Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38429108

RESUMO

Treatments accelerating axon regeneration in the nervous system are still clinically unavailable. However, parthenolide promotes adult sensory neurons' axon growth in culture by inhibiting microtubule detyrosination. Here, we show that overexpression of vasohibins increases microtubule detyrosination in growth cones and compromises growth in culture and in vivo. Moreover, overexpression of these proteins increases the required parthenolide concentrations to promote axon regeneration. At the same time, the partial knockdown of endogenous vasohibins or their enhancer SVBP in neurons facilitates axon growth, verifying them as pharmacological targets for promoting axon growth. In vivo, repeated intravenous application of parthenolide or its prodrug di-methyl-amino-parthenolide (DMAPT) markedly facilitates the regeneration of sensory, motor, and sympathetic axons in injured murine and rat nerves, leading to acceleration of functional recovery. Moreover, orally applied DMAPT was similarly effective in promoting nerve regeneration. Thus, pharmacological inhibition of vasohibins facilitates axon regeneration in different species and nerves, making parthenolide and DMAPT the first promising drugs for curing nerve injury.


Assuntos
Axônios , Sesquiterpenos , Camundongos , Ratos , Animais , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Microtúbulos/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/metabolismo
2.
Mol Med ; 30(1): 158, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327568

RESUMO

BACKGROUND: Huntington's disease (HD) is a progressive neurodegenerative disease that causes motor, cognitive, and psychiatric abnormalities, with no satisfying disease-modifying therapy so far. 3-nitropropionic acid (3NP) induces behavioural deficits, together with biochemical and histological alterations in animals' striata that mimic HD. The role of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome in HD pathogenesis remains largely uncharacterized. Parthenolide (PTL), a naturally occurring nuclear factor kappa B (NF-κB) inhibitor, is also known to inhibit NLRP3 inflammasome. Whether PTL is beneficial in HD has not been established yet. AIM: This study evaluated the possible neuroprotective effects of PTL against 3NP-induced behavioural abnormalities, striatal biochemical derangements, and histological aberrations. METHODS: Male Wistar rats received PTL (0.5 mg/kg/day, i.p) for 3 weeks and 3NP (10 mg/kg/day, i.p) was administered alongside for the latter 2 weeks to induce HD. Finally, animals were subjected to open-field, Morris water maze and rotarod tests. Rat striata were examined histologically, striatal protein expression levels of glial fibrillary acidic protein (GFAP), cluster of differentiation 45 (CD45) and neuron-specific enolase (NSE) were evaluated immunohistochemically, while those of interleukin (IL)-1ß, IL-18, ionized calcium-binding adapter molecule-1 (Iba1) and glutamate were determined by ELISA. Striatal nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein (Keap1), NF-κB, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, S100 calcium-binding protein A10 (S100A10) and complement-3 (C3) were assessed by gene expression analysis. RESULTS: PTL improved motor, locomotor, cognitive and anxiety-like behaviours, restored neuronal integrity, upregulated Nrf2, and inhibited NLRP3 inflammasome, NF-κB and microglial activation. Additionally, PTL induced astrocyte shifting towards the neuroprotective A2 phenotype. CONCLUSION: PTL exhibits neuroprotection against 3NP-induced HD, that might be ascribed, at least in part, to its modulatory effects on Keap1/Nrf2 and NF-κB/NLRP3 inflammasome signaling.


Assuntos
Astrócitos , Doença de Huntington , Inflamassomos , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nitrocompostos , Propionatos , Sesquiterpenos , Animais , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Doença de Huntington/induzido quimicamente , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Masculino , Inflamassomos/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Propionatos/farmacologia , Ratos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Wistar , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos
3.
Mol Biol Rep ; 51(1): 369, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411765

RESUMO

BACKGROUND: In this study the formulation of parthenolide (PN), an anticancer agent extracted from a natural product, into a liposome (PN-liposome), was examined. The surface of the PN-liposome was modified using chitosan (PN-chitosome). By using real-time quantitative PCR and flow cytometry, we examined the release of PN-chitosomes, cytotoxicity, and ability to induce apoptosis in vitro. METHODS AND RESULTS: According to the present study, PN-chitosomes had a size of 251 nm which is acceptable for efficient enhanced permeation and retention (EPR) performance. PN-chitosomes were confirmed to be spherical in shape and size through FESEM analysis. In terms of encapsulation efficiency, 94.5% was achieved. PN-chitosome possessed a zeta potential of 34.72 mV, which was suitable for its stability. According to the FTIR spectra of PN and PN-chitosome, PN was chemically stable due to the intermolecular interaction between the liposome and the drug. After 48 h, only 10% of the PN was released from the PN-chitosome in PBS (pH 7.4), and less than 20% was released after 144 h. CONCLUSION: In a dose-dependent manner, PN-chitosome exhibited anticancer properties that were more cytotoxic against cancer cells than normal cells. Moreover, the formulation activated both the apoptosis pathway and cytotoxic genes in real-time qPCR experiments. According to the cytotoxicity and activating apoptosis of the prepared modified particle, PN-chitosome may be helpful in the treatment of cancer.


Assuntos
Quitosana , Sesquiterpenos , Quitosana/farmacologia , Lipossomos , Sesquiterpenos/farmacologia , Apoptose
4.
Mol Biol Rep ; 51(1): 819, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017801

RESUMO

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms, and is due to the degeneration of dopaminergic neurons. It is multifactorial, caused by genetic and environmental factors and currently has no definitive cure. We have investigated the protective effects of parthenolide (PTN), a compound with known anti-inflammatory and antioxidant properties, in an in vitro model of PD, that is induced by 6-OHDA, and that causes neurotoxicity in SH-SY5Y human neuroblastoma cells. METHODS AND RESULTS: SH-SY5Y cells were pretreated with PTN to assess its protective effects in 6-OHDA-induced cellular damage. Cell viability was measured using Alamar blue. Apoptosis was evaluated using an Annexin V-FITC/PI kit. Reactive oxygen species (ROS) levels were quantified, and expression levels of apoptotic markers (Bax, Bcl-2, p53) and NF-κB were analyzed via Western blotting and Quantitative real-time- (qRT-) PCR. We found that 6-OHDA reduced cell viability, that was inhibited significantly by pre-treatment with PTN (p < 0.05). Flow cytometry revealed that PTN reduced apoptosis induced by 6-OHDA. PTN also reduced the ROS levels raised by 6-OHDA (p < 0.05). Moreover, PTN decreased the expression of Bax, p53, NF-κB, and p-NF-κB that were increased by treatment with 6-OHDA. CONCLUSION: These findings indicate the potential beneficial effects of PTN in an in vitro model of PD via mitigating oxidative stress and inflammation, suggested PTN as a promising agent to be used for PD therapy, warranting further investigation in preclinical and clinical studies.


Assuntos
Apoptose , Sobrevivência Celular , NF-kappa B , Estresse Oxidativo , Oxidopamina , Doença de Parkinson , Espécies Reativas de Oxigênio , Sesquiterpenos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Sesquiterpenos/farmacologia , NF-kappa B/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Oxidopamina/farmacologia , Fármacos Neuroprotetores/farmacologia , Antioxidantes/farmacologia
5.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474447

RESUMO

Acute lung injury (ALI) is a respiratory failure disease associated with high mortality rates in patients. The primary pathological damage is attributed to the excessive release of pro-inflammatory mediators in pulmonary tissue. However, specific therapy for ALI has not been developed. In this study, a series of novel ferulic acid-parthenolide (FA-PTL) and ferulic acid-micheliolide (FA-MCL) hybrid derivatives were designed, synthesized, and evaluated for their anti-inflammatory activities in vitro. Compounds 2, 4, and 6 showed pronounced anti-inflammatory activity against LPS-induced expression of pro-inflammatory cytokines in vitro. Importantly, compound 6 displayed good water solubility, and treatment of mice with compound 6 (10 mg/kg) significantly prevented weight loss and ameliorated inflammatory cell infiltration and edema in lung tissue, as well as improving the alveolar structure. These results suggest that compound 6 (((1aR,7aS,8R,10aS,10bS,E)-8-((dimethylamino)methyl)-1a-methyl-9-oxo-1a,2,3,6,7,7a,8,9,10a,10b-decahydrooxireno[2',3':9,10]cyclodeca[1,2-b]furan-5-yl)methyl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate 2-hydroxypropane-1,2,3-tricarboxylate) might be considered as a lead compound for further evaluation as a potential anti-ALI agent.


Assuntos
Lesão Pulmonar Aguda , Ácidos Cumáricos , Sesquiterpenos , Humanos , Animais , Camundongos , Lipopolissacarídeos/efeitos adversos , Anti-Inflamatórios/farmacologia , Pulmão/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Citocinas/metabolismo , Sesquiterpenos/farmacologia , Lactonas/farmacologia
6.
Cell Biol Int ; 47(9): 1638-1649, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37337926

RESUMO

The activation of the nuclear factor-κB (NF-κB) pathway has been associated with the development and progression of colorectal cancer (CRC). Parthenolide (PTL), a well-known inhibitor of the NF-κB pathway, has emerged as an alternative treatment. However, whether PTL activity is tumor cell-specific and dependent on the mutational background has not been defined. This study investigated the antitumor role of PTL after tumor necrosis factor-α (TNF-α) stimulation in various CRC cell lines with different mutational statuses of TP53. We observed that CRC cells displayed different patterns of basal p-IκBα levels; PTL reduced cell viability according to p-IκBα levels and p-IκBα levels varied among the cell lines according to the time of TNF-α stimulation. High concentrations of PTL reduced more effectively p-IκBα levels than low doses of PTL. However, PTL increased total IκBα levels in Caco-2 and HT-29 cells. In addition, PTL treatment downregulated p-p65 levels in HT-29 and HCT-116 cells stimulated by TNF-α in a dose-dependent manner. Moreover, PTL induced cell death via apoptosis and reduced the proliferation rate of TNF-α-treated HT-29 cells. Finally, PTL downregulated the messenger RNA levels of interleukin-1ß, a downstream cytokine of NF-κB, reverted the E-cadherin-mediated disorganization of cell-cell contacts, and decreased the invasion of HT-29 cells. Together, these results suggest a differential antitumoral activity of PTL on CRC cells with different mutational statuses of TP53, modulating cell death, survival, and proliferation underlying the NF-κB pathway TNF-α-induced. Therefore, PTL has emerged as a potential treatment for CRC in an inflammatory NF-κB-dependent manner.


Assuntos
Neoplasias Colorretais , NF-kappa B , Humanos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Baixo , Adesão Celular , Células CACO-2 , Apoptose , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico
7.
Acta Pharmacol Sin ; 44(8): 1701-1711, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36932232

RESUMO

Eriocalyxin B (EB), 17-hydroxy-jolkinolide B (HJB), parthenolide (PN), xanthatin (XT) and andrographolide (AG) are terpenoid natural products with a variety of promising antitumor activities, which commonly bear electrophilic groups (α,ß-unsaturated carbonyl groups and/or epoxides) capable of covalently modifying protein cysteine residues. However, their direct targets and underlying molecular mechanisms are still largely unclear, which limits the development of these compounds. In this study, we integrated activity-based protein profiling (ABPP) and quantitative proteomics approach to systematically characterize the covalent targets of these natural products and their involved cellular pathways. We first demonstrated the anti-proliferation activities of these five compounds in triple-negative breast cancer cell MDA-MB-231. Tandem mass tag (TMT)-based quantitative proteomics showed all five compounds commonly affected the ubiquitin mediated proteolysis pathways. ABPP platform identified the preferentially modified targets of EB and PN, two natural products with high anti-proliferation activity. Biochemical experiments showed that PN inhibited the cell proliferation through targeting ubiquitin carboxyl-terminal hydrolase 10 (USP10). Together, this study uncovered the covalently modified targets of these natural products and potential molecular mechanisms of their antitumor activities.


Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Proteômica , Proteínas/metabolismo , Ubiquitinas
8.
Phytochem Anal ; 34(7): 745-754, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36477977

RESUMO

BACKGROUND: This study aimed to explore the mechanism of parthenolide in inhibiting melanoma metastasis through network pharmacology and cell experiment. MATERIALS AND METHODS: This research obtained the targets of the drug from the HERB database and PubChem database, the differential expression gene of metastatic cutaneous melanoma was obtained by differentially expression gene analysis of four Gene Expression Omnibus (GEO) datasets. The intersection of drug targets and differentially expression genes were considered to be related to drugs that inhibit metastasis of cutaneous melanoma. The STRING database was used to construct the protein-protein interaction (PPI) network, and cytohubba package in Cytoscape software was used to rank the PPI network targets. The enrichment analysis was used to screen out the relevance Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology to explain the underlying mechanism of drug inhibiting the cutaneous melanoma metastatic; cell viability, apoptosis, cell migration and protein levels were assessed using cell counting kit-8 (CCK-8) assay, Annexin V-FITC/PI assay, wound healing assay, respectively. Finally, combining pathway maps and literature, we detected ATF4 and proteins upstream and downstream of ATF4 through Western blot. RESULTS: A total of 87 targets were screened out from the drug databases, and a total of 1635 differentially expression genes was obtained from the differentially expression genes analysis of GEO datasets, a total of nine targets (VEGFA, ANXA5, ICAM1, SELE, NFKBIA, ATF4, CTNNB1, SELP and HPGDS) were considered to be related to drugs that inhibit metastasis of cutaneous melanoma. The result of enrichment analysis showed that the drug inhibits the metastatic of cutaneous melanoma through multiple pathways such as TNF signalling pathway, lipid and atherosclerosis and fluid shear stress and atherosclerosis, relevance multiple biological processes, cellular components and molecular function; cell experiments showed that parthenolide could inhibit tumour cell migration and induce a decrease of cell viability. Flow cytometry results showed that parthenolide induced tumour cell apoptosis. Western blot results suggested that parthenolide exerted therapeutic effects by regulating ATF4 protein and its upstream and downstream proteins, namely endoplasmic reticulum (ER) stress signalling pathway. CONCLUSION: Parthenolide induces ER stress-dependent apoptosis in melanoma cells.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Melanoma , Neoplasias Cutâneas , Melanoma/tratamento farmacológico , Melanoma/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Farmacologia em Rede , Apoptose , Simulação de Acoplamento Molecular , Melanoma Maligno Cutâneo
9.
Molecules ; 28(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985711

RESUMO

Nephrotoxicity is a serious complication that limits the clinical use of gentamicin (GEN). Parthenolide (PTL) is a sesquiterpene lactone derived from feverfew with various therapeutic benefits. However, PTL possesses low oral bioavailability. This study aimed to evaluate the therapeutic protective effects of PTL-phytosomes against GEN-induced nephrotoxicity in rats. The PTL was prepared as phytosomes to improve the pharmacological properties with a particle size of 407.4 nm, and surface morphology showed oval particles with multiple edges. Rats were divided into six groups: control, nano-formulation plain vehicle, PTL-phytosomes (10 mg/kg), GEN (100 mg/kg), GEN + PTL-phytosomes (5 mg/kg), and GEN + PTL-phytosomes (10 mg/kg). The administration of PTL-phytosomes alleviated GEN-induced impairment in kidney functions and histopathological damage, and decreased kidney injury molecule-1 (KIM-1). The anti-oxidative effect of PTL-phytosomes was demonstrated by the reduced malondialdehyde (MDA) concentration and increased superoxide dismutase (SOD) and catalase (CAT) activities. Furthermore, PTL-phytosomes treatment significantly enhanced sirtuin 1 (Sirt-1), nuclear factor erythroid-2-related factor-2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (NQO1), and heme oxygenase-1 (HO-1). Additionally, PTL-phytosomes treatment exhibited anti-inflammatory and anti-apoptotic properties in the kidney tissue. These findings suggest that PTL-phytosomes attenuate renal dysfunction and structural damage by reducing oxidative stress, inflammation, and apoptosis in the kidney.


Assuntos
Gentamicinas , Sesquiterpenos , Ratos , Animais , Gentamicinas/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Fitossomas , Sirtuína 1/metabolismo , Rim , Antioxidantes/farmacologia , Sesquiterpenos/farmacologia , Sesquiterpenos/metabolismo , Estresse Oxidativo , NAD(P)H Desidrogenase (Quinona)/metabolismo
10.
Eur J Clin Invest ; 52(4): e13694, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34694635

RESUMO

BACKGROUND: Methamphetamine abuse is a worldwide concern with long-term health complications. Its impact on neurons has been extensively investigated, and it is currently known that glial cells, including astrocytes, are involved in drug-induced outcomes. Importantly, METH also causes blood-brain barrier (BBB) disruption and astrocytes are critical for BBB (dys)function. Therefore, we aimed to clarify the involvement of neuroinflammation mediated by astrocytes in BBB permeability and brain oedema induced by METH. Further, we aimed to identify a new approach to counteract METH effects. METHODS: Mice were administered with a METH binge regimen (4 × 10 mg/kg) alone or in combination with parthenolide (PTL; 4 × 1 mg/kg), and hippocampi were analysed. For in vitro studies, mouse primary cultures of astrocytes were exposed to 250 µM METH, alone or co-treated with 10 µM PTL. RESULTS: We observed a neuroinflammatory response characterized by astrocytic morphological changes and increased TNF-α, iNOS and ICAM-1 protein levels (213.62%, 205.76% and 191.47% of control, respectively). Additionally, brain oedema and BBB disruption were identified by increased water content (81.30% of tissue weight) and albumin (224.40% of control) in the hippocampal tissue, as well as a significant decrease in vessel coverage by astrocytes after METH exposure. Regarding astrocyte cultures, we further identified TNF-α as a key player in METH-induced cell swelling. Importantly, PTL (present in feverfew plant) prevented both animal and in vitro effects induced by METH. CONCLUSIONS: We provided important insights on brain dysfunction induced by METH, and we also suggest a new approach to counteract such negative effects.


Assuntos
Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Metanfetamina/farmacologia , Sesquiterpenos/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Pharmacol Res ; 182: 106339, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35792297

RESUMO

Internal organs fibrosis (IOF) is the leading cause of morbidity and mortality in most chronic inflammatory diseases, which is responsible for 45% of deaths due to disease. However, there is a paucity of drugs used to treat IOF, making it urgent to find medicine with good efficacy, low toxic side effects and good prognosis. Essential oils (EOs) extracted from natural herbs with a wide range of pharmacological components, multiple therapeutic targets, low toxicity, and broad sources have unique advantages and great potential in the treatment of IOF. In this review, we summarized EOs and their monomeric components with anti-IOF, and found that they work mainly through inhibiting TGF-ß-related signaling pathways, modulating inflammatory cytokines, suppressing NF-κB, and anti-oxidative stress. The prognostic improvement of natural EOs on IOF was further discussed, as well as the quality and safety issues in the current development of natural EOs. This review hopes to provide scientific basis and new ideas for the development and application of natural medicine EOs in anti-IOF.


Assuntos
Óleos Voláteis , Fibrose , Humanos , NF-kappa B , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico
12.
Pharmacol Res ; 175: 106033, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915124

RESUMO

Acute kidney injury (AKI) is a worldwide problem, and there is no effective drug to eliminate AKI. The death of renal cells is an important pathological basis of intrinsic AKI. At present, targeted therapy for TEC death is a research hotspot in AKI therapy. There are many ways of cell death involved in the occurrence and development of AKI, such as apoptosis, necrosis, ferroptosis, and pyroptosis. This article mainly focuses on the role of pyroptosis in AKI. The assembly and activation of NLRP3 inflammasome is a key event in the occurrence of pyroptosis, which is affected by many factors, such as the activation of the NF-κB signaling pathway, mitochondrial instability and excessive endoplasmic reticulum (ER) stress. The activation of NLRP3 inflammasome can trigger its downstream inflammatory cytokines, which will lead to pyroptosis and eventually induce AKI. In this paper, we reviewed the possible mechanism of pyroptosis in AKI and the potential effective inhibitors of various key targets in this process. It may provide potential therapeutic targets for novel intrinsic AKI therapies based on pyroptosis, so as to develop better therapeutic strategies.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Piroptose , Injúria Renal Aguda/metabolismo , Animais , Humanos , Transdução de Sinais
13.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1133-1139, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35866602

RESUMO

The coronavirus papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for viral polypeptide cleavage and the deISGylation of interferon-stimulated gene 15 (ISG15), which enable it to participate in virus replication and host innate immune pathways. Therefore, PLpro is considered an attractive antiviral drug target. Here, we show that parthenolide, a germacrane sesquiterpene lactone, has SARS-CoV-2 PLpro inhibitory activity. Parthenolide covalently binds to Cys-191 or Cys-194 of the PLpro protein, but not the Cys-111 at the PLpro catalytic site. Mutation of Cys-191 or Cys-194 reduces the activity of PLpro. Molecular docking studies show that parthenolide may also form hydrogen bonds with Lys-192, Thr-193, and Gln-231. Furthermore, parthenolide inhibits the deISGylation but not the deubiquitinating activity of PLpro in vitro. These results reveal that parthenolide inhibits PLpro activity by allosteric regulation.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , Antivirais/farmacologia , Humanos , Interferons , Lactonas , Simulação de Acoplamento Molecular , Papaína/química , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , SARS-CoV-2 , Sesquiterpenos , Sesquiterpenos de Germacrano , Ubiquitina/metabolismo
14.
J Environ Sci Health B ; 57(1): 54-61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34983315

RESUMO

Acetylcholinesterase (AChE) is an enzyme that catalyzes acetylcholine into choline and acetic acid. Conventional pesticides, including organophosphates and carbamates target and inhibit the activity of AChE. To obtain more pesticide precursors that meet the safety requirements, more than 200 compounds were screened. Tirotundin and parthenolide identified as potential neurotoxins to nematodes were isolated from Tithonia diversifolia and Chrysanthemum parthenium, respectively. Their IC50 values were 6.89 ± 0.30 and 5.51 ± 0.23 µg/mL, respectively against the AChE isolated from Caenorhabditis elegans. AChE was inhibited in a dose-dependent manner using the two compounds. And the Lineweaver-Burk and Dixon plots indicated that tirotundin and parthenolide were reversible inhibitors against AChE, both inhibiting AChE in a mixed-type competitive manner and demonstrating these compounds may possess dual binding site AChE inhibitors. LC50 values of tirotundin and parthenolide against C. elegans were 9.16 ± 0.21 and 7.23 ± 0.48 µg/mL, respectively. These results provide a certain theoretical basis for the development and utilization of novel pesticides.


Assuntos
Acetilcolinesterase , Praguicidas , Acetilcolinesterase/metabolismo , Animais , Caenorhabditis elegans , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Lactonas , Praguicidas/toxicidade , Sesquiterpenos , Tanacetum parthenium/metabolismo , Tithonia
15.
Chem Zvesti ; 76(5): 2759-2776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35068663

RESUMO

Abstract: The unavailability of a proper drug against SARS-CoV-2 infections and the emergence of various variants created a global crisis. In the present work, we have studied the antiviral behavior of feverfew plant in treating COVID-19. We have reported a systematic in silico study with the antiviral effects of various phytoconstituents Borneol (C10H18O), Camphene (C10H16), Camphor (C10H16O), Alpha-thujene (C10H16), Eugenol (C10H14O), Carvacrol (C10H14O) and Parthenolide (C15H20O3) of feverfew on the viral protein of SARS-CoV-2. Parthenolide shows the best binding affinity with both main protease (Mpro) and papain-like protease (PLpro). The molecular electrostatic potential and Mulliken atomic charges of the Parthenolide molecule shows the high chemical reactivity of the molecule. The docking of Parthenolide with PLpro give score of -8.0 kcal/mol that validates the good binding of Parthenolide molecule with PLpro. This complex was further considered for molecular dynamics simulations. The binding energy of the complex seems to range in between -3.85 to -11.07 kcal/mol that is high enough to validate the stability of the complex. Free energy decomposition analysis have been also performed to understand the contribution of residues that reside into the binding site. Good binding affinity and reactivity response suggested that Parthenolide can be used as a promising drug against the COVID-19. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-022-02067-6.

16.
J Biol Chem ; 295(11): 3576-3589, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32029476

RESUMO

It has been well-established that the deubiquitinating enzyme ubiquitin-specific peptidase 7 (USP7) supports cancer growth by up-regulating multiple cellular pathways, including Wnt/ß-catenin signaling. Therefore, considerable efforts are directed at identifying and developing USP7 inhibitors. Here, we report that sesquiterpene lactone parthenolide (PTL) inhibits USP7 activity, assessed with deubiquitinating enzyme activity assays, including fluorogenic Ub-AMC/Ub-Rho110, Ub-VME/PA labeling, and Di-Ub hydrolysis assays. Further investigations using cellular thermal shift (CETSA), surface plasmon resonance (SPR), and mass spectrum (MS) assays revealed that PTL directly interacts with USP7. Consistent with the role of USP7 in stimulating Wnt signaling and carcinogenesis, PTL treatment inhibited the activity of Wnt signaling partly by destabilizing ß-catenin. Moreover, using cell viability assays, we found that PTL suppresses the proliferation of colorectal cancer cells and induces apoptosis in these cells. Additionally, we examined the effects of two other sesquiterpene lactones (costunolide and α-santonin) on USP7 and Wnt signaling and found that α-methylene-γ-butyrolactone may provide a scaffold for future USP7 inhibitors. In summary, our findings reveal that PTL inhibits USP7 activity, identifying a potential mechanism by which PTL suppresses Wnt/ß-catenin signaling. We further suggest that sesquiterpene lactones might represent a suitable scaffold for developing USP7 inhibitors and indicate that PTL holds promise as an anticancer agent targeting aberrant USP7/Wnt signaling.


Assuntos
Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Sesquiterpenos/farmacologia , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Via de Sinalização Wnt/efeitos dos fármacos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Proteólise/efeitos dos fármacos , Sesquiterpenos/química , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos , beta Catenina/metabolismo
17.
Biochem Biophys Res Commun ; 562: 21-28, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34030041

RESUMO

Colorectal cancer stem cells (CCSCs) are implicated in colorectal tumor initiation, invasion, recurrence and treatment resistance, so elucidation of the mechanism underlying the cancer stem cells induction and development of drugs targeting CCSCs are vital for cancer treatment. Growing evidence shows that dysregulated deubiquitinase (DUBs) expression is frequently associated with stemness and maintenance of cancer stem cells (CSCs). In the current study, we found that upregulation of USP47 is associated with tumorigenesis and poor prognosis in clinical patients with colorectal cancer (CRC). Besides, USP47 was highly expressed in CCSCs enriched by serum-free culture. Further investigation showed that USP47 is closely involved in the maintenance of the stemness of CCSCs. USP47 silencing reduces proliferation and migration of colorectal cancer cells and suppresses the self-renewal of CCSCs by downregulating the expression of cancer stem cell markers, including CD44, CD133, CD166, OCT4 and NANOG. Furthermore, we identified Parthenolide (PTL), a natural sesquiterpene lactone, as a novel USP47 inhibitor. PTL diminishes CCSCs self-renewal and induces apoptosis of CCSCs. Taken together, our findings highlighted a novel DUB involved in the modulation of CCSCs stemness and the potential of PTL in the CRC treatment by targeting CCSCs as the USP47 inhibitor.


Assuntos
Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Sesquiterpenos/farmacologia , Ubiquitina Tiolesterase/metabolismo , Apoptose/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Prognóstico , Ligação Proteica/efeitos dos fármacos , Ubiquitina Tiolesterase/genética , Proteases Específicas de Ubiquitina , Regulação para Cima/efeitos dos fármacos
18.
Chembiochem ; 22(3): 505-515, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32964640

RESUMO

The utilities of an α-methylene-ß-lactone (MeLac) moiety as a warhead composed of multiple electrophilic sites are reported. We demonstrate that a MeLac-alkyne not only reacts with diverse proteins as a broadly reactive measurement probe, but also recruits reduced endogenous glutathione (GSH) to assemble a selective chemical probe of GSH-ß-lactone (GSH-Lac)-alkyne in live cells. Tandem mass spectrometry reveals that MeLac reacts with nucleophilic cysteine, serine, lysine, threonine, and tyrosine residues, through either Michael or acyl addition. A peptide-centric proteomics platform demonstrates that the proteomic selectivity profiles of orlistat and parthenolide, which have distinct reactivities, are measurable by MeLac-alkyne as a high-coverage probe. The GSH-Lac-alkyne selectively probes the glutathione S-transferase P responsible for multidrug resistance. The assembly of the GSH-Lac probe exemplifies a modular and scalable route to develop selective probes with different recognizing moieties.


Assuntos
Lactonas/síntese química , Sondas Moleculares/síntese química , Humanos , Lactonas/química , Sondas Moleculares/química , Estrutura Molecular , Orlistate/análise , Proteômica , Sesquiterpenos/análise , Espectrometria de Massas em Tandem
19.
Mol Carcinog ; 60(8): 567-581, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34101920

RESUMO

The sesquiterpene lactone parthenolide is a major component of the feverfew medicinal plant, Tanacetum parthenium. Parthenolide has been extensively studied for its anti-inflammatory and anticancer properties in several tumor models. Parthenolide's antitumor activities depend on several mechanisms but it is mainly known as an inhibitor of the nuclear factor-κB (NF-κB) pathway. This pathway is constitutively activated and induces cell survival in primary effusion lymphoma (PEL), a rare aggressive AIDS-related lymphoproliferative disorder that is commonly caused by the human herpesvirus 8 (HHV-8) infection. The aim of this study is to evaluate the targeted effect of Parthenolide both in vitro and in vivo. Herein, parthenolide significantly inhibited cell growth, induced G0 /G1 cell cycle arrest, and induced massive apoptosis in PEL cells and ascites. In addition, parthenolide inhibited the NF-ĸB pathway suppressing IĸB phosphorylation and p65 nuclear translocation. It also reduced the expression of the DNA methylase inhibitor (DNMT1). Parthenolide induced HHV-8 lytic gene expression without inhibiting latent viral gene expression. Importantly, DMAPT, the more soluble parthenolide prodrug, promoted delay in ascites development and prolonged the survival of PEL xenograft mice. This study supports the therapeutic use of parthenolide in PEL and encourages its further clinical development.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Linfoma de Efusão Primária/tratamento farmacológico , Sesquiterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Suscetibilidade a Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Linfoma de Efusão Primária/etiologia , Linfoma de Efusão Primária/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Bioorg Chem ; 111: 104973, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34004586

RESUMO

Parthenolide and micheliolide have attracted great attention in anticancer research due to their unique activities. In this study, thirteen parthenolide derivatives and twenty-three micheliolide derivatives were synthesized. Most synthesized compounds showed higher cytotoxicity than parthenolide or micheliolide. The in vivo anticancer activity of several representative compounds was evaluated in mice. One micheliolide derivative, 9-oxomicheliolide (43), showed promising in vivo antitumor activity compared with clinical drugs cyclophosphamide or temozolomide. Compound 43 was particularly effective against glioblastoma, with its tumor inhibition rate in mice comparable to the drug temozolomide. The discovery of compound 43 also demonstrates the feasibility of developing anticancer micheliolide derivatives by modification at C-9 position. Anticancer mechanism studies revealed that 9-oxomicheliolide exhibited inhibition effect against NF-κB and STAT3 signaling pathways, as well as induction effects of cell apoptosis. It is postulated that 9-oxomicheliolide is likely to be a modulator of the immune system, which regulates the anticancer immune responses.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , NF-kappa B/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Sesquiterpenos de Guaiano/farmacologia , Sesquiterpenos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , NF-kappa B/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Fator de Transcrição STAT3/metabolismo , Sesquiterpenos/síntese química , Sesquiterpenos/química , Sesquiterpenos de Guaiano/síntese química , Sesquiterpenos de Guaiano/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA