Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Breed ; 44(2): 13, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38317771

RESUMO

Tomato (Solanum lycopersicum L.) is one of the most important crops in the world for its fruit production. Advances in cutting-edge techniques have enabled the development of numerous critical traits related to the quality and quantity of tomatoes. Genetic engineering techniques, such as gene transformation and gene editing, have emerged as powerful tools for generating new plant varieties with superior traits. In this study, we induced parthenocarpic traits in a population of elite tomato (ET) lines. At first, the adaptability of ET lines to genetic transformation was evaluated to identify the best-performing lines by transforming the SlANT1 gene overexpression cassette and then later used to produce the SlIAA9 knockout lines using the CRISPR/Cas9 system. ET5 and ET8 emerged as excellent materials for these techniques and showed higher efficiency. Typical phenotypes of knockout sliaa9 were clearly visible in G0 and G1 plants, in which simple leaves and parthenocarpic fruits were observed. The high efficiency of the CRISPR/Cas9 system in developing new tomato varieties with desired traits in a short period was demonstrated by generating T-DNA-free homozygous sliaa9 knockout plants in the G1 generation. Additionally, a simple artificial fertilization method was successfully applied to recover seed production from parthenocarpic plants, securing the use of these varieties as breeding materials. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01452-1.

2.
J Exp Bot ; 74(20): 6254-6268, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37279328

RESUMO

Fruit set is the process by which the ovary develops into a fruit and is an important factor in determining fruit yield. Fruit set is induced by two hormones, auxin and gibberellin, and the activation of their signaling pathways, partly by suppressing various negative regulators. Many studies have investigated the structural changes and gene networks in the ovary during fruit set, revealing the cytological and molecular mechanisms. In tomato (Solanum lycopersicum), SlIAA9 and SlDELLA/PROCERA act as auxin and gibberellin signaling repressors, respectively, and are important regulators of the activity of transcription factors and downstream gene expression involved in fruit set. Upon pollination, SlIAA9 and SlDELLA are degraded, which subsequently activates downstream cascades and mainly contributes to active cell division and cell elongation, respectively, in ovaries during fruit setting. According to current knowledge, the gibberellin pathway functions as the most downstream signal in fruit set induction, and therefore its role in fruit set has been extensively explored. Furthermore, multi-omics analysis has revealed the detailed dynamics of gene expression and metabolites downstream of gibberellins, highlighting the rapid activation of central carbon metabolism. This review will outline the relevant mechanisms at the molecular and metabolic levels during fruit set, particularly focusing on tomato.


Assuntos
Giberelinas , Solanum lycopersicum , Animais , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ovário/metabolismo , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética
3.
J Exp Bot ; 74(4): 1258-1274, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36453889

RESUMO

Jasmonate (JA) has been found to be a relevant hormone in floral development in numerous species, but its function in cucurbit floral development and sex determination is unknown. Crosstalk between JA and ethylene (ET) in the differential regulation of male and female floral development was investigated by using the novel JA-deficient mutant lox3a, and the ET-deficient and -insensitive mutants, aco1a and etr2b, respectively, of Cucurbita pepo. The lox3a mutation suppresses male and female flower opening and induces the development of parthenocarpic fruit. A bulked-segregant analysis coupled with whole genome sequencing and fine mapping approach allowed the identification of lox3a mutation in CpLOX3A, a LIPOXYGENASE gene involved in JA biosynthesis. The reduced JA content and expression of JA-signalling genes in male and female flowers of lox3a, and the rescue of lox3a phenotype by external application of methyl jasmonate (MeJA), demonstrated that JA controls petal elongation and flower opening, as well as fruit abortion in the absence of fertilization. JA also rescued the phenotype of ET mutants aco1a and etr2b, which are both specifically defective in female flower opening and fruit abortion. ET, the sex determining hormone of cucurbits, is induced in female flowers towards anthesis, activating JA production and promoting the aperture of the female flower, and the abortion of the unfertilized ovary. Given the close association between flower closure and parthenocarpic fruit development, we propose that flower opening can act as a switch that triggers fruit set and development in fertilized ovaries, but may alternatively induce the abortion of the unfertilized ovary. Both ET and JA from mature and senescent petals can serve as remote signals that determine the alternative development of the ovary and fruit.


Assuntos
Cucurbita , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Flores , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Proc Natl Acad Sci U S A ; 117(23): 12784-12790, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461365

RESUMO

Fruit development normally occurs after pollination and fertilization; however, in parthenocarpic plants, the ovary grows into the fruit without pollination and/or fertilization. Parthenocarpy has been recognized as a highly attractive agronomic trait because it could stabilize fruit yield under unfavorable environmental conditions. Although natural parthenocarpic varieties are useful for breeding Solanaceae plants, their use has been limited, and little is known about their molecular and biochemical mechanisms. Here, we report a parthenocarpic eggplant mutant, pad-1, which accumulates high levels of auxin in the ovaries. Map-based cloning showed that the wild-type (WT) Pad-1 gene encoded an aminotransferase with similarity to Arabidopsis VAS1 gene, which is involved in auxin homeostasis. Recombinant Pad-1 protein catalyzed the conversion of indole-3-pyruvic acid (IPyA) to tryptophan (Trp), which is a reverse reaction of auxin biosynthetic enzymes, tryptophan aminotransferases (TAA1/TARs). The RNA level of Pad-1 gene increased during ovary development and reached its highest level at anthesis stage in WT. This suggests that the role of Pad-1 in WT unpollinated ovary is to prevent overaccumulation of IAA resulting in precocious fruit-set. Furthermore, suppression of the orthologous genes of Pad-1 induced parthenocarpic fruit development in tomato and pepper plants. Our results demonstrated that the use of pad-1 genes would be powerful tools to improve fruit production of Solanaceae plants.


Assuntos
Ácidos Indolacéticos/metabolismo , Mutação com Perda de Função , Partenogênese , Proteínas de Plantas/genética , Solanum melongena/genética , Transaminases/genética , Flores/genética , Flores/metabolismo , Flores/fisiologia , Homeostase , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solanum melongena/fisiologia , Transaminases/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(38): 23970-23981, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32883877

RESUMO

Fruit set is the process whereby ovaries develop into fruits after pollination and fertilization. The process is induced by the phytohormone gibberellin (GA) in tomatoes, as determined by the constitutive GA response mutant procera However, the role of GA on the metabolic behavior in fruit-setting ovaries remains largely unknown. This study explored the biochemical mechanisms of fruit set using a network analysis of integrated transcriptome, proteome, metabolome, and enzyme activity data. Our results revealed that fruit set involves the activation of central carbon metabolism, with increased hexoses, hexose phosphates, and downstream metabolites, including intermediates and derivatives of glycolysis, the tricarboxylic acid cycle, and associated organic and amino acids. The network analysis also identified the transcriptional hub gene SlHB15A, that coordinated metabolic activation. Furthermore, a kinetic model of sucrose metabolism predicted that the sucrose cycle had high activity levels in unpollinated ovaries, whereas it was shut down when sugars rapidly accumulated in vacuoles in fruit-setting ovaries, in a time-dependent manner via tonoplastic sugar carriers. Moreover, fruit set at least partly required the activity of fructokinase, which may pull fructose out of the vacuole, and this could feed the downstream pathways. Collectively, our results indicate that GA cascades enhance sink capacities, by up-regulating central metabolic enzyme capacities at both transcriptional and posttranscriptional levels. This leads to increased sucrose uptake and carbon fluxes for the production of the constituents of biomass and energy that are essential for rapid ovary growth during the initiation of fruit set.


Assuntos
Frutas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Carbono/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Redes e Vias Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Sacarose/metabolismo , Transcriptoma/genética
6.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982733

RESUMO

Parthenocarpy and stenospermocarpy are the two mechanisms underlying the seedless fruit set program. Seedless fruit occurs naturally and can be produced using hormone application, crossbreeding, or ploidy breeding. However, the two types of breeding are time-consuming and sometimes ineffective due to interspecies hybridization barriers or the absence of appropriate parental genotypes to use in the breeding process. The genetic engineering approach provides a better prospect, which can be explored based on an understanding of the genetic causes underlying the seedlessness trait. For instance, CRISPR/Cas is a comprehensive and precise technology. The prerequisite for using the strategy to induce seedlessness is identifying the crucial master gene or transcription factor liable for seed formation/development. In this review, we primarily explored the seedlessness mechanisms and identified the potential candidate genes underlying seed development. We also discussed the CRISPR/Cas-mediated genome editing approaches and their improvements.


Assuntos
Edição de Genes , Vitis , Vitis/genética , Melhoramento Vegetal , Sementes/genética , Frutas/genética , Sistemas CRISPR-Cas/genética
7.
Planta ; 256(5): 90, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171415

RESUMO

MAIN CONCLUSION: This manuscript identifies cherry orthologues of genes implicated in the development of pericarpic fruit and pinpoints potential options and restrictions in the use of these targets for commercial exploitation of parthenocarpic cherry fruit. Cherry fruit contain a large stone and seed, making processing of the fruit laborious and consumption by the consumer challenging, inconvenient to eat 'on the move' and potentially dangerous for children. Availability of fruit lacking the stone and seed would be potentially transformative for the cherry industry, since such fruit would be easier to process and would increase consumer demand because of the potential reduction in costs. This review will explore the background of seedless fruit, in the context of the ambition to produce the first seedless cherry, carry out an in-depth analysis of the current literature around parthenocarpy in fruit, and discuss the available technology and potential for producing seedless cherry fruit as an 'ultimate snacking product' for the twenty-first century.


Assuntos
Frutas , Lanches , Frutas/genética , Sementes/genética
8.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232409

RESUMO

Exogenous gibberellin (GA) was widely used to improve berry quality through inducing parthenocarpic seedless berries in grapes. We revealed that auxin response factors (ARFs), the key transcription factors in response to auxin, might respond to GA involving modulation of grape parthenocarpy. However, the underlying molecular mechanism in this process remains yet unclear. Here, a total of 19 VvARF members were identified in the ovaries during GA-induced grapes' parthenocarpy. Interestingly, almost all members were GA-responsive factors, of which 9 could be classified in plant hormone signal transduction (KO04075) and involved in the tryptophan metabolic pathway (K14486). Moreover, VvARFs were predicted to have 310 interacted proteins involved in 19 KEGG pathways. Of them, 32 interacted proteins participated in the KO04075 pathway, including auxin (IAA), salicylic acid (SA), abscisic acid (ABA), cytokinin (CTK), and ethylene signaling pathways by responding to GA-mediated multi-hormone crosstalk. Further analysis demonstrated that VvARF4-2 might be the major factor in the modulation of GA-induced parthenocarpy via the crosstalk of IAA, CTK, SA, and ethylene signaling, followed by VvARF6-1 and VvARF9 involved in SA and ABA signaling pathways, respectively. Finally, we developed a VvARFs-mediated regulatory network by responding to GA-mediated multi-hormone crosstalk during grape parthenocarpy. Collectively, our findings provided novel insights into the regulatory network of VvARFs in GA-guided multi-hormone signaling to modulate grape parthenocarpy, which has great implications for the molecular breeding of high quality seedless grape berries.


Assuntos
Vitis , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Etilenos/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Giberelinas/farmacologia , Hormônios/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triptofano/metabolismo , Vitis/metabolismo
9.
BMC Plant Biol ; 21(1): 292, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34167472

RESUMO

BACKGROUND: Parthenocarpy results in traits attractive to both consumers and breeders, and it overcomes the obstacle of self-incompatibility in the fruit set of horticultural crops, including pear (Pyrus bretshneider). However, there is limited knowledge regarding the genetic and molecular mechanisms that regulate parthenogenesis. RESULTS: Here, in a transcriptional comparison between pollination-dependent fruit and GA4-induced parthenocarpy, PbCYP78A6 was identified and proposed as a candidate gene involved in parthenocarpy. PbCYP78A6 is similar to Arabidopsis thaliana CYP78A6 and highly expressed in pear hypanthia. The increased PbCYP78A6 expression, as assessed by RT-qPCR, was induced by pollination and GA4 exposure. The ectopic overexpression of PbCYP78A6 contributed to parthenocarpic fruit production in tomato. The PbCYP78A6 expression coincided with fertilized and parthenocarpic fruitlets development and the expression of fruit development-related genes as assessed by cytological observations and RT-qPCR, respectively. PbCYP78A6 RNA interference and overexpression in pear calli revealed that the gene is an upstream regulator of specific fruit development-related genes in pear. CONCLUSIONS: Our findings indicate that PbCYP78A6 plays a critical role in fruit formation and provide insights into controlling parthenocarpy.


Assuntos
Ciclo Celular , Sistema Enzimático do Citocromo P-450/genética , Genes de Plantas/genética , Partenogênese , Proteínas de Plantas/genética , Pyrus/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Sistema Enzimático do Citocromo P-450/fisiologia , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia , Partenogênese/genética , Partenogênese/fisiologia , Filogenia , Proteínas de Plantas/fisiologia , Polinização , Pyrus/genética , Pyrus/crescimento & desenvolvimento , Pyrus/fisiologia
10.
BMC Plant Biol ; 21(1): 135, 2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33711928

RESUMO

BACKGROUND: Grapevine reproductive development has direct implications on yield. It also impacts on berry and wine quality by affecting traits like seedlessness, berry and bunch size, cluster compactness and berry skin to pulp ratio. Seasonal fluctuations in yield, fruit composition and wine attributes, which are largely driven by climatic factors, are major challenges for worldwide table grape and wine industry. Accordingly, a better understanding of reproductive processes such as gamete development, fertilization, seed and fruit set is of paramount relevance for managing yield and quality. With the aim of providing new insights into this field, we searched for clones with contrasting seed content in two germplasm collections. RESULTS: We identified eight variant pairs that seemingly differ only in seed-related characteristics while showing identical genotype when tested with the GrapeReSeq_Illumina_20K_SNP_chip and several microsatellites. We performed multi-year observations on seed and fruit set deriving from different pollination treatments, with special emphasis on the pair composed by Sangiovese and its seedless variant locally named Corinto Nero. The pollen of Corinto Nero failed to germinate in vitro and gave poor berry set when used to pollinate other varieties. Most berries from both open- and cross-pollinated Corinto Nero inflorescences did not contain seeds. The genetic analysis of seedlings derived from occasional Corinto Nero normal seeds revealed that the few Corinto Nero functional gametes are mostly unreduced. Moreover, three genotypes, including Sangiovese and Corinto Nero, were unexpectedly found to develop fruits without pollen contribution and occasionally showed normal-like seeds. Five missense single nucleotide polymorphisms were identified between Corinto Nero and Sangiovese from transcriptomic data. CONCLUSIONS: Our observations allowed us to attribute a seedlessness type to some variants for which it was not documented in the literature. Interestingly, the VvAGL11 mutation responsible for Sultanina stenospermocarpy was also discovered in a seedless mutant of Gouais Blanc. We suggest that Corinto Nero parthenocarpy is driven by pollen and/or embryo sac defects, and both events likely arise from meiotic anomalies. The single nucleotide polymorphisms identified between Sangiovese and Corinto Nero are suitable for testing as traceability markers for propagated material and as functional candidates for the seedless phenotype.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Reprodução/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Vitis/crescimento & desenvolvimento , Vitis/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Genes de Plantas , Variação Genética , Genótipo , Hibridização Genética , Polimorfismo de Nucleotídeo Único
11.
Plant Mol Biol ; 99(4-5): 329-346, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30656555

RESUMO

KEY MESSAGE: CPPU-induced San Pedro type fig main crop parthenocarpy exhibited constantly increasing IAA content and more significantly enriched KEGG pathways in the receptacle than in female flowers. N-(2-chloro-4-pyridyl)-N-phenylurea (CPPU) was applied to San Pedro fig (Ficus carica L.) main crop to induce parthenocarpy; the optimal effect was obtained with 25 mg L-1 application to syconia when female flowers were at anthesis. To elucidate the key expression changes in parthenocarpy conversion, significant changes in phytohormone level and transcriptome of fig female flowers and receptacles were monitored. HPLC-MS revealed increased IAA content in female flowers and receptacle 2, 4 and 10 days after treatment (DAT), decreased zeatin level in the receptacle 2, 4 and 10 DAT, decreased GA3 content 2 and 4 DAT, and increased GA3 content 10 DAT. ABA level increased 2 and 4 DAT, and decreased 10 DAT. CPPU-treated syconia released more ethylene than the control except 2 DAT. RNA-Seq and bioinformatics analysis revealed notably more differentially expressed KEGG pathways in the receptacle than in female flowers. In the phytohormone gene network, GA-biosynthesis genes GA20ox and GA3ox were upregulated, along with GA signal-transduction genes GID1 and GID2, and IAA-signaling genes AUX/IAA and GH3. ABA-biosynthesis gene NCED and signaling genes PP2C and ABF were downregulated 10 DAT. One ACO gene showed consistent upregulation in both female flowers and receptacle after CPPU treatment, and more than a dozen of ERFs demonstrated opposing changes in expression. Our results revealed early-stage spatiotemporal phytohormone and transcriptomic responses in CPPU-induced San Pedro fig main crop parthenocarpy, which could be valuable for further understanding the nature of the parthenocarpy of different fig types.


Assuntos
Citocininas/metabolismo , Citocininas/farmacologia , Ficus/genética , Ficus/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Transcriptoma , Ácido Abscísico/biossíntese , Regulação para Baixo , Etilenos/biossíntese , Ficus/efeitos dos fármacos , Ficus/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/biossíntese , Ácidos Indolacéticos/metabolismo , Compostos de Fenilureia/farmacologia , RNA de Plantas/isolamento & purificação , Transdução de Sinais , Regulação para Cima , Zeatina/biossíntese
12.
BMC Plant Biol ; 19(1): 61, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30727959

RESUMO

BACKGROUND: Zucchini fruit set can be limited due to unfavourable environmental conditions in off-seasons crops that caused ineffective pollination/fertilization. Parthenocarpy, the natural or artificial fruit development without fertilization, has been recognized as an important trait to avoid this problem, and is related to auxin signalling. Nevertheless, differences found in transcriptome analysis during early fruit development of zucchini suggest that other complementary pathways could regulate fruit formation in parthenocarpic cultivars of this species. The development of next-generation sequencing technologies (NGS) as RNA-sequencing (RNA-seq) opens a new horizon for mapping and quantifying transcriptome to understand the molecular basis of pathways that could regulate parthenocarpy in this species. The aim of the current study was to analyze fruit transcriptome of two cultivars of zucchini, a non-parthenocarpic cultivar and a parthenocarpic cultivar, in an attempt to identify key genes involved in parthenocarpy. RESULTS: RNA-seq analysis of six libraries (unpollinated, pollinated and auxin treated fruit in a non-parthenocarpic and parthenocarpic cultivar) was performed mapping to a new version of C. pepo transcriptome, with a mean of 92% success rate of mapping. In the non-parthenocarpic cultivar, 6479 and 2186 genes were differentially expressed (DEGs) in pollinated fruit and auxin treated fruit, respectively. In the parthenocarpic cultivar, 10,497 in pollinated fruit and 5718 in auxin treated fruit. A comparison between transcriptome of the unpollinated fruit for each cultivar has been performed determining that 6120 genes were differentially expressed. Annotation analysis of these DEGs revealed that cell cycle, regulation of transcription, carbohydrate metabolism and coordination between auxin, ethylene and gibberellin were enriched biological processes during pollinated and parthenocarpic fruit set. CONCLUSION: This analysis revealed the important role of hormones during fruit set, establishing the activating role of auxins and gibberellins against the inhibitory role of ethylene and different candidate genes that could be useful as markers for parthenocarpic selection in the current breeding programs of zucchini.


Assuntos
Cucurbita/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Metabolismo dos Carboidratos/genética , Divisão Celular/genética , Cucurbita/genética , Cucurbita/fisiologia , Frutas/genética , Frutas/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Característica Quantitativa Herdável , Análise de Sequência de RNA/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
13.
BMC Plant Biol ; 19(1): 111, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30898085

RESUMO

BACKGROUND: Grape (Vitis vinifera) is highly sensitive to gibberellin (GA), which effectively induce grape parthenocarpy. Studies showed that miR160s and their target AUXIN RESPONSIVE FACTOR (ARF) responding hormones are indispensable for various aspects of plant growth and development, but their functions in GA-induced grape parthenocarpy remain elusive. RESULTS: In this study, the morphological changes during flower development in response to GA treatments were examined in the 'Rosario Bianco' cultivar. The precise sequences of VvmiR160a/b/c/d/e and their VvARF10/16/17 target genes were cloned, sequenced and characterized. The phylogenetic relationship and intron-exon structure of VvARFs and other ARF family members derived from different species were investigated. All VvmiR160s (except VvmiR160b) and VvARF10/16/17 had the common cis-elements responsive to GA, which support their function in GA-mediated grape parthenocarpy. The cleavage role of VvmiR160s-mediated VvARF10/16/17 was verified in grape flowers. Moreover, spatio-temporal expression analysis demonstrated that among VvmiR160 family, VvmiR160a/b/c highly expressed at late stage of flower/berry development, while VvARF10/16/17showed a reverse expression trend. Interestingly, GA exhibited a long-term effect through inducing the expression of VvmiR160a/b/c/e to increase their cleavage product accumulations from 5 to 9 days after treatment, but GA enhanced the expressions of VvARF10/16/17 only at short term. Pearson correlation analysis based on expression data revealed a negative correlation between VvmiR160a/b/c and VvARF10/16/17 in flowers not berries during GA-induced grape parthenocarpy. CONCLUSIONS: This work demonstrated that the negative regulation of VvARF10/16/17 expression by VvmiR160a/b/c as key regulatory factors is critical for GA-mediated grape parthenocarpy, and provide significant implications for molecular breeding of high-quality seedless berry.


Assuntos
Frutas/crescimento & desenvolvimento , Giberelinas/farmacologia , MicroRNAs/genética , Proteínas de Plantas/genética , Vitis/genética , Mapeamento Cromossômico , Flores/efeitos dos fármacos , Flores/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA de Plantas , Sementes/genética , Análise Espaço-Temporal , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Vitis/efeitos dos fármacos , Vitis/fisiologia
14.
BMC Genet ; 20(1): 65, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370778

RESUMO

BACKGROUND: Fruit set after successful pollination is key for the production of sweet cherries, and a low fruit-setting rate is the main problem in production of this crop. As gibberellin treatment can directly induce parthenogenesis and satisfy the hormone requirement during fruit growth and development, such treatment is an important strategy for improving the fruit-setting rate of sweet cherries. Previous studies have mainly focused on physiological aspects, such as fruit quality, fruit size, and anatomical structure, whereas the molecular mechanism remains clear. RESULTS: In this study, we analyzed the transcriptome of 'Meizao' sweet cherry fruit treated with gibberellin during the anthesis and hard-core periods to identify genes associated with parthenocarpic fruit set. A total of 25,341 genes were identified at the anthesis and hard-core stages, 765 (681 upregulated, 84 downregulated) and 186 (141 upregulated, 45 downregulated) of which were significant differentially expressed genes (DEGs) at the anthesis and the hard-core stages after gibberellin 3 (GA3) treatment, respectively. Based on DEGs between the control and GA3 treatments, the GA3 response mainly involves parthenocarpic fruit set and cell division. Exogenous gibberellin stimulated sweet cherry fruit parthenocarpy and enlargement, as verified by qRT-PCR results of related genes as well as the parthenocarpic fruit set and fruit size. Based on our research and previous studies in Arabidopsis thaliana, we identified key genes associated with parthenocarpic fruit set and cell division. Interestingly, we observed patterns among sweet cherry fruit setting-related DEGs, especially those associated with hormone balance, cytoskeleton formation and cell wall modification. CONCLUSIONS: Overall, the result provides a possible molecular mechanism regulating parthenocarpic fruit set that will be important for basic research and industrial development of sweet cherries.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Prunus avium/efeitos dos fármacos , Prunus avium/genética , Transcriptoma , Xantonas/farmacologia , Biologia Computacional/métodos , Frutas/genética , Perfilação da Expressão Gênica , Ontologia Genética , Giberelinas/metabolismo , Redes e Vias Metabólicas , Fenótipo , Transdução de Sinais , Fatores de Transcrição/metabolismo
15.
J Hered ; 110(5): 610-617, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31002335

RESUMO

Investigation of parthenocarpy, the production of fruit without fertilization, in multiple plant species could result in development of technologies for conferring seedless fruits and increased stability of fruit formation in economically important plants. We studied parthenocarpy in the model species Nicotiana tabacum L., and observed variability for expression of the trait among diverse genetic materials. Parthenocarpy was found to be partially dominant, and a single major quantitative trait locus on linkage group 22 was found to control the trait in a doubled haploid mapping population derived from a cross between parthenocarpic cigar tobacco cultivar "Beinhart 1000" and nonparthenocarpic flue-cured tobacco cultivar, "Hicks." The same genomic region was found to be involved with control of the trait in the important flue-cured tobacco cultivar, "K326." We also investigated the potential for the production of maternal haploids due to parthenogenesis in parthenocarpic tobacco seed capsules. Maternal haploids were not observed in parthenocarpic capsules, suggesting a requirement of fertilization for maternal haploid production due to parthenogenesis in N. tabacum.


Assuntos
Frutas/genética , Nicotiana/genética , Partenogênese/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Mapeamento Cromossômico , Estudos de Associação Genética , Haploidia , Sementes/genética
16.
Plant J ; 92(1): 95-109, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28715118

RESUMO

The transition from flowering to fruit production, namely fruit set, is crucial to ensure successful sexual plant reproduction. Although studies have described the importance of hormones (i.e. auxin and gibberellins) in controlling fruit set after pollination and fertilization, the role of microRNA-based regulation during ovary development and fruit set is still poorly understood. Here we show that the microRNA159/GAMYB1 and -2 pathway (the miR159/GAMYB1/2 module) is crucial for tomato ovule development and fruit set. MiR159 and SlGAMYBs were expressed in preanthesis ovaries, mainly in meristematic tissues, including developing ovules. SlMIR159-overexpressing tomato cv. Micro-Tom plants exhibited precocious fruit initiation and obligatory parthenocarpy, without modifying fruit shape. Histological analysis showed abnormal ovule development in such plants, which led to the formation of seedless fruits. SlGAMYB1/2 silencing in SlMIR159-overexpressing plants resulted in misregulation of pathways associated with ovule and female gametophyte development and auxin signalling, including AINTEGUMENTA-like genes and the miR167/SlARF8a module. Similarly to SlMIR159-overexpressing plants, SlGAMYB1 was downregulated in ovaries of parthenocarpic mutants with altered responses to gibberellins and auxin. SlGAMYBs likely contribute to fruit initiation by modulating auxin and gibberellin responses, rather than their levels, during ovule and ovary development. Altogether, our results unveil a novel function for the miR159-targeted SlGAMYBs in regulating an agronomically important trait, namely fruit set.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Reguladores de Crescimento de Plantas/metabolismo , Solanum lycopersicum/genética , Fatores de Transcrição/metabolismo , Regulação para Baixo , Flores/citologia , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/citologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/crescimento & desenvolvimento , Óvulo Vegetal/citologia , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinização , RNA de Plantas/genética , Fatores de Transcrição/genética
17.
BMC Plant Biol ; 18(1): 72, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29699487

RESUMO

BACKGROUND: Parthenocarpy is a desired trait in tomato because it can overcome problems with fruit setting under unfavorable environmental conditions. A parthenocarpic tomato cultivar, 'MPK-1', with a parthenocarpic gene, Pat-k, exhibits stable parthenocarpy that produces few seeds. Because 'MPK-1' produces few seeds, seedlings are propagated inefficiently via cuttings. It was reported that Pat-k is located on chromosome 1. However, the gene had not been isolated and the relationship between the parthenocarpy and low seed set in 'MPK-1' remained unclear. In this study, we isolated Pat-k to clarify the relationship between parthenocarpy and low seed set in 'MPK-1'. RESULTS: Using quantitative trait locus (QTL) analysis for parthenocarpy and seed production, we detected a major QTL for each trait on nearly the same region of the Pat-k locus on chromosome 1. To isolate Pat-k, we performed fine mapping using an F4 population following the cross between a non-parthenocarpic cultivar, 'Micro-Tom' and 'MPK-1'. The results showed that Pat-k was located in the 529 kb interval between two markers, where 60 genes exist. By using data from a whole genome re-sequencing and genome sequence analysis of 'MPK-1', we could identify that the SlAGAMOUS-LIKE 6 (SlAGL6) gene of 'MPK-1' was mutated by a retrotransposon insertion. The transcript level of SlAGL6 was significantly lower in ovaries of 'MPK-1' than a non-parthenocarpic cultivar. From these results, we could conclude that Pat-k is SlAGL6, and its down-regulation in 'MPK-1' causes parthenocarpy and low seed set. In addition, we observed abnormal micropyles only in plants homozygous for the 'MPK-1' allele at the Pat-k/SlAGL6 locus. This result suggests that Pat-k/SlAGL6 is also related to ovule formation and that the low seed set in 'MPK-1' is likely caused by abnormal ovule formation through down-regulation of Pat-k/SlAGL6. CONCLUSIONS: Pat-k is identical to SlAGL6, and its down-regulation causes parthenocarpy and low seed set in 'MPK-1'. Moreover, down-regulation of Pat-k/SlAGL6 could cause abnormal ovule formation, leading to a reduction in the number of seeds.


Assuntos
Frutas/genética , Genes de Plantas/genética , Partenogênese/genética , Solanum lycopersicum/genética , Mapeamento Cromossômico , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Frutas/crescimento & desenvolvimento , Genes de Plantas/fisiologia , Genoma de Planta/genética , Escore Lod , Solanum lycopersicum/crescimento & desenvolvimento , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Sementes/crescimento & desenvolvimento , Análise de Sequência de DNA
18.
BMC Plant Biol ; 18(1): 100, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859043

RESUMO

BACKGROUND: Gibberellin (GA) treatments can induce parthenocarpy in the main crop of San Pedro-type figs, the native non-parthenocarpic fruit, however, the underlying mechanism is still largely unclear. RESULTS: In our study, GA3 was applied to San Pedro-type fig main crop at anthesis. Sharply increased GA3 content was detected in both female flowers and receptacle, along with significantly decreased indole-3-acetic acid (IAA), zeatin and abscisic acid (ABA) levels in female flowers, and increased zeatin peak intensity and earlier ABA peak in receptacles. Transcriptome comparison between control and treatment groups identified more differentially expressed genes (DEGs) in receptacles than in female flowers 2 and 4 days after treatment (DAT); 10 DAT, the number of DEGs became similar in the two tissues. Synchronized changing trends of phytohormone-associated DEGs were observed in female flowers and receptacles with fruit development. Modulation of ethylene and GA signaling and auxin metabolism by exogenous GA3 occurred mainly 2 DAT, whereas changes in auxin, cytokinin and ABA signaling occurred mainly 10 DAT. Auxin-, ethylene- and ABA-metabolism and response pathways were largely regulated in the two tissues, mostly 2 and 10 DAT. The major components altering fig phytohormone metabolic and response patterns included downregulated GA2ox, BAS1, NCED and ACO, and upregulated ABA 8'-h and AUX/IAA. CONCLUSIONS: Thus GA-induced parthenocarpy in fig is co-modulated by the female flowers and receptacle, and repression of ABA and ethylene biosynthesis and GA catabolism might be the main forces deflecting abscission and producing fig parthenocarpy.


Assuntos
Ficus/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Regulação para Baixo , Ficus/crescimento & desenvolvimento , Ficus/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Perfilação da Expressão Gênica , Transdução de Sinais , Regulação para Cima
19.
BMC Genomics ; 18(1): 896, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29166853

RESUMO

BACKGROUND: Parthenocarpy is an excellent agronomic trait that enables crops to set fruit in the absence of pollination and fertilization, and therefore to produce seedless fruit. Although parthenocarpy is widely recognized as a hormone-dependent process, hormone-insensitive parthenocarpy can also be observed in cucumber; however, its mechanism is poorly understood. To improve the global understanding of parthenocarpy and address the hormone-insensitive parthenocarpy shown in cucumber, we conducted a physiological and proteomic analysis of differently developed fruits. RESULTS: Physiological analysis indicated that the natural hormone-insensitive parthenocarpy of 'EC1' has broad hormone-inhibitor resistance, and the endogenous hormones in the natural parthenocarpy (NP) fruits were stable and relatively lower than those of the non-parthenocarpic cultivar '8419 s-1.' Based on the iTRAQ technique, 683 fruit developmental proteins were identified from NP, cytokinin-induced parthenocarpic (CP), pollinated and unpollinated fruits. Gene Ontology (GO) analysis showed that proteins detected from both set and aborted fruits were involved in similar biological processes, such as cell growth, the cell cycle, cell death and communication. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that 'protein synthesis' was the major biological process that differed between fruit set and fruit abortion. Clustering analysis revealed that different protein expression patterns were involved in CP and NP fruits. Forty-one parthenocarpy-specialized DEPs (differentially expressed proteins) were screened and divided into two distinctive groups: NP-specialized proteins and CP-specialized proteins. Furthermore, qRT-PCR and western blot analysis indicated that NP-specialized proteins showed hormone- or hormone-inhibitor insensitive expression patterns in both ovaries and seedlings. CONCLUSIONS: In this study, the global molecular regulation of fruit development in cucumber was revealed at the protein level. Physiological and proteomic comparisons indicated the presence of hormone-independent parthenocarpy and suppression of fruit abortion in cucumber. The proteomic analysis suggested that hormone-independent parthenocarpy is regulated by hormone-insensitive proteins such as the NP-specialized proteins. Moreover, the regulation of fruit abortion suppression may be closely related to protein synthesis pathways.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Cucumis sativus/metabolismo , Frutas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Mapas de Interação de Proteínas , Proteômica
20.
New Phytol ; 214(3): 1198-1212, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28134991

RESUMO

Fruit set is an essential process to ensure successful sexual plant reproduction. The development of the flower into a fruit is actively repressed in the absence of pollination. However, some cultivars from a few species are able to develop seedless fruits overcoming the standard restriction of unpollinated ovaries to growth. We report here the identification of the tomato hydra mutant that produces seedless (parthenocarpic) fruits. Seedless fruit production in hydra plants is linked to the absence of both male and female sporocyte development. The HYDRA gene is therefore essential for the initiation of sporogenesis in tomato. Using positional cloning, virus-induced gene silencing and expression analysis experiments, we identified the HYDRA gene and demonstrated that it encodes the tomato orthologue of SPOROCYTELESS/NOZZLE (SPL/NZZ) of Arabidopsis. We found that the precocious growth of the ovary is associated with changes in the expression of genes involved in gibberellin (GA) metabolism. Our results support the conservation of the function of SPL-like genes in the control of sporogenesis in plants. Moreover, this study uncovers a new function for the tomato SlSPL/HYDRA gene in the control of fruit initiation.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Genes de Plantas , Mutação/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Arabidopsis/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/metabolismo , Células Germinativas Vegetais/ultraestrutura , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/ultraestrutura , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Infertilidade das Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA