quality trends in a taxonomically diverse and well-known group, butterflies (Papilionoidea), and provide draft, de novo assemblies for all available butterfly genomes. Owing to massive genome sequencing investment and taxonomic curation, this is an excellent group to explore genome quality. FINDINGS: We provide de novo assemblies for all 822 available butterfly genomes and interpret their quality in terms of completeness and continuity. We identify the 50 highest quality genomes across butterflies and conclude that the ringlet, Aphantopus hyperantus, has the highest quality genome. Our post-processing of draft genome assemblies identified 118 butterfly genomes that should not be reused owing to contamination or extremely low quality. However, many draft genomes are of high utility, especially because permissibility of low-quality genomes is dependent on the objective of the study. Our assemblies will serve as a key resource for papilionid genomics, especially for researchers without computational resources. CONCLUSIONS: Quality metrics and assemblies are typically presented with annotated genome accessions but rarely with de novo genomes. We recommend that studies presenting genome sequences provide the assembly and some metrics of quality because quality will significantly affect downstream results. Transparency in quality metrics is needed to improve the field of genome science and encourage data reuse.
Assuntos
Borboletas , Animais , Benchmarking , Borboletas/genética , Mapeamento Cromossômico , Genoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNARESUMO
This study compares the variation of richness, abundance and diversity of butterfly species along an atmospheric pollution gradient and during different seasons in the Monterrey Metropolitan Area, Mexico. Likewise, we analyse the influence of environmental variables on the abundance and richness of butterfly species and quantify the indicator species for each atmospheric pollution category. Based on spatial analysis of the main atmospheric pollutants and the vegetation cover conditions, four permanent sampling sites were delimited. The sampling was carried out monthly in each of the sites using aerial entomological nets and ten Van Someren-Rydon traps during May 2018 to April 2019. A total of 8,570 specimens belonging to six families and 209 species were collected. Both species richness and abundance were significantly different between all sites, except for the comparison between the moderate contamination site and the high contamination site; diversity decreased significantly with increasing levels of contamination. The seasonality effect was absent on species richness; however, for species abundance the differences between dry season and rainy season were significant in each site excepting the moderate contamination site. Regarding diversity, the seasonal effect showed different distribution patterns according to each order. Relative humidity, vegetation cover and three pollution variables were highly correlated with both abundance and species richness. From the total number of species found, only 47 had a significant indicator value. This study constitutes the first faunistic contribution of butterflies as indicators of the environmental quality of urban areas in Mexico, which will help in the development of strategies for the management, planning and conservation of urban biodiversity.
RESUMO
Metapopulation theory considers that the populations of many species are fragmented into patches connected by the migration of individuals through an interterritorial matrix. We applied fuzzy set theory and environmental favorability (F) functions to reveal the metapopulational structure of the 222 butterfly species in the Iberian Peninsula. We used the sets of contiguous grid cells with high favorability (F ≥ 0.8), to identify the favorable patches for each species. We superimposed the known occurrence data to reveal the occupied and empty favorable patches, as unoccupied patches are functional in a metapopulation dynamics analysis. We analyzed the connectivity between patches of each metapopulation by focusing on the territory of intermediate and low favorability for the species (F < 0.8). The friction that each cell opposes to the passage of individuals was computed as 1-F. We used the r.cost function of QGIS to calculate the cost of reaching each cell from a favorable patch. The inverse of the cost was computed as connectivity. Only 126 species can be considered to have a metapopulation structure. These metapopulation structures are part of the dark biodiversity of butterflies because their identification is not evident from the observation of the occurrence data but was revealed using favorability functions.
RESUMO
We present a synthesis of the existing information on the genus Emesis Fabricius in Mexico concerning biogeographical patterns and taxonomical aspects. Emesis is the most diverse genus of Emesidini with 57 species and subspecies, with Mexico as the northern limit of this Neotropical genus. We analyzed 5434 specimens of the Lepidoptera Collection of the MZFC, UNAM and compared them with specimens from collections of Mexico, Central and South America. Taxonomic determination and corroboration were made by analysis of wing patterns and genitalia. Geographic distribution and phenology were obtained from the database MARIPOSA. We present an updated list of Emesis of Mexico, with 17 species and subspecies. For each species, we provide information on phenology, geographic, altitudinal, and vegetation distributions. We discuss taxonomic and undersampling concerns for some species, as well as spatial and temporal patterns with special reference to vegetation types and biogeographic provinces in Mexico.
Assuntos
Distribuição Animal , Borboletas , Animais , Borboletas/classificação , México , Fatores de TempoRESUMO
The taxonomic placement of the moth-butterfly, Macrosoma conifera (Warren 1897) (Lepidoptera: Hedylidae), has been controversial. The 15,344 bp complete M. conifera circular mitogenome, assembled by genome skimming, consists of 81.7% AT nucleotides, 22 tRNAs, 13 protein-coding genes, 2 rRNAs and a control region in the typical butterfly gene order. Macrosoma conifera COX1 features an atypical CGA start codon while ATP6, COX1, COX2, and ND5 exhibit incomplete stop codons completed by the post-transcriptional addition of 3' A residues. Phylogenetic reconstruction places M. conifera as sister to the skippers (Hesperiidae), which is consistent with several recent phylogenetic analyses.
RESUMO
We transfer Apodemia planeca R. de la Maza E. J. de la Maza E. 2017 to Emesis as Emesis planeca (R. de la Maza E. J. de la Maza E.) n. comb. based on phylogenetic hypotheses estimated with one mtDNA and two nDNA markers. This is a rare and poorly known metalmark, endemic to the central region of Balsas Basin in Michoacán, Mexico, originally described from material collected 23 years ago. Here we analyze new specimens from the type locality not included in the original description. With this new material, we describe the morphological variation of adults, including male and female genitalia. This variation is then discussed and compared with the original description. Emesis planeca n. comb. is restricted to the Tropical Deciduous Forest and the adults fly only in the dry season. Due to the spatial, temporal, and ecological rareness of Emesis planeca n. comb., considering it has not been collected in more than two decades and that the Tropical Deciduous Forest is one of the most threatened habitats in Mexico; we propose assigning a protection status to this species.
Assuntos
Borboletas , Animais , Feminino , Florestas , Masculino , FilogeniaRESUMO
Riodinidae are one of the most diverse families of Lepidoptera, mainly in the Neotropical region; however, their biology, ethology, taxonomy, systematics, and biogeography are poorly known. In Mexico, the regional and local distributions of the family are still incomplete. We review the distributional data of the genus Lasaia Bates (Lepidoptera: Riodinidae), based on records from four national and seven international collections. We record five species and seven subspecies in Mexico, with 2722 records, distributed in 314 localities of 24 states. The states with higher species richness are Chiapas, Oaxaca, and Veracruz; also, the genus was recorded in 11 of the 14 biogeographical provinces of Mexico. The tropical semi-deciduous and deciduous forests, below of 1000 m a.s.l., contain most of the diversity of Lasaia. Historical data are crucial for the study of local and regional diversity and ecological patterns at large temporal scales. Data presented here show the morphological and ecological variation of Lasaia over the last 80 years, mostly from the XX century when anthropogenic disturbances were intensified. This kind of studies is the first step in recording the historical distribution of these taxa, which will lead to more complex analyses on distribution range shifts, their causes and consequences.
Assuntos
Borboletas , Animais , Florestas , MéxicoRESUMO
This is the second exploration, comparison, and analysis of the chorion of species (45 sspp.) of the subfamily Dismorphiinae (Pieridae). This study includes nearly 50% of the species of the subfamily, including six of the seven genera in its two subtribes: Leptidea (Leptideini), Enantia, Pseudopieris, Lieinix, Moschoneura, and Dismorphia (Dismorphiini). The material studied originates from more than three dozen localities in six different countries on three continents (America, Asia, and Europe) and two biogeographical regions, the Palearctic and Neotropical, over the last 20 years. We have corrected and added information regarding several morphological aspects of the chorion. The precision of the citriform configuration and the elimination of the meloniform shape in the egg of Dismorphiini were determined with detailed observations on the maturation of the chorion in the ovarioles where each stage appears in a linear sequence. We discerned that the meloniform states correspond to incompletely differentiated or immature eggs. This was confirmed by the study of new samples of Dismorphia amphione, D. eunoe, and D. lewyi. The chorion of Dismorphiinae is basically plesiomorphic with respect to those of Coliadinae and Pierinae because it lacks several typical synapomorphies of these subfamilies, such as the presence of micro-grid and/or perimicropylar and apex differentiation, respectively. The eggs of each Dismorphiinae genus can be diagnosed by a combination of chorionic features, although sometimes by one or more plesiomorphies or apomorphies in each genus, with respect to the form or character states in axes, ribs, and poles in the grid of the three regions of the egg - two polar regions and one equatorial (basal, medial, and apical). Leptidea and Enantia show the most generalized grid pattern; however, two genera retain several plesiomorphies with respect to the undifferentiated axes or a small number of short axes (Pseudopieris), as well as many equidistant ribs (Lieinix). The chorionic grid of Moschoneura, although practically lacking short axes, shows the fewest number of axes in the entire subfamily (eight aligns it with Pseudopieris). The chorionic grid in Dismorphia is highly diverse, as it shows the most derived states; however, it comprises symplesiomorphies or atavisms in two groups of species, which aligns them closer to Lieinix or Pseudopieris, but we do not take them into account in some cases where they are convergences or structural parallelisms. It seems that the combination of the shape and its length:width ratio is correlated with the alar configuration (design, sexual dimorphism, and coloring patterns) and separates three groups of species in Dismorphia, and often correlates with the number of ribs. This also coincides with the Batesian participation in the number of mimetic complexes in which a subgroup of species and their stenoecy are integrated within the primary forests. Finally, two schemes are presented that synthesize and illustrate the changes or progression of the form and chorionic grid in the genera of the subfamily.
Assuntos
Lepidópteros , Animais , Ásia , Córion , Europa (Continente) , ÓvuloRESUMO
Two new genera of Riodinidae (Insecta: Lepidoptera) are described, Neoapodemia Trujano-Ortega, gen. n. (Neoapodemia nais (W. H. Edwards, 1876), comb. n., N. chisosensis Freeman, 1964, comb. n.) and Plesioarida Trujano-Ortega & García-Vázquez, gen. n. (Plesioarida palmerii palmerii (W. H. Edwards, 1870), comb. n., P. palmerii arizona (Austin, [1989]), comb. n., P. palmerii australis (Austin, [1989]), comb. n., P. hepburni hepburni (Godman & Salvin, 1886), comb. n., P. hepburni remota (Austin, 1991), comb. n., P. murphyi (Austin, [1989]), comb. n., P. hypoglauca hypoglauca (Godman & Salvin, 1878), comb. n., P. hypoglauca wellingi (Ferris, 1985), comb. n., P. walkeri (Godman & Salvin, 1886), comb. n., P. selvatica (De la Maza & De la Maza, 2017), comb. n.). Neoapodemia Trujano-Ortega, gen. n. is distributed in the southwestern USA and northeastern Mexico, while Plesioarida Trujano-Ortega & García-Vázquez, gen. n. is present from the southern USA to Central America. Species of these genera were previously classified as Apodemia C. Felder & R. Felder but molecular and morphological evidence separate them as new taxa. Morphological diagnoses and descriptions are provided for both new genera, including the main distinctive characters from labial palpi, prothoracic legs, wing venation and genitalia, as well as life history traits. A molecular phylogeny of one mitochondrial gene (COI) and two nuclear genes (EF-1a and wg) are also presented of most species of Apodemia, Neoapodemia Trujano-Ortega, gen. n., Plesioarida Trujano-Ortega & García-Vázquez, gen. n., and sequences of specimens from all tribes of Riodinidae. We compare the characters of Apodemia, Neoapodemia Trujano-Ortega, gen. n. and Plesioarida Trujano-Ortega & García-Vázquez, gen. n. and discuss the differences that support the description of these new taxa. This is a contribution to the taxonomy of the Riodinidae of North America of which the generic diversity is greater than previously recognized.
RESUMO
Butterflies (Papilionoidea), with over 18,000 described species [1], have captivated naturalists and scientists for centuries. They play a central role in the study of speciation, community ecology, biogeography, climate change, and plant-insect interactions and include many model organisms and pest species [2, 3]. However, a robust higher-level phylogenetic framework is lacking. To fill this gap, we inferred a dated phylogeny by analyzing the first phylogenomic dataset, including 352 loci (> 150,000 bp) from 207 species representing 98% of tribes, a 35-fold increase in gene sampling and 3-fold increase in taxon sampling over previous studies [4]. Most data were generated with a new anchored hybrid enrichment (AHE) [5] gene kit (BUTTERFLY1.0) that includes both new and frequently used (e.g., [6]) informative loci, enabling direct comparison and future dataset merging with previous studies. Butterflies originated around 119 million years ago (mya) in the late Cretaceous, but most extant lineages diverged after the Cretaceous-Paleogene (K-Pg) mass-extinction 65 mya. Our analyses support swallowtails (Papilionidae) as sister to all other butterflies, followed by skippers (Hesperiidae) + the nocturnal butterflies (Hedylidae) as sister to the remainder, indicating a secondary reversal from diurnality to nocturnality. The whites (Pieridae) were strongly supported as sister to brush-footed butterflies (Nymphalidae) and blues + metalmarks (Lycaenidae and Riodinidae). Ant association independently evolved once in Lycaenidae and twice in Riodinidae. This study overturns prior notions of the taxon's evolutionary history, as many long-recognized subfamilies and tribes are para- or polyphyletic. It also provides a much-needed backbone for a revised classification of butterflies and for future comparative studies including genome evolution and ecology.