Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.312
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Genet ; 53: 195-215, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31424971

RESUMO

Plant genomes interact when genetically distinct individuals join, or are joined, together. Individuals can fuse in three contexts: artificial grafts, natural grafts, and host-parasite interactions. Artificial grafts have been studied for decades and are important platforms for studying the movement of RNA, DNA, and protein. Yet several mysteries about artificial grafts remain, including the factors that contribute to graft incompatibility, the prevalence of genetic and epigenetic modifications caused by exchanges between graft partners, and the long-term effects of these modifications on phenotype. Host-parasite interactions also lead to the exchange of materials, and RNA exchange actively contributes to an ongoing arms race between parasite virulence and host resistance. Little is known about natural grafts except that they can be frequent and may provide opportunities for evolutionary innovation through genome exchange. In this review, we survey our current understanding about these three mechanisms of contact, the genomic interactions that result, and the potential evolutionary implications.


Assuntos
Genoma de Planta , Interações Hospedeiro-Parasita/genética , Melhoramento Vegetal/métodos , Plantas/parasitologia , Evolução Biológica , Variação Biológica da População , Quimera , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/fisiologia , Raízes de Plantas/fisiologia , Plantas/genética
2.
Proc Natl Acad Sci U S A ; 121(17): e2321515121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621128

RESUMO

In this Inaugural Article the author briefly revises its scientific career and how he starts to work with parasitic protozoa. Emphasis is given to his contribution to topics such as a) the structural organization of the surface of protozoa using freeze-fracture and deep-etching; b) the cytoskeleton of protozoa, especially structures such as the subpellicular microtubules of trypanosomatids, the conoid of Toxoplasma gondii, microtubules and inner membrane complex of this protozoan, and the costa of Tritrichomonas foetus; c) the flagellulm of trypanosomatids, that in addition to the axoneme contains a complex network of filaments that constitute the paraflagellar rod; d) special organelles such as the acidocalcisome, hydrogenosome, and glycosome; and e) the highly polarized endocytic pathway found in epimastigote forms of Trypanosoma cruzi.


Assuntos
Eucariotos , Microtúbulos , Masculino , Humanos , Citoesqueleto , Microscopia Eletrônica de Varredura , Axonema
3.
Proc Natl Acad Sci U S A ; 120(1): e2217732120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574686

RESUMO

The drug praziquantel (PZQ) is the key clinical therapy for treating schistosomiasis and other infections caused by parasitic flatworms. A schistosome target for PZQ was recently identified- a transient receptor potential ion channel in the melastatin subfamily (TRPMPZQ)-however, little is known about the properties of TRPMPZQ in other parasitic flatworms. Here, TRPMPZQ orthologs were scrutinized from all currently available parasitic flatworm genomes. TRPMPZQ is present in all parasitic flatworms, and the consensus PZQ binding site was well conserved. Functional profiling of trematode, cestode, and a free-living flatworm TRPMPZQ ortholog revealed differing sensitives (~300-fold) of these TRPMPZQ channels toward PZQ, which matched the varied sensitivities of these different flatworms to PZQ. Three loci of variation were defined across the parasitic flatworm TRPMPZQ pocketome with the identity of an acidic residue in the TRP domain acting as a gatekeeper residue impacting PZQ residency within the TRPMPZQ ligand binding pocket. In trematodes and cyclophyllidean cestodes, which display high sensitivity to PZQ, this TRP domain residue is an aspartic acid which is permissive for potent activation by PZQ. However, the presence of a glutamic acid residue found in other parasitic and free-living flatworm TRPMPZQ was associated with lower sensitivity to PZQ. The definition of these different binding pocket architectures explains why PZQ shows high therapeutic effectiveness against specific fluke and tapeworm infections and will help the development of better tailored therapies toward other parasitic infections of humans, livestock, and fish.


Assuntos
Cestoides , Platelmintos , Canais de Cátion TRPM , Trematódeos , Animais , Praziquantel/farmacologia , Schistosoma , Canais de Cátion TRPM/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(29): e2304612120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428936

RESUMO

Root-knot nematodes (Meloidogyne spp.) are highly evolved obligate parasites threatening global food security. These parasites have a remarkable ability to establish elaborate feeding sites in roots, which are their only source of nutrients throughout their life cycle. A wide range of nematode effectors have been implicated in modulation of host pathways for defense suppression and/or feeding site development. Plants produce a diverse array of peptide hormones including PLANT PEPTIDE CONTAINING SULFATED TYROSINE (PSY)-family peptides, which promote root growth via cell expansion and proliferation. A sulfated PSY-like peptide RaxX (required for activation of XA21 mediated immunity X) produced by the biotrophic bacterial pathogen (Xanthomonas oryzae pv. oryzae) has been previously shown to contribute to bacterial virulence. Here, we report the identification of genes from root-knot nematodes predicted to encode PSY-like peptides (MigPSYs) with high sequence similarity to both bacterial RaxX and plant PSYs. Synthetic sulfated peptides corresponding to predicted MigPSYs stimulate root growth in Arabidopsis. MigPSY transcript levels are highest early in the infection cycle. Downregulation of MigPSY gene expression reduces root galling and egg production, suggesting that the MigPSYs serve as nematode virulence factors. Together, these results indicate that nematodes and bacteria exploit similar sulfated peptides to hijack plant developmental signaling pathways to facilitate parasitism.


Assuntos
Arabidopsis , Nematoides , Parasitos , Tylenchoidea , Animais , Plantas , Peptídeos , Transdução de Sinais , Tirosina , Doenças das Plantas/microbiologia , Tylenchoidea/genética , Raízes de Plantas
5.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38366574

RESUMO

Plant-parasitic nematodes are one of the most economically important pests of crops. It is widely accepted that horizontal gene transfer-the natural acquisition of foreign genes in parasitic nematodes-contributes to parasitism. However, an apparent paradox has emerged from horizontal gene transfer analyses: On the one hand, distantly related organisms with very dissimilar genetic structures (i.e. bacteria), and only transient interactions with nematodes as far as we know, dominate the list of putative donors, while on the other hand, considerably more closely related organisms (i.e. the host plant), with similar genetic structure (i.e. introns) and documented long-term associations with nematodes, are rare among the list of putative donors. Given that these nematodes ingest cytoplasm from a living plant cell for several weeks, there seems to be a conspicuous absence of plant-derived cases. Here, we used comparative genomic approaches to evaluate possible plant-derived horizontal gene transfer events in plant parasitic nematodes. Our evidence supports a cautionary message for plant-derived horizontal gene transfer cases in the sugar beet cyst nematode, Heterodera schachtii. We propose a 4-step model for horizontal gene transfer from plant to parasite in order to evaluate why the absence of plant-derived horizontal gene transfer cases is observed. We find that the plant genome is mobilized by the nematode during infection, but that uptake of the said "mobilome" is the first major barrier to horizontal gene transfer from host to nematode. These results provide new insight into our understanding of the prevalence/role of nucleic acid exchange in the arms race between plants and plant parasites.


Assuntos
Plantas , Tylenchoidea , Animais , Plantas/genética , DNA , Genômica , Tylenchoidea/genética , Doenças das Plantas/parasitologia
6.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217857

RESUMO

Cellular regeneration in response to wounding is fundamental to maintain tissue integrity. Various internal factors including hormones and transcription factors mediate healing, but little is known about the role of external factors. To understand how the environment affects regeneration, we investigated the effects of temperature upon the horticulturally relevant process of plant grafting. We found that elevated temperatures accelerated vascular regeneration in Arabidopsis thaliana and tomato grafts. Leaves were crucial for this effect, as blocking auxin transport or mutating PHYTOCHROME INTERACTING FACTOR 4 (PIF4) or YUCCA2/5/8/9 in the cotyledons abolished the temperature enhancement. However, these perturbations did not affect grafting at ambient temperatures, and temperature enhancement of callus formation and tissue adhesion did not require PIF4, suggesting leaf-derived auxin specifically enhanced vascular regeneration in response to elevated temperatures. We also found that elevated temperatures accelerated the formation of inter-plant vascular connections between the parasitic plant Phtheirospermum japonicum and host Arabidopsis, and this effect required shoot-derived auxin from the parasite. Taken together, our results identify a pathway whereby local temperature perception mediates long distance auxin signaling to modify regeneration, grafting and parasitism. This article has an associated 'The people behind the papers' interview.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura Alta , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regeneração/genética , Transdução de Sinais/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transporte Biológico/genética , Cotilédone/genética , Cotilédone/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/fisiologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Plantas Geneticamente Modificadas
7.
BMC Biol ; 22(1): 217, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334206

RESUMO

BACKGROUND: Diplomonads are anaerobic flagellates classified within Metamonada. They contain both host-associated commensals and parasites that reside in the intestinal tracts of animals, including humans (e.g., Giardia intestinalis), as well as free-living representatives that inhabit freshwater and marine anoxic sediments (e.g., Hexamita inflata). The evolutionary trajectories within this group are particularly unusual as the free-living taxa appear to be nested within a clade of host-associated species, suggesting a reversal from host-dependence to a secondarily free-living lifestyle. This is thought to be an exceedingly rare event as parasites often lose genes for metabolic pathways that are essential to a free-living life strategy, as they become increasingly reliant on their host for nutrients and metabolites. To revert to a free-living lifestyle would require the reconstruction of numerous metabolic pathways. All previous studies of diplomonad evolution suffered from either low taxon sampling, low gene sampling, or both, especially among free-living diplomonads, which has weakened the phylogenetic resolution and hindered evolutionary insights into this fascinating transition. RESULTS: We sequenced transcriptomes from 1 host-associated and 13 free-living diplomonad isolates; expanding the genome scale data sampling for diplomonads by roughly threefold. Phylogenomic analyses clearly show that free-living diplomonads form several branches nested within endobiotic species. Moreover, the phylogenetic distribution of genes related to an endobiotic lifestyle suggest their acquisition at the root of diplomonads, while traces of these genes have been identified in free-living diplomonads as well. Based on these results, we propose an evolutionary scenario of ancestral and derived lifestyle transitions across diplomonads. CONCLUSIONS: Free-living taxa form several clades nested within endobiotic taxa in our phylogenomic analyses, implying multiple transitions between free-living and endobiotic lifestyles. The evolutionary history of numerous virulence factors corroborates the inference of an endobiotic ancestry of diplomonads, suggesting that there have been several reversals to a free-living lifestyle. Regaining host independence may have been facilitated by a subset of laterally transferred genes. We conclude that the extant diversity of diplomonads has evolved from a non-specialized endobiont, with some taxa becoming highly specialized parasites, others becoming free-living, and some becoming capable of both free-living and endobiotic lifestyles.


Assuntos
Diplomonadida , Filogenia , Diplomonadida/genética , Evolução Biológica
8.
BMC Biol ; 22(1): 196, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256805

RESUMO

BACKGROUND: Baryscapus dioryctriae (Chalcidodea: Eulophidae) is a parasitic wasp that parasitizes the pupae of many Pyralidae members and has been used as a biological control agent against Dioryctria pests of pinecones. RESULTS: This B. dioryctriae assembly has a genome size of 485.5 Mb with a contig N50 of 2.17 Mb, and scaffolds were assembled onto six chromosomes using Hi-C analysis, significantly increasing the scaffold N50 to 91.17 Mb, with more than 96.13% of the assembled bases located on chromosomes, and an analysis revealed that 94.73% of the BUSCO gene set. A total of 54.82% (279.27 Mb) of the assembly was composed of repetitive sequences and 24,778 protein-coding genes were identified. Comparative genomic analysis demonstrated that the chemosensory perception, genetic material synthesis, and immune response pathways were primarily enriched in the expanded genes. Moreover, the functional characteristics of an odorant-binding protein (BdioOBP45) with ovipositor-biased expression identified from the expanded olfactory gene families were investigated by the fluorescence competitive binding and RNAi assays, revealing that BdioOBP45 primarily binds to the D. abietella-induced volatile compounds, suggesting that this expanded OBP is likely involved in locating female wasp hosts and highlighting a direction for future research. CONCLUSIONS: Taken together, this work not only provides new genomic sequences for the Hymenoptera systematics, but also the high-quality chromosome-level genome of B. dioryctriae offers a valuable foundation for studying the molecular, evolutionary, and parasitic processes of parasitic wasps.


Assuntos
Genoma de Inseto , Receptores Odorantes , Vespas , Animais , Vespas/fisiologia , Vespas/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sinais (Psicologia) , Cromossomos de Insetos/genética , Feminino , Interações Hospedeiro-Parasita
9.
Nano Lett ; 24(13): 4020-4028, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517395

RESUMO

The use of electrolyte additives is an efficient approach to mitigating undesirable side reactions and dendrites. However, the existing electrolyte additives do not effectively regulate both the chaotic diffusion of Zn2+ and the decomposition of H2O simultaneously. Herein, a dual-parasitic method is introduced to address the aforementioned issues by incorporating 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIm]OTf) as cosolvent into the Zn(OTf)2 electrolyte. Specifically, the OTf- anion is parasitic in the solvent sheath of Zn2+ to decrease the number of active H2O. Additionally, the EMIm+ cation can construct an electrostatic shield layer and a hybrid organic/inorganic solid electrolyte interface layer to optimize the deposition behavior of Zn2+. This results in a Zn anode with a reversible cycle life of 3000 h, the longest cycle life of full cells (25,000 cycles), and an extremely high initial capacity (4.5 mA h cm-2), providing a promising electrolyte solution for practical applications of rechargeable aqueous zinc-ion batteries.

10.
Nano Lett ; 24(2): 688-695, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38180811

RESUMO

The effects of surface roughness on the performance of the Zn metal anode in aqueous electrolytes are investigated by experiments and computational simulations. Smooth surfaces can homogenize the nucleation and growth of Zn, which helps to form a flat Zn anode under high current density. In spite of these advantages, the whole surface of the smooth electrode serves as the reactive contact area for parasitic reactions, generating severe hydrogen evolution, corrosion, and byproduct formation, which seriously hinder the long-term cycle stability of the Zn anode. To trade off this double-sided effect, we identify a medium degree of surface roughness that could stabilize the Zn anode for 1000 h cycling at 1.0 mAh cm-2. The electrode also enabled stable cycling for 800 h at a high current density of 5.0 mAh cm-2. This naked Zn metal anode with optimized surface roughness holds great promise for direct use in aqueous zinc ion batteries.

11.
Clin Microbiol Rev ; 36(1): e0024121, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36625671

RESUMO

Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.


Assuntos
COVID-19 , Malária , Doenças Parasitárias , Humanos , Doenças Parasitárias/prevenção & controle
12.
J Infect Dis ; 229(5): 1565-1573, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38298126

RESUMO

Plasmodium falciparum glutamic acid-rich protein (PfGARP) is a recently characterized cell surface antigen encoded by Plasmodium falciparum, the causative agent of severe human malaria pathophysiology. Previously, we reported that the human erythrocyte band 3 (SLC4A1) serves as a host receptor for PfGARP. Antibodies against PfGARP did not affect parasite invasion and growth. We surmised that PfGARP may play a role in the rosetting and adhesion of malaria. Another study reported that antibodies targeting PfGARP exhibit potent inhibition of parasite growth. This inhibition occurred without the presence of any immune or complement components, suggesting the activation of an inherent density-dependent regulatory system. Here, we used polyclonal antibodies against PfGARP and a monoclonal antibody mAb7899 to demonstrate that anti-PfGARP polyclonal antibodies, but not mAb7899, exerted potent inhibition of parasite growth in infected erythrocytes independent of PfGARP. These findings suggest that an unknown malaria protein(s) is the target of growth arrest by polyclonal antibodies raised against PfGARP.


Assuntos
Anticorpos Antiprotozoários , Eritrócitos , Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/imunologia , Plasmodium falciparum/crescimento & desenvolvimento , Humanos , Eritrócitos/parasitologia , Eritrócitos/imunologia , Proteínas de Protozoários/imunologia , Anticorpos Antiprotozoários/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Animais , Malária Falciparum/imunologia , Malária Falciparum/parasitologia
13.
Mol Plant Microbe Interact ; 37(8): 611-618, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38862124

RESUMO

Cyst nematodes co-opt plant developmental programs for the establishment of a permanent feeding site called a syncytium in plant roots. In recent years, the role of plant developmental genes in syncytium formation has gained much attention. One main obstacle in studying the function of development-related genes in syncytium formation is that mutation or ectopic expression of such genes can cause pleiotropic phenotypes, making it difficult to interpret nematode-related phenotypes or, in some cases, impossible to carry out infection assays due to aberrant root development. Here, we tested three commonly used inducible gene expression systems for their application in beet cyst nematode infection assays of the model plant Arabidopsis thaliana. We found that even a low amount of ethanol diminished nematode development, deeming the ethanol-based system unsuitable for use in cyst nematode infection assays, whereas treatment with estradiol or dexamethasone did not negatively affect cyst nematode viability. Dose and time course responses showed that in both systems, a relatively low dose of inducer (1 µM) is sufficient to induce high transgene expression within 24 h of treatment. Transgene expression peaked at 3 to 5 days post-induction and began to decline thereafter, providing a perfect window for inducible transgenes to interfere with syncytium establishment while minimizing any adverse effects on root development. These results indicate that both estradiol- and dexamethasone-based inducible gene expression systems are suitable for cyst nematode infection assays. The employment of such systems provides a powerful tool to investigate the function of essential plant developmental genes in syncytium formation. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Arabidopsis , Beta vulgaris , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Raízes de Plantas , Arabidopsis/parasitologia , Arabidopsis/genética , Animais , Doenças das Plantas/parasitologia , Beta vulgaris/parasitologia , Raízes de Plantas/parasitologia , Raízes de Plantas/genética , Dexametasona/farmacologia , Plantas Geneticamente Modificadas , Etanol/farmacologia , Células Gigantes/parasitologia , Estradiol/farmacologia , Tylenchoidea/fisiologia , Transgenes , Nematoides
14.
BMC Genomics ; 25(1): 511, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783171

RESUMO

BACKGROUND: Transposable elements (TEs) are mobile DNA sequences that propagate within genomes, occupying a significant portion of eukaryotic genomes and serving as a source of genetic variation and innovation. TEs can impact genome dynamics through their repetitive nature and mobility. Nematodes are incredibly versatile organisms, capable of thriving in a wide range of environments. The plant-parasitic nematodes are able to infect nearly all vascular plants, leading to significant crop losses and management expenses worldwide. It is worth noting that plant parasitism has evolved independently at least three times within this nematode group. Furthermore, the genome size of plant-parasitic nematodes can vary substantially, spanning from 41.5 Mbp to 235 Mbp. To investigate genome size variation and evolution in plant-parasitic nematodes, TE composition, diversity, and evolution were analysed in 26 plant-parasitic nematodes from 9 distinct genera in Clade IV. RESULTS: Interestingly, despite certain species lacking specific types of DNA transposons or retrotransposon superfamilies, they still exhibit a diverse range of TE content. Identification of species-specific TE repertoire in nematode genomes provides a deeper understanding of genome evolution in plant-parasitic nematodes. An intriguing observation is that plant-parasitic nematodes possess extensive DNA transposons and retrotransposon insertions, including recent sightings of LTR/Gypsy and LTR/Pao superfamilies. Among them, the Gypsy superfamilies were found to encode Aspartic proteases in the plant-parasitic nematodes. CONCLUSIONS: The study of the transposable element (TE) composition in plant-parasitic nematodes has yielded insightful discoveries. The findings revealed that certain species exhibit lineage-specific variations in their TE makeup. Discovering the species-specific TE repertoire in nematode genomes is a crucial element in understanding the evolution of genomes in plant-parasitic nematodes. It allows us to gain a deeper insight into the intricate workings of these organisms and their genetic makeup. With this knowledge, we are gaining a fundamental piece in the puzzle of understanding the evolution of these parasites. Moreover, recent transpositions have led to the acquisition of new TE superfamilies, especially Gypsy and Pao retrotransposons, further expanding the diversity of TEs in these nematodes. Significantly, the widely distributed Gypsy superfamily possesses proteases that are exclusively associated with parasitism during nematode-host interactions. These discoveries provide a deeper understanding of the TE landscape within plant-parasitic nematodes.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Variação Genética , Nematoides , Filogenia , Plantas , Animais , Elementos de DNA Transponíveis/genética , Nematoides/genética , Plantas/parasitologia , Plantas/genética , Retroelementos/genética , Tamanho do Genoma
15.
BMC Genomics ; 25(1): 111, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38297211

RESUMO

BACKGROUND: Wohlfahrtia magnifica is an obligatory parasite that causes myiasis in several warm-blooded vertebrates. Adult females deposit the first-stage larvae directly onto wounds or natural body orifices (e.g., genitalia) of the host, from where they quickly colonize the host tissue and feed on it for development. The infestation of W. magnifica can lead to health issues, welfare concerns, and substantial economic losses. To date, little is known about the molecular mechanisms of the W. magnifica-causing myiasis. RESULTS: In this study, we collected parasitic-stage larvae of W. magnifica from wounds of naturally infested Bactrian camels, as well as pupae and adult flies reared in vitro from the wound-collected larvae, for investigating the gene expression profiles of the different developmental stages of W. magnifica, with a particular focus on examining gene families closely related to the parasitism of the wound-collected larvae. As key proteins related to the parasite-host interaction, 2049 excretory/secretory (ES) proteins were identified in W. magnifica through the integration of multiple bioinformatics approaches. Functional analysis indicates that these ES proteins are primarily involved in cuticle development, peptidase activity, immune response, and metabolic processes. The global investigation of gene expression at different developmental stages using pairwise comparisons and weighted correlation network analysis (WGCNA) showed that the upregulated genes during second-stage larvae were related to cuticle development, peptidase activity, and RNA transcription and translation; during third-stage larvae to peptidase inhibitor activity and nutrient reservoir activity; during pupae to cell and tissue morphogenesis and cell and tissue development; and during adult flies to signal perception, many of them involved in light perception, and adult behavior, e.g., feeding, mating, and locomotion. Specifically, the expression level analysis of the likely parasitism-related genes in parasitic wound-collected larvae revealed a significant upregulation of 88 peptidase genes (including 47 serine peptidase genes), 110 cuticle protein genes, and 21 heat shock protein (hsp) genes. Interestingly, the expression of 2 antimicrobial peptide (AMP) genes, including 1 defensin and 1 diptericin, was also upregulated in the parasitic larvae. CONCLUSIONS: We identified ES proteins in W. magnifica and investigated their functional distribution. In addition, gene expression profiles at different developmental stages of W. magnifica were examined. Specifically, we focused on gene families closely related to parasitism of wound-collected larvae. These findings shed light on the molecular mechanisms underlying the life cycle of the myiasis-causing fly, especially during the parasitic larval stages, and provide guidance for the development of control measures against W. magnifica.


Assuntos
Dípteros , Miíase , Parasitos , Sarcofagídeos , Animais , Feminino , Sarcofagídeos/genética , Parasitos/genética , Miíase/genética , Miíase/parasitologia , Dípteros/genética , Larva , Pupa , Perfilação da Expressão Gênica , Peptídeo Hidrolases
16.
BMC Genomics ; 25(1): 608, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886647

RESUMO

BACKGROUND: Gastropods of the genus Biomphalaria (Family Planorbidae) are exploited as vectors by Schistosoma mansoni, the most common causative agent of human intestinal schistosomiasis. Using improved genomic resources, overviews of how Biomphalaria responds to S. mansoni and other metazoan parasites can provide unique insights into the reproductive, immune, and other systems of invertebrate hosts, and their responses to parasite challenges. RESULTS: Using Illumina-based RNA-Seq, we compared the responses of iM line B. glabrata at 2, 8, and 40 days post-infection (dpi) to single infections with S. mansoni, Echinostoma paraensei (both digenetic trematodes) or Daubaylia potomaca (a nematode parasite of planorbid snails). Responses were compared to unexposed time-matched control snails. We observed: (1) each parasite provoked a distinctive response with a predominance of down-regulated snail genes at all time points following exposure to either trematode, and of up-regulated genes at 8 and especially 40dpi following nematode exposure; (2) At 2 and 8dpi with either trematode, several snail genes associated with gametogenesis (particularly spermatogenesis) were down-regulated. Regarding the phenomenon of trematode-mediated parasitic castration in molluscs, we define for the first time a complement of host genes that are targeted, as early as 2dpi when trematode larvae are still small; (3) Differential gene expression of snails with trematode infection at 40dpi, when snails were shedding cercariae, was unexpectedly modest and revealed down-regulation of genes involved in the production of egg mass proteins and peptide processing; and (4) surprisingly, D. potomaca provoked up-regulation at 40dpi of many of the reproduction-related snail genes noted to be down-regulated at 2 and 8dpi following trematode infection. Happening at a time when B. glabrata began to succumb to D. potomaca, we hypothesize this response represents an unexpected form of fecundity compensation. We also document expression patterns for other Biomphalaria gene families, including fibrinogen domain-containing proteins (FReDs), C-type lectins, G-protein coupled receptors, biomphalysins, and protease and protease inhibitors. CONCLUSIONS: Our study is relevant in identifying several genes involved in reproduction that are targeted by parasites in the vector snail B. glabrata and that might be amenable to manipulation to minimize their ability to serve as vectors of schistosomes.


Assuntos
Biomphalaria , Schistosoma mansoni , Transcriptoma , Animais , Biomphalaria/parasitologia , Biomphalaria/genética , Schistosoma mansoni/genética , Schistosoma mansoni/fisiologia , Interações Hospedeiro-Parasita/genética , Trematódeos/fisiologia , Trematódeos/genética , Vetores de Doenças , Perfilação da Expressão Gênica
17.
Emerg Infect Dis ; 30(5): 995-999, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666641

RESUMO

In a representative sample of female children and adolescents in Germany, Toxoplasma gondii seroprevalence was 6.3% (95% CI 4.7%-8.0%). With each year of life, the chance of being seropositive increased by 1.2, indicating a strong force of infection. Social status and municipality size were found to be associated with seropositivity.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Feminino , Alemanha/epidemiologia , Toxoplasmose/epidemiologia , Toxoplasmose/parasitologia , Adolescente , Criança , Toxoplasma/imunologia , Estudos Soroepidemiológicos , Pré-Escolar , Fatores de Risco , Lactente , Anticorpos Antiprotozoários/sangue
18.
Plant Cell Physiol ; 65(9): 1377-1387, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38943636

RESUMO

Root parasitic plants in the Orobanchaceae, such as Striga and Orobanche, cause significant damage to crop production. The germination step of these root parasitic plants is induced by host-root-derived strigolactones. After germination, the radicles elongate toward the host and invade the host root. We have previously discovered that a simple amino acid, tryptophan (Trp), as well as its metabolite, the plant hormone indole-3-acetic acid (IAA), can inhibit radicle elongation of Orobanche minor. These results suggest that auxin plays a crucial role in the radicle elongation step in root parasitic plants. In this report, we used various auxin chemical probes to dissect the auxin function in the radicle growth of O. minor and Striga hermonthica. We found that synthetic auxins inhibited radicle elongation. In addition, auxin receptor antagonist, auxinole, rescued the inhibition of radicle growth by exogenous IAA. Moreover, a polar transport inhibitor of auxin, N-1-naphthylphthalamic acid, affected radicle bending. We also proved that exogenously applied Trp is converted into IAA in O. minor seeds, and auxinole partly rescued this radicle elongation. Taken together, our data demonstrate a pivotal role for auxin in radicle growth. Thus, manipulation of auxin function in root parasitic plants should offer a useful approach to combat these parasites.


Assuntos
Ácidos Indolacéticos , Orobanche , Reguladores de Crescimento de Plantas , Raízes de Plantas , Striga , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Raízes de Plantas/parasitologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Orobanche/efeitos dos fármacos , Orobanche/crescimento & desenvolvimento , Striga/fisiologia , Striga/efeitos dos fármacos , Striga/crescimento & desenvolvimento , Triptofano/metabolismo , Triptofano/farmacologia , Orobanchaceae/efeitos dos fármacos , Orobanchaceae/crescimento & desenvolvimento , Orobanchaceae/metabolismo , Germinação/efeitos dos fármacos
19.
Plant Cell Physiol ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39275797

RESUMO

Phtheirospermum japonicum, a member of the Orobanchaceae family, is a facultative root parasitic plant that can survive without parasitizing the host. In contrast, obligate root parasitic plants such as Striga and Orobanche, which are also members of the Orobanchaceae family, cannot survive in the absence of the host. The germination of obligate root parasitic plants is typically induced by host root-derived strigolactones (SLs) at very low concentrations. The KAI2/HTL family proteins have been found to be involved in the perception of karrikin (KAR), a smoke-derived germination inducer and unidentified endogenous ligand, in non-parasitic plants. Obligate root parasitic plants possess uniquely diverged KAI2 clade genes, which are collectively referred to as KAI2d. Many of those have been shown to function as SL receptors. Intriguingly, the KAI2d clade genes are also conserved in P. japonicum, even though this plant does not require SLs for germination. The biochemical and physiological functions of the KAI2d proteins in P. japonicum remain unclear. Here, we report that some of these proteins can function as SL receptors in P. japonicum. Moreover, we found that one of them, PjKAI2d4, is highly sensitive to SLs when expressed in Arabidopsis, and it is similar to the sensitive SL receptors found in Striga and Orobanche. These results suggest that the KAI2d clade SL receptors play a crucial role not only in obligate parasites but also in facultative parasitic plants.

20.
Plant Cell Physiol ; 65(8): 1224-1230, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38662403

RESUMO

Plant parasitic root-knot nematodes are major agricultural pests worldwide, as they infect plant roots and cause substantial damages to crop plants. Root-knot nematodes induce specialized feeding cells known as giant cells (GCs) in the root vasculature, which serve as nutrient reservoirs for the infecting nematodes. Here, we show that the cell walls of GCs thicken to form pitted patterns that superficially resemble metaxylem cells. Interestingly, VASCULAR-RELATED NAC-DOMAIN1 (VND1) was found to be upregulated, while the xylem-type programmed cell death marker XYLEM CYSTEINE PEPTIDASE 1 was downregulated upon nematode infection. The vnd2 and vnd3 mutants showed reduced secondary cell wall pore size, while the vnd1 vnd2 vnd3 triple mutant produced significantly fewer nematode egg masses when compared with the wild type. These results suggest that the GC development pathway likely shares common signaling modules with the metaxylem differentiation pathway and VND1, VND2, and VND3 redundantly regulate plant-nematode interaction through secondary cell wall formation.


Assuntos
Arabidopsis , Parede Celular , Animais , Parede Celular/metabolismo , Arabidopsis/genética , Arabidopsis/parasitologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Raízes de Plantas/genética , Células Gigantes/metabolismo , Interações Hospedeiro-Parasita/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA