Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(24): 4621-4633.e17, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36368323

RESUMO

Methods for acquiring spatially resolved omics data from complex tissues use barcoded DNA arrays of low- to sub-micrometer features to achieve single-cell resolution. However, fabricating such arrays (randomly assembled beads, DNA nanoballs, or clusters) requires sequencing barcodes in each array, limiting cost-effectiveness and throughput. Here, we describe a vastly scalable stamping method to fabricate polony gels, arrays of ∼1-micrometer clonal DNA clusters bearing unique barcodes. By enabling repeatable enzymatic replication of barcode-patterned gels, this method, compared with the sequencing-dependent array fabrication, reduced cost by at least 35-fold and time to approximately 7 h. The gel stamping was implemented with a simple robotic arm and off-the-shelf reagents. We leveraged the resolution and RNA capture efficiency of polony gels to develop Pixel-seq, a single-cell spatial transcriptomic assay, and applied it to map the mouse parabrachial nucleus and analyze changes in neuropathic pain-regulated transcriptomes and cell-cell communication after nerve ligation.


Assuntos
Dor Crônica , Transcriptoma , Camundongos , Animais , DNA , RNA , Géis
2.
Cell ; 173(1): 140-152.e15, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29570993

RESUMO

Hunger and pain are two competing signals that individuals must resolve to ensure survival. However, the neural processes that prioritize conflicting survival needs are poorly understood. We discovered that hunger attenuates behavioral responses and affective properties of inflammatory pain without altering acute nociceptive responses. This effect is centrally controlled, as activity in hunger-sensitive agouti-related protein (AgRP)-expressing neurons abrogates inflammatory pain. Systematic analysis of AgRP projection subpopulations revealed that the neural processing of hunger and inflammatory pain converge in the hindbrain parabrachial nucleus (PBN). Strikingly, activity in AgRP → PBN neurons blocked the behavioral response to inflammatory pain as effectively as hunger or analgesics. The anti-nociceptive effect of hunger is mediated by neuropeptide Y (NPY) signaling in the PBN. By investigating the intersection between hunger and pain, we have identified a neural circuit that mediates competing survival needs and uncovered NPY Y1 receptor signaling in the PBN as a target for pain suppression.


Assuntos
Neurônios/metabolismo , Dor/patologia , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Analgésicos Opioides/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Comportamento Animal/efeitos dos fármacos , Dieta , Comportamento Alimentar/efeitos dos fármacos , Formaldeído/toxicidade , Glutamato Descarboxilase/metabolismo , Locomoção/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Neurônios/efeitos dos fármacos , Dor/etiologia , Dor/metabolismo , Núcleos Parabraquiais/efeitos dos fármacos , Núcleos Parabraquiais/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 121(24): e2401929121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38843183

RESUMO

Punishment such as electric shock or physical discipline employs a mixture of physical pain and emotional distress to induce behavior modification. However, a neural circuit that produces behavior modification by selectively focusing the emotional component, while bypassing the pain typically induced by peripheral nociceptor activation, is not well studied. Here, we show that genetically silencing the activity of neurons expressing calcitonin gene-related peptide (CGRP) in the parabrachial nucleus blocks the suppression of addictive-like behavior induced by footshock. Furthermore, activating CGRP neurons suppresses not only addictive behavior induced by self-stimulating dopamine neurons but also behavior resulting from self-administering cocaine, without eliciting nocifensive reactions. Moreover, among multiple downstream targets of CGRP neurons, terminal activation of CGRP in the central amygdala is effective, mimicking the results of cell body stimulation. Our results indicate that unlike conventional electric footshock, stimulation of CGRP neurons does not activate peripheral nociceptors but effectively curb addictive behavior.


Assuntos
Comportamento Aditivo , Peptídeo Relacionado com Gene de Calcitonina , Neurônios , Núcleos Parabraquiais , Animais , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Comportamento Aditivo/metabolismo , Masculino , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Cocaína/farmacologia , Comportamento Animal/fisiologia
4.
Proc Natl Acad Sci U S A ; 121(9): e2320276121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381789

RESUMO

Neuropeptide S (NPS) was postulated to be a wake-promoting neuropeptide with unknown mechanism, and a mutation in its receptor (NPSR1) causes the short sleep duration trait in humans. We investigated the role of different NPS+ nuclei in sleep/wake regulation. Loss-of-function and chemogenetic studies revealed that NPS+ neurons in the parabrachial nucleus (PB) are wake-promoting, whereas peri-locus coeruleus (peri-LC) NPS+ neurons are not important for sleep/wake modulation. Further, we found that a NPS+ nucleus in the central gray of the pons (CGPn) strongly promotes sleep. Fiber photometry recordings showed that NPS+ neurons are wake-active in the CGPn and wake/REM-sleep active in the PB and peri-LC. Blocking NPS-NPSR1 signaling or knockdown of Nps supported the function of the NPS-NPSR1 pathway in sleep/wake regulation. Together, these results reveal that NPS and NPS+ neurons play dichotomous roles in sleep/wake regulation at both the molecular and circuit levels.


Assuntos
Neuropeptídeos , Sono , Humanos , Sono/fisiologia , Ponte/fisiologia , Locus Cerúleo/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
J Neurosci ; 43(29): 5340-5349, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37399333

RESUMO

The amygdala plays a key role in the processing of itch and pain signals as well as emotion. A previous study revealed that the central nucleus of the amygdala (CeA)-parabrachial nucleus (PBN) pathway is involved in pain regulation. The same pathway might also control itch. To test this possibility, prodynorphin (Pdyn)-Cre mice were used to optogenetically manipulate Pdyn+ CeA-to-PBN projections. We found that optogenetic stimulation of Pdyn+ amygdala neurons or Pdyn+ CeA-to-PBN projections inhibited histamine-evoked and chloroquine-evoked scratching. The number of Fos-positive neurons in the PBN increased following intradermal injection of chloroquine. Optogenetic stimulation of Pdyn+ CeA-to-PBN projections suppressed the increase in Fos expression in the PBN. Optogenetic stimulation of Pdyn+ CeA-to-PBN projections increased thermal and mechanical thresholds without affecting anxiety-like behavior. These results highlight the importance of dynorphinergic projections from the central amygdala to the parabrachial nucleus in the regulation of itch signaling.SIGNIFICANCE STATEMENT The central nucleus of the amygdala (CeA)-parabrachial nucleus (PBN) pathway regulates pain signaling. Using prodynorphin (Pdyn)-cre mice, we investigated the role of Pdyn+ CeA-to-PBN projections in itch. Optogenetic stimulation of Pdyn+ CeA-to-PBN projections inhibited pruritogen-evoked scratching and neuronal activity (c-Fos expression) in the PBN. Together, dynorphinergic projections from the central amygdala to the parabrachial nucleus are important for regulating itch information.


Assuntos
Núcleo Central da Amígdala , Núcleos Parabraquiais , Camundongos , Animais , Dor , Neurônios/fisiologia , Prurido/induzido quimicamente , Cloroquina
6.
J Neurosci ; 43(28): 5221-5240, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37339876

RESUMO

Thermoregulatory behavior in homeothermic animals is an innate behavior to defend body core temperature from environmental thermal challenges in coordination with autonomous thermoregulatory responses. In contrast to the progress in understanding the central mechanisms of autonomous thermoregulation, those of behavioral thermoregulation remain poorly understood. We have previously shown that the lateral parabrachial nucleus (LPB) mediates cutaneous thermosensory afferent signaling for thermoregulation. To understand the thermosensory neural network for behavioral thermoregulation, in the present study, we investigated the roles of ascending thermosensory pathways from the LPB in avoidance behavior from innocuous heat and cold in male rats. Neuronal tracing revealed two segregated groups of LPB neurons projecting to the median preoptic nucleus (MnPO), a thermoregulatory center (LPB→MnPO neurons), and those projecting to the central amygdaloid nucleus (CeA), a limbic emotion center (LPB→CeA neurons). While LPB→MnPO neurons include separate subgroups activated by heat or cold exposure of rats, LPB→CeA neurons were only activated by cold exposure. By selectively inhibiting LPB→MnPO or LPB→CeA neurons using tetanus toxin light chain or chemogenetic or optogenetic techniques, we found that LPB→MnPO transmission mediates heat avoidance, whereas LPB→CeA transmission contributes to cold avoidance. In vivo electrophysiological experiments showed that skin cooling-evoked thermogenesis in brown adipose tissue requires not only LPB→MnPO neurons but also LPB→CeA neurons, providing a novel insight into the central mechanism of autonomous thermoregulation. Our findings reveal an important framework of central thermosensory afferent pathways to coordinate behavioral and autonomous thermoregulation and to generate the emotions of thermal comfort and discomfort that drive thermoregulatory behavior.SIGNIFICANCE STATEMENT Coordination of behavioral and autonomous thermoregulation is important for maintaining thermal homeostasis in homeothermic animals. However, the central mechanism of thermoregulatory behaviors remains poorly understood. We have previously shown that the lateral parabrachial nucleus (LPB) mediates ascending thermosensory signaling that drives thermoregulatory behavior. In this study, we found that one pathway from the LPB to the median preoptic nucleus mediates heat avoidance, whereas the other pathway from the LPB to the central amygdaloid nucleus is required for cold avoidance. Surprisingly, both pathways are required for skin cooling-evoked thermogenesis in brown adipose tissue, an autonomous thermoregulatory response. This study provides a central thermosensory network that coordinates behavioral and autonomous thermoregulation and generates thermal comfort and discomfort that drive thermoregulatory behavior.


Assuntos
Núcleos Parabraquiais , Masculino , Ratos , Animais , Núcleos Parabraquiais/fisiologia , Regulação da Temperatura Corporal/fisiologia , Pele , Temperatura Baixa , Vias Aferentes , Vias Neurais/fisiologia
7.
J Neurosci ; 43(44): 7276-7293, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37684032

RESUMO

The parabrachial nucleus (PBN) interfaces between taste and feeding systems and is also an important hub for relaying distress information and threats. Despite that the PBN sends projections to the ventral tegmental area (VTA), a heterogeneous brain region that regulates motivational behaviors, the function of the PBN-to-VTA connection remains elusive. Here, by using male mice in several behavioral paradigms, we discover that VTA-projecting PBN neurons are significantly engaged in contextual fear, restraint or mild stress but not palatable feeding, visceral malaise, or thermal pain. These results suggest that the PBN-to-VTA input may relay negative emotions under threat. Consistent with this notion, optogenetic activation of PBN-to-VTA glutamatergic input results in aversion, which is sufficient to override palatable feeding. Moreover, in a palatable food-reinforced operant task, we demonstrate that transient optogenetic activation of PBN-to-VTA input during food reward retrieval disengages instrumental food-seeking behaviors but spares learned action-outcome association. By using an activity-dependent targeting approach, we show that VTA DA neurons are disengaged by the PBN afferent activation, implicating that VTA non-DA neurons may mediate PBN afferent regulation. We further show that optogenetic activation of VTA neurons functionally recruited by the PBN input results in aversion, dampens palatable feeding, and disengages palatable food self-administration behavior. Finally, we demonstrate that transient activation of VTA glutamatergic, but not GABAergic, neurons recapitulates the negative regulation of the PBN input on food self-administration behavior. Together, we reveal that the PBN-to-VTA input conveys negative affect, likely through VTA glutamatergic neurons, to disengage instrumental food-seeking behaviors.SIGNIFICANCE STATEMENT The PBN receives multiple inputs and thus is well positioned to route information of various modalities to engage different downstream circuits to attend or respond accordingly. We demonstrate that the PBN-to-VTA input conveys negative affect and then triggers adaptive prioritized responses to address pertinent needs by withholding ongoing behaviors, such as palatable food seeking or intake shown in the present study. It has evolutionary significance because preparing to cope with stressful situations or threats takes priority over food seeking to promote survival. Knowing how appropriate adaptive responses are generated will provide new insights into circuitry mechanisms of various coping behaviors to changing environmental stimuli.


Assuntos
Núcleos Parabraquiais , Área Tegmentar Ventral , Camundongos , Masculino , Animais , Área Tegmentar Ventral/fisiologia , Núcleos Parabraquiais/fisiologia , Alimentos , Neurônios GABAérgicos , Emoções , Recompensa
8.
J Neurosci ; 43(6): 965-978, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36623875

RESUMO

Recent findings from our laboratory demonstrated that the rostral nucleus of the solitary tract (rNST) retains some responsiveness to sugars in double-knock-out mice lacking either the T1R1+T1R3 (KO1+3) or T1R2+T1R3 (KO2+3) taste receptor heterodimers. Here, we extended these findings in the parabrachial nucleus (PBN) of male and female KO1+3 mice using warm stimuli to optimize sugar responses and employing additional concentrations and pharmacological agents to probe mechanisms. PBN T1R-independent sugar responses, including those to concentrated glucose, were more evident than in rNST. Similar to the NST, there were no "sugar-best" neurons in KO1+3 mice. Nevertheless, 1000 mm glucose activated nearly 55% of PBN neurons, with responses usually occurring in neurons that also displayed acid and amiloride-insensitive NaCl responses. In wild-type (WT) mice, concentrated sugars activated the same electrolyte-sensitive neurons but also "sugar-best" cells. Regardless of genotype, phlorizin, an inhibitor of the sodium-glucose co-transporter (SGLT), a component of a hypothesized alternate glucose-sensing mechanism, did not diminish responses to 1000 mm glucose. The efficacy of concentrated sugars for driving neurons broadly responsive to electrolytes implied an origin from Type III taste bud cells. To test this, we used the carbonic anhydrase (CA) inhibitor dorzolamide (DRZ), previously shown to inhibit amiloride-insensitive sodium responses arising from Type III taste bud cells. Dorzolamide had no effect on sugar-elicited responses in WT sugar-best PBN neurons but strongly suppressed them in WT and KO1+3 electrolyte-generalist neurons. These findings suggest a novel T1R-independent mechanism for hyperosmotic sugars, involving a CA-dependent mechanism in Type III taste bud cells.SIGNIFICANCE STATEMENT Since the discovery of Tas1r receptors for sugars and artificial sweeteners, evidence has accrued that mice lacking these receptors maintain some behavioral, physiological, and neural responsiveness to sugars. But the substrate(s) has remained elusive. Here, we recorded from parabrachial nucleus (PBN) taste neurons and identified T1R-independent responses to hyperosmotic sugars dependent on carbonic anhydrase (CA) and occurring primarily in neurons broadly responsive to NaCl and acid, implying an origin from Type III taste bud cells. The effectiveness of different sugars in driving these T1R-independent responses did not correlate with their efficacy in driving licking, suggesting they evoke a nonsweet sensation. Nevertheless, these salient responses are likely to comprise an adequate cue for learned preferences that occur in the absence of T1R receptors.


Assuntos
Papilas Gustativas , Paladar , Animais , Feminino , Masculino , Camundongos , Amilorida/farmacologia , Glucose , Camundongos Knockout , Cloreto de Sódio/farmacologia , Açúcares/farmacologia , Paladar/fisiologia , Papilas Gustativas/fisiologia
9.
Neuroimage ; 299: 120832, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39236852

RESUMO

Pain is a complex experience that involves sensory, emotional, and motivational components. It has been suggested that pain arising from the head and orofacial regions evokes stronger emotional responses than pain from the body. Indeed, recent work in rodents reports different patterns of activation in ascending pain pathways during noxious stimulation of the skin of the face when compared to noxious stimulation of the body. Such differences may dictate different activation patterns in higher brain regions, specifically in those areas processing the affective component of pain. We aimed to use ultra-high field functional magnetic resonance imaging (fMRI at 7-Tesla) to determine whether noxious thermal stimuli applied to the surface of the face and body evoke differential activation patterns within the ascending pain pathway in awake humans (n=16). Compared to the body, noxious heat stimulation to the face evoked more widespread signal changes in prefrontal cortical regions and numerous brainstem and subcortical limbic areas. Moreover, facial pain evoked significantly different signal changes in the lateral parabrachial nucleus, substantia nigra, paraventricular hypothalamus, and paraventricular thalamus, to those evoked by body pain. These results are consistent with recent preclinical findings of differential activation in the brainstem and subcortical limbic nuclei and associated cortices during cutaneous pain of the face when compared with the body. The findings suggest one potential mechanism by which facial pain could evoke a greater emotional impact than that evoked by body pain.


Assuntos
Mapeamento Encefálico , Sistema Límbico , Imageamento por Ressonância Magnética , Núcleos Parabraquiais , Humanos , Masculino , Feminino , Adulto , Núcleos Parabraquiais/fisiologia , Núcleos Parabraquiais/diagnóstico por imagem , Sistema Límbico/diagnóstico por imagem , Sistema Límbico/fisiopatologia , Adulto Jovem , Mapeamento Encefálico/métodos , Dor/fisiopatologia , Dor/diagnóstico por imagem , Dor Facial/diagnóstico por imagem , Dor Facial/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem
10.
Synapse ; 78(1): e22284, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37996987

RESUMO

Dopamine (DA) is involved in stress and stress-related illnesses, including many psychiatric disorders. Corticotropin-releasing factor (CRF) plays a role in stress responses and targets the ventral midbrain DA system, which is composed of DA and non-DA cells, and divided into specific subregions. Although CRF inputs to the midline A10 nuclei ("classic VTA") are known, in monkeys, CRF-containing terminals are also highly enriched in the expanded A10 parabrachial pigmented nucleus (PBP) and in the A8 retrorubral field subregions. We characterized CRF-labeled synaptic terminals on DA (tyrosine hydroxylase, TH+) and non-DA (TH-) cell types in the PBP and A8 regions using immunoreactive electron microscopy (EM) in male and female macaques. CRF labeling was present mostly in axon terminals, which mainly contacted TH-negative dendrites in both subregions. Most CRF-positive terminals had symmetric profiles. In both PBP and A8, CRF symmetric (putative inhibitory) synapses onto TH-negative dendrites were significantly greater than asymmetric (putative excitatory) profiles. This overall pattern was similar in males and females, despite shifts in the size of these effects between regions depending on sex. Because stress and gonadal hormone shifts can influence CRF expression, we also did hormonal assays over a 6-month time period and found little variability in basal cortisol across similarly housed animals at the same age. Together our findings suggest that at baseline, CRF-positive synaptic terminals in the primate PBP and A8 are poised to regulate DA indirectly through synaptic contacts onto non-DA neurons.


Assuntos
Benzenoacetamidas , Hormônio Liberador da Corticotropina , Dopamina , Piperidonas , Humanos , Animais , Masculino , Feminino , Dopamina/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Macaca/metabolismo , Terminações Pré-Sinápticas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
11.
Neurochem Res ; 49(8): 2060-2074, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814359

RESUMO

Since the clinical introduction of general anesthesia, its underlying mechanisms have not been fully elucidated. The ventral tegmental area (VTA) and parabrachial nucleus (PBN) play pivotal roles in the mechanisms underlying general anesthesia. However, whether dopaminergic (DA) projections from the VTA to the PBN play a role in mediating the effects of general anesthesia is unclear. We microinjected 6-hydroxydopamine into the PBN to damage tyrosine hydroxylase positive (TH+) neurons and found a prolonged recovery time from propofol anesthesia. We used calcium fiber photometry recording to explore the activity of TH + neurons in the PBN. Then, we used chemogenetic and optogenetic approaches either activate the VTADA-PBN pathway, shortening the propofol anesthesia emergence time, or inhibit this pathway, prolonging the emergence time. These data indicate the crucial involvement of TH + neurons in the PBN in regulating emergence from propofol anesthesia, while the activation of the VTADA-PBN pathway facilitates the emergence of propofol anesthesia.


Assuntos
Anestésicos Intravenosos , Neurônios Dopaminérgicos , Núcleos Parabraquiais , Propofol , Ratos Sprague-Dawley , Área Tegmentar Ventral , Propofol/farmacologia , Animais , Área Tegmentar Ventral/efeitos dos fármacos , Masculino , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Núcleos Parabraquiais/efeitos dos fármacos , Núcleos Parabraquiais/fisiologia , Anestésicos Intravenosos/farmacologia , Ratos , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Período de Recuperação da Anestesia , Oxidopamina/farmacologia
12.
Acta Pharmacol Sin ; 45(9): 1832-1847, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38702500

RESUMO

It has been shown that prostaglandin (PG) E2 synthesized in the lateral parabrachial nucleus (LPBN) is involved in lipopolysaccharide-induced fever. But the neural mechanisms of how intra-LPBN PGE2 induces fever remain unclear. In this study, we investigated whether the LPBN-preoptic area (POA) pathway, the thermoafferent pathway for feed-forward thermoregulatory responses, mediates fever induced by intra-LPBN PGE2 in male rats. The core temperature (Tcore) was monitored using a temperature radiotelemetry transponder implanted in rat abdomen. We showed that microinjection of PGE2 (0.28 nmol) into the LPBN significantly enhanced the density of c-Fos-positive neurons in the median preoptic area (MnPO). The chemical lesioning of MnPO with ibotenate or selective genetic lesioning or inhibition of the LPBN-MnPO pathway significantly attenuated fever induced by intra-LPBN injection of PGE2. We demonstrated that EP3 receptor was a pivotal receptor for PGE2-induced fever, since microinjection of EP3 receptor agonist sulprostone (0.2 nmol) or EP3 receptor antagonist L-798106 (2 nmol) into the LPBN mimicked or weakened the pyrogenic action of LPBN PGE2, respectively, but this was not the case for EP4 and EP1 receptors. Whole-cell recording from acute LPBN slices revealed that the majority of MnPO-projecting neurons originating from the external lateral (el) and dorsal (d) LPBN were excited and inhibited, respectively, by PGE2 perfusion, initiating heat-gain and heat-loss mechanisms. The amplitude but not the frequency of spontaneous and miniature glutamatergic excitatory postsynaptic currents (sEPSCs and mEPSCs) in MnPO-projecting LPBel neurons increased after perfusion with PGE2; whereas the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) and the A-type potassium (IA) current density did not change. In MnPO-projecting LPBd neurons, neither sEPSCs nor sIPSCs responded to PGE2; however, the IA current density was significantly increased by PGE2 perfusion. These electrophysiological responses and the thermoeffector reactions to intra-LPBN PGE2 injection, including increased brown adipose tissue thermogenesis, shivering, and decreased heat dissipation, were all abolished by L-798106, and mimicked by sulprostone. These results suggest that the pyrogenic effects of intra-LPBN PGE2 are mediated by both the inhibition of the LPBd-POA pathway through the EP3 receptor-mediated activation of IA currents and the activation of the LPBel-POA pathway through the selective enhancement of glutamatergic synaptic transmission via EP3 receptors.


Assuntos
Regulação da Temperatura Corporal , Dinoprostona , Febre , Núcleos Parabraquiais , Área Pré-Óptica , Receptores de Prostaglandina E Subtipo EP3 , Animais , Masculino , Ratos , Regulação da Temperatura Corporal/efeitos dos fármacos , Dinoprostona/farmacologia , Febre/induzido quimicamente , Febre/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleos Parabraquiais/efeitos dos fármacos , Núcleos Parabraquiais/fisiologia , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Ratos Sprague-Dawley , Receptores de Prostaglandina E Subtipo EP3/metabolismo
13.
Addict Biol ; 29(2): e13366, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38380710

RESUMO

Adolescent alcohol use is a strong predictor for the subsequent development of alcohol use disorders later in life. Additionally, adolescence is a critical period for the onset of affective disorders, which can contribute to problematic drinking behaviours and relapse, particularly in females. Previous studies from our laboratory have shown that exposure to adolescent intermittent ethanol (AIE) vapour alters glutamatergic transmission in the bed nucleus of the stria terminalis (BNST) and, when combined with adult stress, elicits sex-specific changes in glutamatergic plasticity and negative affect-like behaviours in mice. Building on these findings, the current work investigated whether BNST stimulation could substitute for stress exposure to increase the latency to consume a palatable food in a novel context (hyponeophagia) and promote social avoidance in adult mice with AIE history. Given the dense connections between the BNST and the parabrachial nucleus (PBN), a region involved in mediating threat assessment and feeding behaviours, we hypothesized that increased negative affect-like behaviours would be associated with PBN activation. Our results revealed that the chemogenetic stimulation of the dorsolateral BNST induced hyponeophagia in females with AIE history, but not in female controls or males of either group. Social interaction remained unaffected in both sexes. Notably, this behavioural phenotype was associated with higher activation of calcitonin gene-related peptide and dynorphin cells in the PBN. These findings provide new insights into the neurobiological mechanisms underlying the development of negative affect in females and highlight the potential involvement of the BNST-PBN circuitry in regulating emotional responses to alcohol-related stimuli.


Assuntos
Alcoolismo , Núcleos Parabraquiais , Núcleos Septais , Masculino , Camundongos , Feminino , Animais , Etanol/farmacologia
14.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074761

RESUMO

Opioid-induced respiratory depression (OIRD) causes death following an opioid overdose, yet the neurobiological mechanisms of this process are not well understood. Here, we show that neurons within the lateral parabrachial nucleus that express the µ-opioid receptor (PBL Oprm1 neurons) are involved in OIRD pathogenesis. PBL Oprm1 neuronal activity is tightly correlated with respiratory rate, and this correlation is abolished following morphine injection. Chemogenetic inactivation of PBL Oprm1 neurons mimics OIRD in mice, whereas their chemogenetic activation following morphine injection rescues respiratory rhythms to baseline levels. We identified several excitatory G protein-coupled receptors expressed by PBL Oprm1 neurons and show that agonists for these receptors restore breathing rates in mice experiencing OIRD. Thus, PBL Oprm1 neurons are critical for OIRD pathogenesis, providing a promising therapeutic target for treating OIRD in patients.


Assuntos
Analgésicos Opioides/efeitos adversos , Morfina/efeitos adversos , Neurônios/metabolismo , Receptores Opioides mu/metabolismo , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/metabolismo , Analgésicos Opioides/farmacologia , Animais , Camundongos , Camundongos Transgênicos , Morfina/administração & dosagem , Morfina/farmacologia , Neurônios/patologia , Receptores Opioides mu/genética , Insuficiência Respiratória/genética , Insuficiência Respiratória/patologia
15.
Int J Mol Sci ; 25(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39273133

RESUMO

The insular cortex is an important hub for sensory and emotional integration. It is one of the areas consistently found activated during pain. While the insular's connections to the limbic system might play a role in the aversive and emotional component of pain, its connections to the descending pain system might be involved in pain intensity coding. Here, we used anterograde tracing with viral expression of mCherry fluorescent protein, to examine the connectivity of insular axons to different brainstem nuclei involved in the descending modulation of pain in detail. We found extensive connections to the main areas of descending pain control, namely, the periaqueductal gray (PAG) and the raphe magnus (RMg). In addition, we also identified an extensive insular connection to the parabrachial nucleus (PBN). Although not as extensive, we found a consistent axonal input from the insula to different noradrenergic nuclei, the locus coeruleus (LC), the subcoereuleus (SubCD) and the A5 nucleus. These connections emphasize a prominent relation of the insula with the descending pain modulatory system, which reveals an important role of the insula in pain processing through descending pathways.


Assuntos
Tronco Encefálico , Córtex Insular , Dor , Animais , Dor/fisiopatologia , Masculino , Substância Cinzenta Periaquedutal , Vias Neurais , Ratos
16.
J Neurosci ; 42(27): 5373-5388, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35667849

RESUMO

Pain and emotion are strongly regulated by neurons in the central nucleus of the amygdala (CeA), a major output of the limbic system; yet, the neuronal signaling pathways underlying this modulation are incompletely understood. Here, we characterized a subpopulation of CeA neurons that express the CaMKIIα gene (CeACAM neurons) and project to the lateral parabrachial nucleus (LPBN), a brainstem region known for its critical role in distributing nociceptive and other aversive signals throughout the brain. In male Sprague Dawley rats, we show that CeACAM-LPBN neurons are GABAergic and mostly express somatostatin. In anaesthetized rats, optogenetic stimulation of CeACAM-LPBN projections inhibited responses of LPBN neurons evoked by electrical activation of Aδ- and C-fiber primary afferents; this inhibition could be blocked by intra-LPBN application of the GABAA receptor antagonist bicuculline. CeACAM-LPBN stimulation also dampened LPBN responses to noxious mechanical, thermal, and chemical stimuli. In behaving rats, optogenetic stimulation of CeACAM-LPBN projections attenuated nocifensive responses to mechanical pressure and radiant heat, disrupted the ability of a noxious shock to drive aversive learning, reduced the defensive behaviors of thigmotaxis and freezing, induced place preference, and promoted food consumption in sated rats. Thus, we suggest that CeACAM-LPBN projections mediate a form of analgesia that is accompanied by a shift toward the positive-appetitive pole of the emotional-motivational continuum. Since the affective state of pain patients strongly influences their prognosis, we envision that recruitment of this pathway in a clinical setting could potentially promote pain resilience and recovery.SIGNIFICANCE STATEMENT Pain and emotion interact on multiple levels of the nervous system. Both positive and negative emotion may have analgesic effects. However, while the neuronal mechanisms underlying "stress-induced analgesia" have been the focus of many studies, the neuronal substrates underlying analgesia accompanied by appetitive emotional-motivational states have received far less attention. The current study focuses on a subpopulation of amygdala neurons that form inhibitory synapses within the brainstem lateral parabrachial nucleus (LPBN). We show that activation of these amygdalo-parabrachial projections inhibits pain processing, while also reducing behaviors related to negative affect and enhancing behaviors related to positive affect. We propose that recruitment of this pathway would benefit pain patients, many of whom suffer from psychological comorbidities such as anxiety and depression.


Assuntos
Tonsila do Cerebelo , Núcleos Parabraquiais , Tonsila do Cerebelo/fisiologia , Animais , Emoções , Masculino , Vias Neurais/fisiologia , Dor , Núcleos Parabraquiais/fisiologia , Ratos , Ratos Sprague-Dawley
17.
J Neurosci ; 42(9): 1719-1737, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35027408

RESUMO

Trigeminal neurons convey somatosensory information from craniofacial tissues. In mouse brain, ascending projections from medullary trigeminal neurons arrive at taste neurons in the parabrachial (PB) nucleus, suggesting that taste neurons participate in somatosensory processing. However, the cell types that support this convergence were undefined. Using Cre-directed optogenetics and in vivo neurophysiology in anesthetized mice of both sexes, here we studied whether transient receptor potential vanilloid 1 (TRPV1)-lineage nociceptive and thermosensory fibers are primary neurons that drive trigeminal circuits reaching PB taste cells. We monitored spiking activity in individual PB neurons during photoexcitation of the terminals of TRPV1-lineage fibers arriving at the dorsal trigeminal nucleus caudalis, which relays orofacial somatosensory messages to the PB area. We also recorded PB neural responses to oral delivery of taste, chemesthetic, and thermal stimuli. We found that optical excitation of TRPV1-lineage fibers elicited responses in traditionally defined taste neurons in lateral PB nuclei. The tuning of neurons across diverse tastes associated with their sensitivity to TRPV1-lineage fiber stimulation, which only sparingly engaged neurons oriented to preferred tastes like sucrose. Moreover, neurons responsive to photostimulation of TRPV1-lineage afferents showed strong responses to temperature including noxious heat, which predominantly excited PB bitter taste cells. Multivariate and machine learning analyses revealed the PB confluence of TRPV1-lineage signals with taste captured sensory valence information shared across aversive gustatory, nociceptive, and thermal stimuli. Our results reveal that TRPV1-lineage fibers, which have defined roles in thermosensation and pain, communicate with PB taste neurons. This multisensory convergence supports dependencies between gustatory and somatosensory hedonic representations in the brain.SIGNIFICANCE STATEMENT The parabrachial (PB) nucleus participates in autonomic and integrative neural processing for diverse sensory modalities. We recently found in mice that trigeminal neurons supplying craniofacial somatosensation project to PB neurons sensitive to tastes. Here, we show that trigeminal projections to PB gustatory cells are driven by a genetic class of thermosensory and nociceptive fiber. Input from these fibers was associated with PB neural sensitivity to aversive oral temperatures and tastes and supported a multimodal neural representation of sensory valence across gustatory, nociceptive, and thermal stimuli. These results reveal gustation and somatosensation to be only components of a larger PB code that captures sensory value. Defining this circuit has implications for understanding the neural representation of taste, temperature, and also pain-related phenomena.


Assuntos
Núcleos Parabraquiais , Animais , Feminino , Masculino , Bulbo/fisiologia , Camundongos , Neurônios/fisiologia , Dor , Núcleos Parabraquiais/fisiologia , Canais de Cátion TRPV , Paladar/fisiologia
18.
J Neurophysiol ; 129(2): 347-355, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542422

RESUMO

The parabrachial nucleus (PB) in the upper brainstem receives interoceptive information and sends a massive output projection directly to the cerebral cortex. Its glutamatergic axons primarily target the midinsular cortex, and we have proposed that this PB-insular projection promotes arousal. Here, we test whether stimulating this projection causes wakefulness. We combined optogenetics and video-electroencephalography (vEEG) in mice to test this hypothesis by stimulating PB axons in the insular cortex. Stimulating this projection did not alter the cortical EEG or awaken mice. Also, despite a tendency toward aversion, PB-insular stimulation did not significantly alter real-time place preference (RTPP). These results are not consistent with the hypothesis that the direct PB-insular projection is part of the ascending arousal system.NEW & NOTEWORTHY A brainstem region critical for wakefulness overlaps the medial parabrachial nucleus (PB) and has functional and direct axonal connectivity with the insular cortex. In this study, we hypothesized that this direct projection from the PB to the insular cortex promotes arousal. However, photostimulating PB axons in the insular cortex did not alter the cortical EEG or awaken mice. This information constrains the possible circuit connections through which brainstem neurons may sustain arousal.


Assuntos
Tronco Encefálico , Córtex Cerebral , Camundongos , Animais , Tronco Encefálico/fisiologia , Eletroencefalografia , Nível de Alerta , Vigília
19.
J Neurochem ; 167(5): 648-667, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855271

RESUMO

Chemogenetic activation of oxytocin receptor-expressing neurons in the parabrachial nucleus (OxtrPBN neurons) acts as a satiation signal for water. In this research, we investigated the effect of activating OxtrPBN neurons on satiation for different types of fluids. Chemogenetic activation of OxtrPBN neurons in male and female transgenic OxtrCre mice robustly suppressed the rapid, initial (15-min) intake of several solutions after dehydration: water, sucrose, ethanol and saccharin, but only slightly decreased intake of Ensure®, a highly caloric solution (1 kcal/mL; containing 3.72 g protein, 3.27 g fat, 13.42 g carbohydrates, and 1.01 g dietary fibre per 100 mL). OxtrPBN neuron activation also suppressed cumulative, longer-term (2-h) intake of lower caloric, less palatable solutions, but not highly caloric, palatable solutions. These results suggest that OxtrPBN neurons predominantly control initial fluid-satiation responses after rehydration, but not longer-term intake of highly caloric, palatable solutions. The suppression of fluid intake was not because of anxiogenesis, but because OxtrPBN neuron activation decreased anxiety-like behaviour. To investigate the role of different PBN subdivisions on the intake of different solutions, we examined FOS as a proxy marker of PBN neuron activation. Different PBN subdivisions were activated by different solutions: the dorsolateral PBN similarly by all fluids; the external lateral PBN by caloric but not non-caloric solutions; and the central lateral PBN primarily by highly palatable solutions, suggesting PBN subdivisions regulate different aspects of fluid intake. To explore the possible mechanisms underlying the minimal suppression of Ensure® after OxtrPBN neuron activation, we demonstrated in in vitro slice recordings that the feeding-associated agouti-related peptide (AgRP) inhibited OxtrPBN neuron firing in a concentration-related manner, suggesting possible inhibition by feeding-related neurocircuitry of fluid satiation neurocircuitry. Overall, this research suggests that although palatable beverages like sucrose- and ethanol-containing beverages activate fluid satiation signals encoded by OxtrPBN neurons, these neurons can be inhibited by hunger-related signals (agouti-related peptide, AgRP), which may explain why these fluids are often consumed in excess of what is required for fluid satiation.


Assuntos
Núcleos Parabraquiais , Camundongos , Masculino , Feminino , Animais , Núcleos Parabraquiais/metabolismo , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/farmacologia , Saciação/fisiologia , Água/metabolismo , Sacarose/farmacologia , Etanol/farmacologia
20.
Mol Pain ; 19: 17448069231156657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36717755

RESUMO

The aversive aspect of pain constitutes a major burden faced by pain patients. This has been recognized by the pain research community, leading to the development of novel methods focusing on affective-motivational behaviour in pain model animals. The most common tests used to assess pain aversion in animals require cognitive processes, such as associative learning, complicating the interpretation of results. To overcome this issue, studies in recent years have utilized unconditioned escape as a measure of aversion. However, the vast majority of these studies quantify jumping - a common escape behaviour in mice, but not in adult rats, thus limiting its use. Here, we present the "Heat Escape Threshold" (HET) paradigm for assessing heat aversion in rats. We demonstrate that this method can robustly and reproducibly detect the localized effects of an inflammatory pain model (intraplantar carrageenan) in male and female Sprague-Dawley rats. In males, a temperature that evoked unconditioned escape following carrageenan treatment also induced real-time place avoidance (RTPA). Systemic morphine more potently alleviated carrageenan-induced heat aversion (as measured by the HET and RTPA methods), as compared to reflexive responses to heat (as measured by the Hargreaves test), supporting previous findings. Next, we examined how blocking of excitatory transmission to the lateral parabrachial nucleus (LPBN), a key node in the ascending pain system, affects pain behaviour. Using the HET and Hargreaves tests, we show that intra-LPBN application of glutamate antagonists reverses the effects of carrageenan on both affective and reflexive pain behaviour, respectively. Finally, we employed the HET paradigm in a generalized opioid-withdrawal pain model. Withdrawal from a brief systemic administration of remifentanil resulted in a long-lasting and robust increase in heat aversion, but no change in reflexive responses to heat. Taken together, these data demonstrate the utility of the HET paradigm as a novel tool in preclinical pain research.


Assuntos
Aprendizagem da Esquiva , Temperatura Alta , Ratos , Masculino , Feminino , Animais , Camundongos , Ratos Sprague-Dawley , Carragenina/efeitos adversos , Dor/tratamento farmacológico , Morfina/farmacologia , Limiar da Dor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA