RESUMO
Cyclic GMP-AMP synthase (cGAS) is an enzyme in human cells that controls an immune response to cytosolic DNA. Upon binding DNA, cGAS synthesizes a nucleotide signal 2'3'-cGAMP that activates STING-dependent downstream immunity. Here, we discover that cGAS-like receptors (cGLRs) constitute a major family of pattern recognition receptors in innate immunity. Building on recent analysis in Drosophila, we identify >3,000 cGLRs present in nearly all metazoan phyla. A forward biochemical screening of 150 animal cGLRs reveals a conserved mechanism of signaling including response to dsDNA and dsRNA ligands and synthesis of isomers of the nucleotide signals cGAMP, c-UMP-AMP, and c-di-AMP. Combining structural biology and in vivo analysis in coral and oyster animals, we explain how synthesis of distinct nucleotide signals enables cells to control discrete cGLR-STING signaling pathways. Our results reveal cGLRs as a widespread family of pattern recognition receptors and establish molecular rules that govern nucleotide signaling in animal immunity.
Assuntos
Imunidade Inata , Nucleotidiltransferases , Humanos , Animais , Nucleotidiltransferases/metabolismo , Imunidade Inata/genética , Transdução de Sinais/genética , DNA/metabolismo , Receptores de Reconhecimento de PadrãoRESUMO
Enabling and constraining immune activation is of fundamental importance in maintaining cellular homeostasis. Depleting BAK1 and SERK4, the co-receptors of multiple pattern recognition receptors (PRRs), abolishes pattern-triggered immunity but triggers intracellular NOD-like receptor (NLR)-mediated autoimmunity with an elusive mechanism. By deploying RNAi-based genetic screens in Arabidopsis, we identified BAK-TO-LIFE 2 (BTL2), an uncharacterized receptor kinase, sensing BAK1/SERK4 integrity. BTL2 induces autoimmunity through activating Ca2+ channel CNGC20 in a kinase-dependent manner when BAK1/SERK4 are perturbed. To compensate for BAK1 deficiency, BTL2 complexes with multiple phytocytokine receptors, leading to potent phytocytokine responses mediated by helper NLR ADR1 family immune receptors, suggesting phytocytokine signaling as a molecular link connecting PRR- and NLR-mediated immunity. Remarkably, BAK1 constrains BTL2 activation via specific phosphorylation to maintain cellular integrity. Thus, BTL2 serves as a surveillance rheostat sensing the perturbation of BAK1/SERK4 immune co-receptors in promoting NLR-mediated phytocytokine signaling to ensure plant immunity.
Assuntos
Arabidopsis , Imunidade Vegetal , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Reconhecimento de Padrão , Transdução de SinaisRESUMO
Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.
Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos Virais/imunologia , Candida albicans/química , Mananas/imunologia , Hidróxido de Alumínio/química , Animais , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , Epitopos/imunologia , Imunidade Inata , Imunização , Inflamação/patologia , Interferons/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Linfonodos/imunologia , Linfonodos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Seios Paranasais/metabolismo , Subunidades Proteicas/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Solubilidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Fator de Transcrição RelB/metabolismo , Células Vero , beta-Glucanas/metabolismoRESUMO
Severe coronavirus disease 2019 (COVID-19) is characterized by overproduction of immune mediators, but the role of interferons (IFNs) of the type I (IFN-I) or type III (IFN-III) families remains debated. We scrutinized the production of IFNs along the respiratory tract of COVID-19 patients and found that high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity. Production of specific IFN-III, but not IFN-I, members denotes patients with a mild pathology and efficiently drives the transcription of genes that protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In contrast, compared to subjects with other infectious or noninfectious lung pathologies, IFNs are overrepresented in the lower airways of patients with severe COVID-19 that exhibit gene pathways associated with increased apoptosis and decreased proliferation. Our data demonstrate a dynamic production of IFNs in SARS-CoV-2-infected patients and show IFNs play opposing roles at distinct anatomical sites.
Assuntos
COVID-19/patologia , Interferons/metabolismo , Sistema Respiratório/virologia , Índice de Gravidade de Doença , Fatores Etários , Envelhecimento/patologia , COVID-19/genética , COVID-19/imunologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Humanos , Interferons/genética , Leucócitos/patologia , Leucócitos/virologia , Pulmão/patologia , Pulmão/virologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Carga ViralRESUMO
Nucleotide-binding oligomerization domain (NOD)-like receptors, also known as nucleotide-binding leucine-rich repeat receptors (NLRs), are a family of cytosolic pattern recognition receptors that detect a wide variety of pathogenic and sterile triggers. Activation of specific NLRs initiates pro- or anti-inflammatory signaling cascades and the formation of inflammasomes-multi-protein complexes that induce caspase-1 activation to drive inflammatory cytokine maturation and lytic cell death, pyroptosis. Certain NLRs and inflammasomes act as integral components of larger cell death complexes-PANoptosomes-driving another form of lytic cell death, PANoptosis. Here, we review the current understanding of the evolution, structure, and function of NLRs in health and disease. We discuss the concept of NLR networks and their roles in driving cell death and immunity. An improved mechanistic understanding of NLRs may provide therapeutic strategies applicable across infectious and inflammatory diseases and in cancer.
Assuntos
Inflamassomos , Receptores de Reconhecimento de Padrão , Inflamassomos/metabolismo , Piroptose , Imunidade Inata , NucleotídeosRESUMO
In mammals, the enzyme cGAS senses the presence of cytosolic DNA and synthesizes the cyclic dinucleotide (CDN) 2'3'-cGAMP, which triggers STING-dependent immunity. In Drosophila melanogaster, two cGAS-like receptors (cGLRs) produce 3'2'-cGAMP and 2'3'-cGAMP to activate STING. We explored CDN-mediated immunity in 14 Drosophila species covering 50 million years of evolution and found that 2'3'-cGAMP and 3'2'-cGAMP failed to control infection by Drosophila C virus in D. serrata and two other species. We discovered diverse CDNs produced in a cGLR-dependent manner in response to viral infection in D. melanogaster, including 2'3'-c-di-GMP. This CDN was a more potent STING agonist than cGAMP in D. melanogaster and it also activated a strong antiviral transcriptional response in D. serrata. Our results shed light on the evolution of cGLRs in flies and provide a basis for understanding the function and regulation of this emerging family of pattern recognition receptors in animal innate immunity.
Assuntos
Antivirais , Drosophila , Animais , Drosophila melanogaster , GMP Cíclico , MamíferosRESUMO
Distinguishing infectious pathogens from harmless microorganisms is essential for animal health. The mechanisms used to identify infectious microbes are not fully understood, particularly in metazoan hosts that eat bacteria as their food source. Here, we characterized a non-canonical pattern-recognition system in Caenorhabditis elegans (C. elegans) that assesses the relative threat of virulent Pseudomonas aeruginosa (P. aeruginosa) to activate innate immunity. We discovered that the innate immune response in C. elegans was triggered by phenazine-1-carboxamide (PCN), a toxic metabolite produced by pathogenic strains of P. aeruginosa. We identified the nuclear hormone receptor NHR-86/HNF4 as the PCN sensor in C. elegans and validated that PCN bound to the ligand-binding domain of NHR-86/HNF4. Activation of NHR-86/HNF4 by PCN directly engaged a transcriptional program in intestinal epithelial cells that protected against P. aeruginosa. Thus, a bacterial metabolite is a pattern of pathogenesis surveilled by nematodes to identify a pathogen in its bacterial diet.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/metabolismo , Imunidade Inata , Bactérias , Pseudomonas aeruginosa/metabolismoRESUMO
RIG-I is an essential innate immune receptor for detecting and responding to infection by RNA viruses. RIG-I specifically recognizes the unique molecular features of viral RNA molecules and selectively distinguishes them from closely related RNAs abundant in host cells. The physical basis for this exquisite selectivity is revealed through a series of high-resolution cryo-EM structures of RIG-I in complex with host and viral RNA ligands. These studies demonstrate that RIG-I actively samples double-stranded RNAs in the cytoplasm and distinguishes them by adopting two different types of protein folds. Upon binding viral RNA, RIG-I adopts a high-affinity conformation that is conducive to signaling, while host RNA induces an autoinhibited conformation that stimulates RNA release. By coupling protein folding with RNA binding selectivity, RIG-I distinguishes RNA molecules that differ by as little as one phosphate group, thereby explaining the molecular basis for selective antiviral sensing and the induction of autoimmunity upon RIG-I dysregulation.
Assuntos
RNA Helicases DEAD-box , RNA Viral , RNA Viral/metabolismo , Ligantes , RNA Helicases DEAD-box/metabolismo , Imunidade Inata , Proteína DEAD-box 58/metabolismo , RNA de Cadeia Dupla , Proteínas de Transporte/metabolismoRESUMO
The immune system monitors the health of cells and is stimulated by necrosis. Here we examined the receptors and ligands driving this response. In a targeted screen of C-type lectin receptors, a Clec2d reporter responded to lysates from necrotic cells. Biochemical purification identified histones, both free and bound to nucleosomes or neutrophil extracellular traps, as Clec2d ligands. Clec2d recognized poly-basic sequences in histone tails and this recognition was sensitive to post-translational modifications of these sequences. As compared with WT mice, Clec2d-/- mice exhibited reduced proinflammatory responses to injected histones, and less tissue damage and improved survival in a hepatotoxic injury model. In macrophages, Clec2d localized to the plasma membrane and endosomes. Histone binding to Clec2d did not stimulate kinase activation or cytokine production. Rather, histone-bound DNA stimulated endosomal Tlr9-dependent responses in a Clec2d-dependent manner. Thus, Clec2d binds to histones released upon necrotic cell death, with functional consequences to inflammation and tissue damage.
Assuntos
Histonas/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Fígado/lesões , Necrose/patologia , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Animais , Apoptose/imunologia , Endossomos/metabolismo , Células HEK293 , Humanos , Células Jurkat , Lectinas Tipo C/genética , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Receptores de Superfície Celular/genética , Receptor Toll-Like 9/imunologiaRESUMO
Many types of viruses infect insects and other arthropods. In contrast, little is known about how arthropods sense viruses, although several innate immune pathways including Toll have antiviral functions. Large DNA viruses in the family Baculoviridae are used to control a number of pest insects. Here, we studied Spodoptera litura and Autographa californica multiple nucleopolyhedrovirus (AcMNPV) to test the hypothesis that one or more myeloid differentiation-like (ML) proteins and Toll family members sense baculoviruses. We identified 11 ML and 12 Toll genes in the S. litura genome. A series of experiments indicated that S. litura ML protein 11 (SlML-11) binds the budded form of AcMNPV and partners with S. litura Toll5 (SlToll5). SlML-11 also bound sphingomyelin (SPM), which is a component of the virion envelope. Disabling SlML-11 and SlToll5 increased susceptibility to infection, while priming larvae with SPM reduced susceptibility as measured by increased survival to the adult stage and clearance of AcMNPV from individuals that emerged as adults. We conclude that SPM is a pathogen-associated molecular pattern molecule while SlML-11 and SlToll5 interact to function as a pattern recognition receptor that senses AcMNPV.
Assuntos
Proteínas de Insetos , Nucleopoliedrovírus , Spodoptera , Animais , Spodoptera/virologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Nucleopoliedrovírus/fisiologia , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Imunidade InataRESUMO
Plants and animals detect biomolecules termed microbe-associated molecular patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multicopy MAMPs on immune induction is unknown. Here, we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy, and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple cold shock proteins, and 46% carry a nonimmunogenic form. We uncovered a mechanism for immune evasion, intrabacterial antagonism, where a nonimmunogenic cold shock protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.
Assuntos
Arabidopsis , Epitopos , Solanum lycopersicum , Epitopos/imunologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Arabidopsis/imunologia , Arabidopsis/genética , Genoma Bacteriano , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Bactérias/imunologia , Bactérias/genética , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/imunologia , Proteínas e Peptídeos de Choque Frio/metabolismoRESUMO
Bacterial and host cyclic dinucleotides (cdNs) mediate cytosolic immune responses through the STING signaling pathway, although evidence suggests that alternative pathways exist. We used cdN-conjugated beads to biochemically isolate host receptors for bacterial cdNs, and we identified the oxidoreductase RECON. High-affinity cdN binding inhibited RECON enzyme activity by simultaneously blocking the substrate and cosubstrate sites, as revealed by structural analyses. During bacterial infection of macrophages, RECON antagonized STING activation by acting as a molecular sink for cdNs. Bacterial infection of hepatocytes, which do not express STING, revealed that RECON negatively regulates NF-κB activation. Loss of RECON activity, via genetic ablation or inhibition by cdNs, increased NF-κB activation and reduced bacterial survival, suggesting that cdN inhibition of RECON promotes a proinflammatory, antibacterial state that is distinct from the antiviral state associated with STING activation. Thus, RECON functions as a cytosolic sensor for bacterial cdNs, shaping inflammatory gene activation via its effects on STING and NF-κB.
Assuntos
Infecções Bacterianas/imunologia , Proteínas de Bactérias/imunologia , Estradiol Desidrogenases/imunologia , Inflamação/imunologia , NF-kappa B/imunologia , Animais , Ativação Enzimática/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Innate immunity senses microbial ligands known as pathogen-associated molecular patterns (PAMPs). Except for nucleic acids, PAMPs are exceedingly taxa-specific, thus enabling pattern recognition receptors to detect cognate pathogens while ignoring others. How the E3 ubiquitin ligase RNF213 can respond to phylogenetically distant pathogens, including Gram-negative Salmonella, Gram-positive Listeria, and eukaryotic Toxoplasma, remains unknown. Here we report that the evolutionary history of RNF213 is indicative of repeated adaptation to diverse pathogen target structures, especially in and around its newly identified CBM20 carbohydrate-binding domain, which we have resolved by cryo-EM. We find that RNF213 forms coats on phylogenetically distant pathogens. ATP hydrolysis by RNF213's dynein-like domain is essential for coat formation on all three pathogens studied as is RZ finger-mediated E3 ligase activity for bacteria. Coat formation is not diffusion-limited but instead relies on rate-limiting initiation events and subsequent cooperative incorporation of further RNF213 molecules. We conclude that RNF213 responds to evolutionarily distant pathogens through enzymatically amplified cooperative recruitment.
RESUMO
The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustacean IMD pathway activation. In this study, we identified a Marsupenaeus japonicus B class type III scavenger receptor, SRB2, as a receptor for activation of the IMD pathway. SRB2 is up-regulated upon bacterial challenge, while its depletion exacerbates bacterial proliferation and shrimp mortality via abolishing the expression of antimicrobial peptides. The extracellular domain of SRB2 recognizes bacterial lipopolysaccharide (LPS), while its C-terminal intracellular region containing a cryptic RHIM-like motif interacts with IMD, and activates the pathway by promoting nuclear translocation of RELISH. Overexpressing shrimp SRB2 in Drosophila melanogaster S2 cells potentiates LPS-induced IMD pathway activation and diptericin expression. These results unveil a previously unrecognized SRB2-IMD axis responsible for antimicrobial peptide induction and restriction of bacterial infection in crustaceans and provide evidence of biological diversity of IMD signaling in animals. A better understanding of the innate immunity of crustaceans will permit the optimization of prevention and treatment strategies against the arising shrimp diseases.
Assuntos
Crustáceos , Animais , Crustáceos/genética , Crustáceos/imunologia , Crustáceos/metabolismo , Crustáceos/microbiologia , Drosophila melanogaster , Lipopolissacarídeos , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Regulação para Cima , Vibrio , Transdução de Sinais , HumanosRESUMO
Onco-immunotherapy via blocking checkpoint-inhibitors has revolutionized the treatment-landscape of several malignancies, though not in the metastatic castration-resistant prostate cancer (PCa) owing to immunosuppressive and poorly immunogenic "cold" tumor microenvironment (TME). Turning up the heat of such cold TME via triggering innate immunity is now of increasing interest to restore immune-surveillance. Retinoic acid-inducible gene- I (RIG-I)-like receptors (RLRs) are cytosolic innate-sensors that can detect exogenous RNAs and induce type-I interferons and other pro-inflammatory signaling. RIG-I activation is suggested to be a valuable addition to the treatment approaches for several cancers. However, the knowledge about RIG-I signaling in PCa remains elusive. The present study evaluated the expression of two important RLRs, RIG-I and melanoma differentiation-associated protein 5 (MDA5) along with their downstream partners, mitochondrial antiviral-signaling protein (MAVS) and ERA G-protein-like 1 (ERAL1) during PCa progression in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. The early stage of PCa revealed a significant increment in the expression of RLRs, but not MAVS. However, the advanced stage showed downregulated RLR signaling. Further, the therapeutic implication of 5'ppp-dsRNA, a synthetic RIG-I agonist and Bcl2 gene silencer has been investigated in vitro and in vivo. Intra-tumoral delivery of 5'ppp-dsRNA regressed tumor growth via triggering tumor cells apoptosis, immunomodulation, and inducing phagocytic "eat me" signals. These findings highlight that, for the first time, RIG-I activation and Bcl-2 silencing with 5'ppp-dsRNA can serve as a potent tumor-suppressor strategy in PCa and has a significant clinical implication in transforming "cold" TME into immunogenic "hot" TME of PCa.
RESUMO
Ubc13-catalyzed K63 ubiquitination is a major control point for immune signaling. Recent evidence has shown that the control of multiple immune functions, including chronic inflammation, pathogen responses, lymphocyte activation, and regulatory signaling, is altered by K63 ubiquitination. In this review, we detail the novel cellular sensors that are dependent on K63 ubiquitination for their function in the immune signaling network. Many pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can target K63 ubiquitination to inhibit pathogen immune responses; we describe novel details of the pathways involved and summarize recent clinically relevant SARS-CoV-2-specific responses. We also discuss recent evidence that regulatory T cell (Treg) versus T helper (TH) 1 and TH17 cell subset regulation might involve K63 ubiquitination. Knowledge gaps that merit future investigation and clinically relevant pathways are also addressed.
Assuntos
COVID-19 , Lisina , Humanos , Lisina/metabolismo , SARS-CoV-2 , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
Toll-like receptor 7 (TLR7) is a single-stranded RNA (ssRNA) sensor in innate immunity and also responds to guanosine and chemical ligands, such as imidazoquinoline compounds. However, TLR7 activation mechanism by these ligands remain largely unknown. Here, we generated crystal structures of three TLR7 complexes, and found that all formed an activated m-shaped dimer with two ligand-binding sites. The first site conserved in TLR7 and TLR8 was used for small ligand-binding essential for its activation. The second site spatially distinct from that of TLR8 was used for a ssRNA-binding that enhanced the affinity of the first-site ligands. The first site preferentially recognized guanosine and the second site specifically bound to uridine moieties in ssRNA. Our structural, biochemical, and mutagenesis studies indicated that TLR7 is a dual receptor for guanosine and uridine-containing ssRNA. Our findings have important implications for understanding of TLR7 function, as well as for therapeutic manipulation of TLR7 activation.
Assuntos
Guanosina/metabolismo , RNA/metabolismo , Receptor 7 Toll-Like/química , Receptor 7 Toll-Like/metabolismo , Animais , Sítios de Ligação/imunologia , Linhagem Celular , Drosophila , Guanosina/imunologia , Células HEK293 , Humanos , Imunidade Inata/imunologia , Ligantes , Macaca mulatta , RNA/imunologia , Receptor 7 Toll-Like/imunologiaRESUMO
BACKGROUND: Single-domain von Willebrand factor type C (SVWC) constitute a protein family predominantly identified in arthropods, characterized by a SVWC domain and involved in diverse physiological processes such as host defense, stress resistance, and nutrient metabolism. Nevertheless, the physiological mechanisms underlying these functions remain inadequately comprehended. RESULTS: A massive expansion of the SVWC gene family in Musca domestica (MdSVWC) was discovered, with a count of 35. MdSVWC1 was selected as the representative of the SVWC family for functional analysis, which led to the identification of the immune function of MdSVWC1 as a novel pattern recognition receptor. MdSVWC1 is highly expressed in both the fat body and intestines and displays acute induction upon bacterial infection. Recombinant MdSVWC1 binds to surfaces of both bacteria and yeast through the recognition of multiple pathogen-associated molecular patterns and exhibits Ca2+-dependent agglutination activity. MdSVWC1 mutant flies exhibited elevated mortality and hindered bacterial elimination following bacterial infection as a result of reduced hemocyte phagocytic capability and weakened expression of antimicrobial peptide (AMP) genes. In contrast, administration of recombinant MdSVWC1 provided protection to flies from bacterial challenges by promoting phagocytosis and AMP genes expression, thereby preventing bacterial colonization. MdSPN16, a serine protease inhibitor, was identified as a target protein of MdSVWC1. It was postulated that the interaction of MdSVWC1 with MdSPN16 would result in the activation of an extracellular proteolytic cascade, which would then initiate the Toll signaling pathway and facilitate the expression of AMP genes. CONCLUSIONS: MdSVWC1 displays activity as a soluble pattern recognition receptor that regulates cellular and humoral immunity by recognizing microbial components and facilitating host defense.
Assuntos
Moscas Domésticas , Proteínas de Insetos , Receptores de Reconhecimento de Padrão , Animais , Moscas Domésticas/genética , Moscas Domésticas/microbiologia , Moscas Domésticas/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Fagocitose , Imunidade Inata , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismoRESUMO
RIG-I is our first line of defense against RNA viruses, serving as a pattern recognition receptor that identifies molecular features common among dsRNA and ssRNA viral pathogens. RIG-I is maintained in an inactive conformation as it samples the cellular space for pathogenic RNAs. Upon encounter with the triphosphorylated terminus of blunt-ended viral RNA duplexes, the receptor changes conformation and releases a pair of signaling domains (CARDs) that are selectively modified and interact with an adapter protein (MAVS), thereby triggering a signaling cascade that stimulates transcription of interferons. Here, we describe the structural determinants for specific RIG-I activation by viral RNA, and we describe the strategies by which RIG-I remains inactivated in the presence of host RNAs. From the initial RNA triggering event to the final stages of interferon expression, we describe the experimental evidence underpinning our working knowledge of RIG-I signaling. We draw parallels with behavior of related proteins MDA5 and LGP2, describing evolutionary implications of their collective surveillance of the cell. We conclude by describing the cell biology and immunological investigations that will be needed to accurately describe the role of RIG-I in innate immunity and to provide the necessary foundation for pharmacological manipulation of this important receptor.
Assuntos
RNA Helicases DEAD-box , RNA de Cadeia Dupla , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/genética , RNA Viral , Transdução de SinaisRESUMO
Microbial recognition is a key step in regulating the immune signaling pathways of multicellular organisms. Peptidoglycan, a component of the bacterial cell wall, exhibits immune stimulating activity in both plants and animals. Lysin motif domain (LysMD) family proteins are ancient peptidoglycan receptors that function in bacteriophage and plants. This report focuses on defining the role of LysMD-containing proteins in animals. Here, we characterize a novel transmembrane LysMD family protein. Loss-of-function mutations at the lysMD3/4 locus in Drosophila are associated with systemic innate immune activation following challenge, so we refer to this gene as immune active (ima). We show that Ima selectively binds peptidoglycan, is enriched in cell membranes, and is necessary to regulate terminal innate immune effectors through an NF-kB-dependent pathway. Hence, Ima fulfills the key criteria of a peptidoglycan pattern recognition receptor. The human Ima ortholog, hLysMD3, exhibits similar biochemical properties. Together, these findings establish LysMD3/4 as the founding member of a novel family of animal peptidoglycan recognition proteins.