Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39332413

RESUMO

Phage therapy is gaining increasing interest in the fight against critically antibiotic-resistant nosocomial pathogens. However, the narrow host range of bacteriophages hampers the development of broadly effective phage therapeutics and demands precision approaches. Here, we combine large-scale phylogeographic analysis with high-throughput phage typing to guide the development of precision phage cocktails targeting carbapenem-resistant Acinetobacter baumannii, a top-priority pathogen. Our analysis reveals that a few strain types dominate infections in each world region, with their geographical distribution remaining stable within 6 years. As we demonstrate in Eastern Europe, this spatiotemporal distribution enables preemptive preparation of region-specific phage collections that target most local infections. Finally, we showcase the efficacy of phage cocktails against prevalent strain types using in vitro and animal infection models. Ultimately, genomic surveillance identifies patients benefiting from the same phages across geographical scales, thus providing a scalable framework for precision phage therapy.

2.
Int Microbiol ; 27(4): 1333-1344, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38206524

RESUMO

Pseudomonas spp., such as P. fluorescens group, P. fragi, and P. putida, are the major psychrophilic spoilage bacteria in the food industry. Bacteriophages (phages) are a promising tool for controlling food-spoilage and food-poisoning bacteria; however, there are few reports on phages effective on food-spoilage bacteria such as Pseudomonas spp. In this study, 12 Pseudomonas phages were isolated from chicken and soil samples. Based on the host range and lytic activity at 30 °C and 4 °C and various combinations of phages, phages vB_PflP-PCS4 and vB_PflP-PCW2 were selected to prepare phage cocktails to control Pseudomonas spp. The phage cocktail consisting of vB_PflP-PCS4 and vB_PflP-PCW2 showed the strongest lytic activity and retarded regrowth of P. fluorescens and P. putida at 30 °C, 8 °C, and 4 °C at a multiplicity of infection of 100. Nucleotide sequence analysis of the genomic DNA indicated that vB_PflP-PCS4 and vB_PflP-PCW2 phages were lytic phages of the Podoviridae family and lacked tRNA, toxin, or virulence genes. A novel endolysin gene was found in the genomic DNA of phage vB_PflP-PCS4. The results of this study suggest that the phage cocktail consisting of vB_PflP-PCS4 and vB_PflP-PCW2 is a promising tool for the biocontrol of psychrophilic food-spoilage pseudomonads during cold storage and distribution.


Assuntos
Galinhas , Microbiologia de Alimentos , Especificidade de Hospedeiro , Animais , Microbiologia do Solo , Fagos de Pseudomonas/fisiologia , Fagos de Pseudomonas/genética , Pseudomonas/virologia , Genoma Viral , Podoviridae/fisiologia , Podoviridae/genética , Podoviridae/isolamento & purificação , Podoviridae/classificação , Agentes de Controle Biológico , DNA Viral/genética , Bacteriófagos/fisiologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/classificação
3.
Environ Res ; 252(Pt 1): 118720, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537740

RESUMO

Bovine mastitis (BM) is mainly caused by bacterial infection that has a highly impact on dairy production, affecting both economic viability and animal well-being. A cross-sectional study was conducted in dairy farms to investigate the prevalence and antimicrobial resistance patterns of bacterial pathogens associated with BM. The analysis revealed that Staphylococcus (49%), Escherichia (16%), Pseudomonas (11%), and Klebsiella (6%) were the primary bacterial pathogens associated with mastitis. A significant proportion of Staphylococcus strains displayed multiple drug resistance. The use of disinfectants is an important conventional measure to control the pathogenic bacteria in the environment. Bacteriophages (Phages), possessing antibacterial properties, are natural green and effective disinfectants. Moreover, they mitigate the risk of generating harmful disinfection byproducts, which are commonly associated with traditional disinfection methods. Based on the primary bacterial pathogens associated with mastitis in the investigation area, a phage cocktail, named SPBC-SJ, containing seven phages capable of lysing S. aureus, E. coli, and P. aeruginosa was formulated. SPBC-SJ exhibited superior bactericidal activity and catharsis effect on pollutants (glass surface) compared to chemical disinfectants. Clinical trials confirmed that the SPBC-SJ-based superimposed disinfection group (phage combined with chemical disinfectants) not only cut down the dosage of disinfectants used, but significantly reduced total bacterial counts on the ground and in the feeding trough of dairy farms. Furthermore, SPBC-SJ significantly reduced the abundance of Staphylococcus and Pseudomonas in the environment of the dairy farm. These findings suggest that phage-based superimposed disinfection is a promising alternative method to combat mastitis pathogens in dairy farms due to its highly efficient and environmentally-friendly properties.


Assuntos
Bacteriófagos , Indústria de Laticínios , Desinfecção , Mastite Bovina , Bovinos , Animais , Mastite Bovina/prevenção & controle , Mastite Bovina/microbiologia , Desinfecção/métodos , Feminino , Estudos Transversais , Desinfetantes/farmacologia , Infecções Bacterianas/prevenção & controle , Infecções Bacterianas/veterinária
4.
Appl Microbiol Biotechnol ; 108(1): 11, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38159122

RESUMO

Pectobacterium spp. are necrotrophic plant pathogens that cause the soft rot disease in Chinese cabbage, resulting in severe yield loss. The use of conventional antimicrobial agents, copper-based bactericides, and antibiotics has encountered several limitations, such as bioaccumulation on plants and microbial resistance. Bacteriophages (phages) are considered promising alternative antimicrobial agents against diverse phytopathogens. In this study, we isolated and characterized two virulent phages (phiPccP-2 and phiPccP-3) to develop a phage cocktail. Morphological and genomic analyses revealed that two phages belonged to the Tevenvirinae and Mccorquodalevirinae subfamilies, respectively. The phiPccP-2 and phiPccP-3 phages, which have a broad host range, were stable at various environmental conditions, such as various pHs and temperatures and exposure to ultraviolet light. The phage cocktail developed using these two lytic phages inhibited the emergence of phage-resistant bacteria compared to single-phage treatments in in vitro challenge assays. The phage cocktail treatment effectively prevented the development of soft rot symptom in matured Chinese cabbage leaves. Additionally, the phage cocktail comprising three phages (phiPccP-1, phiPccP-2, and phiPccP-3) showed superior biocontrol efficacy against the mixture of Pectobacterium strains in Chinese cabbage seedlings. These results suggest that developing phage cocktails is an effective approach for biocontrol of soft rot disease caused by Pectobacterium strains in crops compared to single-phage treatments. KEY POINTS: •Two newly isolated Pectobacterium phages, phiPccP-2 and phiPccP-3, infected diverse Pectobacterium species and effectively inhibited the emergence of phage-resistant bacteria. •Genomic and physiological analyses suggested that both phiPccP-2 and phiPccP-3 are lytic phages and that their lytic activities are stable in the environmental conditions under which Chinese cabbage grows. •Treatment using a phage cocktail comprising phiPccP-2 and phiPccP-3 efficiently suppressed soft rot disease in detached mature leaves and seedlings of Chinese cabbage, indicating the applicability of the phage cocktail as an alternative antimicrobial agent.


Assuntos
Anti-Infecciosos , Bacteriófagos , Brassica , Pectobacterium , Bacteriófagos/fisiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Bactérias
5.
Appl Microbiol Biotechnol ; 108(1): 9, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38159123

RESUMO

Type 2 diabetes (T2D), a global health concern, is closely associated with the gut microbiota. Restoration of a balanced microbiota and intestinal homeostasis benefit therapy of T2D. Some special phages may selectively alter the gut microbiota without causing dysbiosis, such as MS2 and P22. However, scarcely systematic analysis of cascading effects triggered by MS2 and P22 phages on the microbiota, as well as interactions between specific gut bacteria and systemic metabolism, seriously inhibit the development of positive interventions of phages. Based on multi-omic analysis, we analyzed the intrinsic correlations among specific microbiota, their bioactive metabolites, and key indicators of T2D. We found that gavage of the MS2-P22 phage cocktail could significantly alter the gut microbiome to attenuate dysbiosis of diabetic C57BL/6 mice caused by high-fat diets (HFDs) and streptozotocin (STZ), by affecting microbial compositions as well as their metabolic pathways and metabolites, especially increasing amounts of short-chain fatty acid-producing (SCFA-producing) bacteria (e.g., Blautia and Romboutsia) and short-chain fatty acids (SCFAs). Correspondingly, a noteworthy reduction in the number of several opportunistic pathogens occurred, e.g., Candidatus Saccharimonas, Aerococcus, Oscillibacter, Desulfovibrio, and Clostridium sensu stricto 1. Synchronously, the levels of proinflammatory cytokines and lipopolysaccharide (LPS) were reduced to recover gut barrier function in T2D mice. These findings might benefit the development of a new dietary intervention for T2D based on phage cocktails. KEY POINTS: • Intestinal barrier integrity of T2D mice is improved by a phage cocktail • Negative relationship between Muribaculaceae and Corynebacterium reshaped gut microbiota • Acetate, propionate, and butyrate decreased the level of proinflammatory factors.


Assuntos
Bacteriófagos , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Camundongos , Animais , Diabetes Mellitus Tipo 2/terapia , Bacteriófagos/metabolismo , Citocinas , Disbiose/terapia , Camundongos Endogâmicos C57BL , Ácidos Graxos Voláteis/metabolismo , Bactérias/genética , Bactérias/metabolismo
6.
J Dairy Sci ; 107(8): 5974-5987, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38522833

RESUMO

Bovine mastitis is a prevalent infectious disease in dairy herds worldwide, resulting in substantial economic losses. Staphylococcus aureus is a major cause of mastitis in animals, and its antibiotic resistance poses challenges for treatment. Recently, renewed interest has focused on the development of alternative methods to antibiotic therapy, including bacteriophages (phages), for controlling bacterial infections. In this study, 2 lytic phages, vB_SauM_JDYN (JDYN) and vB_SauM_JDF86 (JDF86), were isolated from the cattle sewage effluent samples collected from dairy farms in Shanghai. The 2 phages have a broad bactericidal spectrum against Staphylococcus of various origins. Genomic and morphological analyses revealed that the 2 phages belonged to the Myoviridae family. Moreover, JDYN and JDF86 remained stable under a wide temperature and pH range and were almost unaffected in chloroform. In this study, we prepared a phage cocktail (PHC-1) which consisted of a 1:1:1 ratio of JDYN, JDF86, and SLPW (a previously characterized phage). We found that PHC-1 showed the strongest bacteriolytic effect and the lowest frequency of emergence of bacteriophage insensitive mutants compared with monophages. Bovine mammary epithelial cells and lactating mice mastitis models were used to evaluate the effectiveness of PHC-1 in vitro and in vivo, respectively. The results demonstrated that PHC-1 treatment significantly reduced bacterial load, alleviated inflammatory response, and improved mastitis pathology. Altogether, these results suggest that PHC-1 has the potential to treat S. aureus-induced bovine mastitis and that phage cocktails can combat antibiotic-resistant S. aureus infections.


Assuntos
Antibacterianos , Bacteriófagos , Mastite Bovina , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Bovinos , Mastite Bovina/terapia , Mastite Bovina/microbiologia , Feminino , Camundongos , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/terapia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Terapia por Fagos/veterinária
7.
BMC Microbiol ; 23(1): 118, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101118

RESUMO

In areas with limited water resources, the reuse of treated drainage water for non-potable purposes is increasingly recognised as a valuable and sustainable water resource. Numerous pathogenic bacteria found in drainage water have a detrimental impact on public health. The emergence of antibiotic-resistant bacteria and the current worldwide delay in the production of new antibiotics may make the issue of this microbial water pollution even more challenging. This challenge aided the resumption of phage treatment to address this alarming issue. In this study, strains of Escherichia coli and Pseudomonas aeruginosa and their phages were isolated from drainage and surface water from Bahr El-Baqar and El-Manzala Lake in Damietta governorate, Egypt. Bacterial strains were identified by microscopical and biochemical examinations which were confirmed by 16 S rDNA sequencing. The susceptibility of these bacteria to several antibiotics revealed that most of the isolates had multiple antibiotic resistances (MAR). The calculated MAR index values (> 0.25) categorized study sites as potentially hazardous to health. Lytic bacteriophages against these multidrug-resistant strains of E. coli and P. aeruginosa were isolated and characterized. The isolated phages were found to be pH and heat stable and were all members of the Caudovirales order as recognized by the electron microscope. They infect 88.9% of E. coli strains and 100% of P. aeruginosa strains examined. Under laboratory conditions, the use of a phage cocktail resulted in a considerable reduction in bacterial growth. The removal efficiency (%) for E. coli and P. aeruginosa colonies increased with time and maximized at 24 h revealing a nearly 100% reduction after incubation with the phage mixture. The study candidates new phages for detecting and controlling other bacterial pathogens of public health concern to limit water pollution and maintain adequate hygiene.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Escherichia coli , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Pseudomonas aeruginosa , Drenagem
8.
Virus Genes ; 59(4): 635-642, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37259013

RESUMO

Diabetic foot ulcer (DFU) is associated with long-term hospitalization and amputation. Antibiotic resistance has made the infection eradication more difficult. Hence, seeking alternative therapies such as phage therapy seems necessary. Bacteriophages are viruses targeting specific bacterial species. Klebsiella pneumoniae (K. pneumoniae) is among causative agents of the DFU. In this study, the therapeutic effects of single phage and phage cocktail were investigated against multidrug-resistant (MDR) K. pneumonia isolated from DFU. Bacteriophages were isolated from animal feces and sewage samples, and were enriched and propagated using K. pneumoniae as the host. Thirty K. pneumoniae clinical isolates were collected from hospitalized patients with DFU. The antibiotic susceptibility pattern was determined using agar disk diffusion test. The phages' morphological traits were determined using transmission electron microscopy (TEM). The killing effect of isolated phages was assessed using plaque assay. Four phage types were isolated and recognized including KP1, KP2, KP3, and KP4. The bacterial rapid regrowth was observed following each single phage-host interaction, but not phage cocktail due to the evolution of mutant strains. Phage cocktail demonstrated significantly higher antibacterial activity than each single phage (p < 0.05) without any bacterial regrowth. The employment of phage cocktail was promising for the eradication of MDR-K. pneumoniae isolates. The development of phage therapy in particular, phage cocktail is promising as an efficient approach to eradicate MDR-K. pneumoniae isolated from DFU. The application of a specific phage cocktail can be investigated to try and achieve the eradication of various infections.


Assuntos
Bacteriófagos , Diabetes Mellitus , Pé Diabético , Terapia por Fagos , Animais , Bacteriófagos/genética , Klebsiella pneumoniae , Pé Diabético/terapia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
9.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944001

RESUMO

AIMS: Isolation and characterization of Enterococcus phages and application of phage cocktail to control E. faecalis in milk. METHODS AND RESULTS: For phage isolations, double layer agar method was used. Host range of the phages were determined by the spot test. Twelve phages with varying host ranges were isolated. Phages PEF1, PEF7b, and PEF9 with different host ranges and lytic activities were selected for phage cocktails. Compared to two-phages cocktails tested, the cocktail containing all the three phages displayed stronger antibacterial and biofilm removal activities. The cocktail treatment reduced viable E. faecalis in biofilm by 6 log within 6 h at both 30°C and 4°C. In milk, the cocktail gradually reduced the viable count of E. faecalis and the count reached below the lower limit of detection at 48 h at 4°C. CONCLUSION: The strong bactericidal and biofilm removal activities of the phage cocktail suggest the potential of this cocktail as a natural biocontrol agent for combating E. faecalis in milk.


Assuntos
Bacteriófagos , Animais , Enterococcus , Leite/microbiologia , Especificidade de Hospedeiro , Antibacterianos , Enterococcus faecalis
10.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958612

RESUMO

In recent decades, phage therapy has been overshadowed by the widespread use of antibiotics in Western countries. However, it has been revitalized as a powerful approach due to the increasing prevalence of antimicrobial-resistant bacteria. Although bacterial resistance to phages has been reported in clinical cases, recent studies on the fitness trade-offs between phage and antibiotic resistance have revealed new avenues in the field of phage therapy. This strategy aims to restore the antibiotic susceptibility of antimicrobial-resistant bacteria, even if phage-resistant variants develop. Here, we summarize the basic virological properties of phages and their applications within the context of antimicrobial resistance. In addition, we review the occurrence of phage resistance in clinical cases, and examine fitness trade-offs between phage and antibiotic sensitivity, exploring the potential of an evolutionary fitness cost as a countermeasure against phage resistance in therapy. Finally, we discuss future strategies and directions for phage-based therapy from the aspect of fitness trade-offs. This approach is expected to provide robust options when combined with antibiotics in this era of phage 're'-discovery.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Humanos , Bacteriófagos/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Terapia por Fagos/métodos , Infecções Bacterianas/terapia , Bactérias
11.
Indian J Microbiol ; 63(2): 208-215, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325020

RESUMO

Bacteriophages have been proposed as an alternative therapy for the treatment of bacterial infections. This research aims to determine the lytic activity of bacteriophage-cocktails (BC) against carbapenem-resistant (CR-EC), ESBL-producer (EP-EC), and non-producer (NP-EC) E. coli isolates. Related resistance genes in 87 E. coli isolates were screened by PCR. The efficacies of BCs were determined by spot test and lytic zones were evaluated from fully-confluent to opaque. MOIs of the BCs were compared for fully-confluent and opaque lytic zones. BCs were also evaluated in terms of their biophysical characteristics including latency, burst size, pH and temperature stabilities. Among EP-EC, 96.9% of the isolates carry blaCTX-M, 25% of them blaSHV and 15.6% of them carry blaTEM. All CR-EC isolates carried blaOXA-48, but not blaKPC and blaNDM. CR-EC isolates were the least susceptible for the each of four BCs. MOIs for ENKO, SES and INTESTI-phage forming fully-confluent zone in E. coli isolates EC3 (NP-EC), EC8 (EP-EC) and EC27 (NP-EC), respectively were 10, 100 and 1, respectively. MOIs for ENKO, SES and INTESTI opaque zone in EC19 (EP-EC), EC10 (EP-EC), EC1(NP-EC), respectively were 0.01, 0.01, 0.1 PFU/CFU, respectively. The MOI for PYO-phage forming a semi-confluent zone in EC6 (NP-EC) isolate was 1 PFU/CFU. The phages were thermally stable and tolerant to a wide pH range. Comparison of MOIs according to lysis zone characteristics demonstrated that the activities of phages in phage cocktails vary depending on the characteristics of each bacterial host. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01074-9.

12.
Appl Environ Microbiol ; 88(6): e0232321, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35080902

RESUMO

The rapid antiphage mutation of pathogens is a big challenge often encountered in the application of phages in aquaculture, animal husbandry, and human disease prevention. A cocktail composed of phages with different infection strategies can better suppress the antiphage resistance of pathogens. However, randomly selecting phages with different infection strategies is time-consuming and labor intensive. Here, we verified that using a resistant pathogen quickly evolved under single phage infection, as the new host can easily obtain phages with different infection strategies. We randomly isolated two lytic phages (i.e., Va1 and Va2) that infect the opportunistic pathogen Vibrio alginolyticus. Whether they were used alone or in combination, the pathogen easily gained resistance. Using a mutated pathogen resistant to Va1 as a new host, a third lytic phage Va3 was isolated. These three phages have a similar infection cycle and lytic ability but quite different morphologies and genome information. Notably, phage Va3 is a jumbo phage containing a larger and more complex genome (240 kb) than Va1 and Va2. Furthermore, the 34 tRNAs and multiple genes encoding receptor binding proteins and NAD+ synthesis proteins in the Va3 genome implicated its quite different infection strategy from Va1 and Va2. Although the wild-type pathogen could still readily evolve resistance under single phage infection by Va3, when Va3 was used in combination with Va1 and Va2, pathogen resistance was strongly suppressed. This study provides a novel approach for rapid isolation of phages with different infection strategies, which will be highly beneficial when designing effective phage cocktails. IMPORTANCE The rapid antiphage mutation of pathogens is a big challenge often encountered in phage therapy. Using a cocktail composed of phages with different infection strategies can better overcome this problem. However, randomly selecting phages with different infection strategies is time-consuming and labor intensive. To address this problem, we developed a method to efficiently obtain phages with disparate infection strategies. The trick is to use the characteristics of the pathogenic bacteria that are prone to develop resistance to single phage infection to rapidly obtain the antiphage variant of the pathogen. Using this antiphage variant as the host results in other phages with different infection strategies being efficiently isolated. We also verified the reliability of this method by demonstrating the ideal phage control effects on two pathogens and thus revealed its potential importance in the development of phage therapies.


Assuntos
Bacteriófagos , Animais , Aquicultura , Bacteriófagos/genética , Reprodutibilidade dos Testes , Vibrio alginolyticus
13.
Microb Pathog ; 162: 105374, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34968644

RESUMO

Aeromonas hydrophila (A. hydrophila) is an opportunistic pathogen of fish-human-livestock, which poses a threat to the development of aquaculture. Lytic phage has long been considered as an effective bactericidal agent. However, the rapid development of phage resistance seriously hinders the continuous application of lytic phages. In our study, a new bacteriophage vB_ AhaP_PZL-Ah8 was isolated from sewage and its characteristics and genome were investigated. Phage vB_ AhaP_PZL-Ah8 has been classified as the member of the Podoviridae family, which exhibited the latent period was about 30 min. As revealed from the genomic sequence analysis, vB_ AhaP_PZL-Ah8 covered a double-stranded genome of 40,855 bp (exhibiting 51.89% G + C content), with encoding 52 predicted open reading frames (ORFs). The results suggested that the combination of vB_ AhaP_PZL-Ah8 and another A. hydrophila phage vB_ AhaP_PZL-Ah1 could improve the therapeutic efficacy both in vitro and in vivo. The resistance mutation frequency of A. hydrophila cells infected with the mixture phage (vB_ AhaP_PZL-Ah8+ vB_ AhaP_PZL-Ah1) was significantly lower than cells treated with single phage (P <0.01). Phage therapy in vivo showed that the survival rate in the mixture phage treatment group was significantly higher than that in single phage treatment group.


Assuntos
Bacteriófagos , Aeromonas hydrophila , Animais , Aquicultura , Bacteriófagos/genética , Genoma Viral , Humanos , Fases de Leitura Aberta
14.
J Appl Microbiol ; 132(4): 3387-3404, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34989075

RESUMO

AIM: We aimed to study host range, stability, genome and antibiofilm activity of a novel phage vB_EcoA_RDN8.1 active against multi-drug resistant (MDR) and extensively drug-resistant (XDR) biofilm-forming uropathogenic Escherichia coli isolates. METHODS AND RESULTS: A novel lytic phage vB_EcoA_RDN8.1 active against UPEC strains resistant to third-generation cephalosporins, fluoroquinolones, aminoglycosides, imipenem, beta-lactamase inhibitor combination and polymyxins was isolated from community raw sewage water of Chandigarh. It exhibited a clear plaque morphology and a burst size of 250. In the time-kill assay, the maximum amount of killing was achieved at MOI 1.0. vB_EcoA_RDN8.1 belongs to the family Autographiviridae, has a genome size of 39.5 kb with a GC content of 51.6%. It was stable over a wide range of temperatures and pH. It was able to inhibit biofilm formation which may be related to an endolysin encoded by ORF 19. CONCLUSIONS: The vB_EcoA_RDN8.1 is a novel lytic phage that has the potential for inclusion into phage cocktails being developed for the treatment of urinary tract infections (UTIs) caused by highly drug-resistant UPEC. SIGNIFICANCE AND IMPACT OF THE STUDY: We provide a detailed characterization of a novel lytic Escherichia phage with antibiofilm activity having a potential application against MDR and XDR UPEC causing UTIs.


Assuntos
Bacteriófagos , Infecções Urinárias , Escherichia coli Uropatogênica , Bacteriófagos/genética , Biofilmes , Humanos , Myoviridae , Escherichia coli Uropatogênica/genética
15.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682794

RESUMO

The high infection and mortality rate of methicillin-resistant Staphylococcus aureus (MRSA) necessitates the urgent development of new treatment strategies. Bacteriophages (phages) have several advantages compared to antibiotics for the treatment of multi-drug-resistant bacterial infections, and thus provide a promising alternative to antibiotics. Here, S. aureus phages were isolated from patients and environmental sources. Phages were characterized for stability, morphology and genomic sequence and their bactericidal activity against the biofilm form of methicillin-susceptible Staphylococcus aureus (MSSA) and MRSA was investigated. Four S. aureus phages were isolated and tested against 51 MSSA and MRSA clinical isolates and reference strains. The phages had a broad host range of 82−94% individually and of >98% when combined and could significantly reduce the viability of S. aureus biofilms. The phages had a latent period of ≤20 min and burst size of >11 plaque forming units (PFU)/infected cell. Transmission electron microscopy (TEM) identified phages belonging to the family of Myoviridae. Genomic sequencing indicated the lytic nature of all four phages, with no identified resistance or virulence genes. The 4 phages showed a high complementarity with 49/51 strains (96%) sensitive to at least 2/4 phages tested. Furthermore, the frequency of bacteriophage insensitive mutant (BIM) generation was lower when the phages were combined into the phage cocktail APTC-C-SA01 than for bacteria exposed to each of the phages alone. In conclusion, APTC-C-SA01, containing four lytic S. aureus phages has the potential for further development as a treatment against MSSA and MRSA infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Biofilmes , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/terapia , Fagos de Staphylococcus/genética , Staphylococcus aureus
16.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361621

RESUMO

Effective phage cocktails consisting of multiple virus types are essential for successful phage therapy against pandrug-resistant pathogens, including Salmonella enterica serovar (S.) Typhimurium. Here we show that a Salmonella phage, F118P13, with non-productive infection and a lytic phage, PLL1, combined to inhibit pandrug-resistant S. Typhimurium growth and significantly limited resistance to phages in vitro. Further, intraperitoneal injection with this unique phage combination completely protected mice from Salmonella-induced death and inhibited bacterial proliferation rapidly in various organs. Furthermore, the phage combination treatment significantly attenuated the inflammatory response, restored the generation of CD4+ T cells repressed by Salmonella, and allowed macrophages and granulocytes to participate in immunophage synergy to promote bacterial clearance. Crucially, the non-productive phage F118P13 is less likely to be cleared by the immune system in vivo, thus providing an alternative to phage cocktail against bacterial infections.


Assuntos
Bacteriófagos , Fagos de Salmonella , Salmonella enterica , Camundongos , Animais , Salmonella typhimurium , Sistema Imunitário
17.
Appl Microbiol Biotechnol ; 105(24): 9047-9067, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34821965

RESUMO

The rise in multi-drug resistant bacteria and the inability to develop novel antibacterial agents limits our arsenal against infectious diseases. Antibiotic resistance is a global issue requiring an immediate solution, including the development of new antibiotic molecules and other alternative modes of therapy. This article highlights the mechanism of bacteriophage treatment that makes it a real solution for multidrug-resistant infectious diseases. Several case reports identified phage therapy as a potential solution to the emerging challenge of multi-drug resistance. Bacteriophages, unlike antibiotics, have special features, such as host specificity and do not impact other commensals. A new outlook has also arisen with recent advancements in the understanding of phage immunobiology, where phages are repurposed against both bacterial and viral infections. Thus, the potential possibility of phages in COVID-19 patients with secondary bacterial infections has been briefly elucidated. However, significant obstacles that need to be addressed are to design better clinical studies that may contribute to the widespread use of bacteriophage therapy against multi-drug resistant pathogens. In conclusion, antibacterial agents can be used with bacteriophages, i.e. bacteriophage-antibiotic combination therapy, or they can be administered alone in cases when antibiotics are ineffective.Key points• AMR, a consequence of antibiotic generated menace globally, has led to the resurgence of phage therapy as an effective and sustainable solution without any side effects and high specificity against refractory MDR bacterial infections.• Bacteriophages have fewer adverse reactions and can thus be used as monotherapy as well as in conjunction with antibiotics.• In the context of the COVID-19 pandemic, phage therapy may be a viable option.


Assuntos
Bacteriófagos , COVID-19 , Antibacterianos/uso terapêutico , Humanos , Pandemias , Estudos Prospectivos , SARS-CoV-2
18.
Lett Appl Microbiol ; 72(3): 231-237, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33070360

RESUMO

Shigella spp. are water-borne pathogens responsible for mild to severe cases bacilli dysentery all around the world known as Shigellosis. The progressively increasing of antibiotic resistance among Shigella calls for developing and establishing novel alternative therapeutic methods. The present study aimed to evaluate a novel phage cocktail of lytic phages against extended spectrum beta lactamase isolates of Shigella species in an aquatic environment. The phage cocktail containing six novel Shigella specific phages showed a broad host spectrum. The cocktail was very stable in aquatic environment. The cocktail resulted in about 99% decrease in the bacterial counts in the contaminated water by several species and strains of Shigella such as Shigella sonnei, Shigella flexneri and Shigella dysenteriae. Achieving such a high efficiency in this in-vitro study demonstrates a high potential for in-vivo and in-situ application of this phage cocktail as a bio-controlling agent against Shigella spp. contamination and infections.


Assuntos
Antibacterianos/farmacologia , Disenteria Bacilar/terapia , Terapia por Fagos/métodos , Shigella dysenteriae/efeitos dos fármacos , Shigella flexneri/efeitos dos fármacos , Shigella sonnei/efeitos dos fármacos , Bacteriófagos/patogenicidade , Farmacorresistência Bacteriana Múltipla/genética , Disenteria Bacilar/microbiologia , Humanos , Shigella dysenteriae/virologia , Shigella flexneri/virologia , Shigella sonnei/virologia
19.
BMC Microbiol ; 20(1): 204, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32646376

RESUMO

BACKGROUND: Diabetic foot ulcer (DFU) is a serious complication of diabetes mellitus. Antibiotic-resistant Staphylococcus aureus is frequently isolated from DFU infections. Bacteriophages (phages) represent an alternative or adjunct treatment to antibiotic therapy. Here we describe the efficacy of AB-SA01, a cocktail of three S. aureus Myoviridae phages, made to current good manufacturing practice (cGMP) standards, and which has undergone two phase I clinical trials, in treatment of multidrug-resistant (MDR) S. aureus infections. RESULTS: Wounds of saline-treated mice showed no healing, but expanded and became inflamed, ulcerated, and suppurating. In contrast, AB-SA01 treatment decreased the bacterial load with efficacy similar or superior to vancomycin treatment. At the end of the treatment period, there was a significant decrease (p < 0.001) in bacterial load and wound size in infected phage- and vancomycin-treated groups compared with infected saline-treated mice. In phage-treated mice, wound healing was seen similar to vancomycin treatment. No mortality was recorded associated with infections, and post-mortem examinations did not show any evident pathological lesions other than the skin wounds. No adverse effects related to the application of phages were observed. CONCLUSION: Topical application of phage cocktail AB-SA01 is effective, as shown by bacterial load reduction and wound closure, in the treatment of diabetic wound infections caused by MDR S. aureus. Our results suggest that topical phage cocktail treatment may be effective in treating antibiotic-resistant S. aureus DFU infections.


Assuntos
Diabetes Mellitus Experimental/complicações , Pé Diabético/microbiologia , Terapia por Fagos/métodos , Infecções Estafilocócicas/terapia , Staphylococcus aureus/crescimento & desenvolvimento , Infecção dos Ferimentos/microbiologia , Animais , Carga Bacteriana/efeitos dos fármacos , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Masculino , Camundongos , Staphylococcus aureus/isolamento & purificação , Vancomicina/administração & dosagem , Vancomicina/farmacologia , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/terapia
20.
Food Microbiol ; 83: 167-174, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31202408

RESUMO

S. Enteritidis and S. Typhimurium are typically linked to foodborne outbreaks. Phages have continued to expand in various food applications. In this study, microencapsulation is applied for enhancing the stability and efficacy of phages as bio-control agent. Microencapsulated phage cocktail kept in aluminium laminated foil bag (LF) at 4 °C showed the highest survivability with a titer loss of 0.5 log PFU/g after 12 weeks of storage. Titer loss of phage cocktail lysate >4 log PFU/mL was observed after 12 weeks, at 4 °C. Color change of microencapsulated phage cocktail kept in LF at 4 °C did not show any significant difference during storage, and water activity (free water content) at 0.13 was found in these conditions. In-vitro study, S. Enteritidis and S. Typhimurium were decreased 1.79 and 3.63 log CFU/mL, respectively at 37 °C. Whereas, 0.43 and 0.76 log CFU/mL, respectively were observed at 10 °C. In foods, S. Enteritidis and S. Typhimurium were decreased 0.57 and 1.78 log CFU/cm2, respectively in meat. Whereas, 0.86 and 1.2 log CFU/g, respectively were observed in sprout. Foods with/without microencapsulated phage cocktail showed non-significant differences in liking scores after 2 days of storage. Overall, microencapsulated phage cocktail suggests another alternative for phage-based biocontrol with improved stability and efficacy for food application.


Assuntos
Agentes de Controle Biológico , Contaminação de Alimentos/prevenção & controle , Armazenamento de Alimentos/métodos , Fagos de Salmonella/fisiologia , Salmonella enteritidis/virologia , Salmonella typhimurium/virologia , Composição de Medicamentos , Microbiologia de Alimentos/métodos , Carne/microbiologia , Alimentos Crus/microbiologia , Plântula/efeitos dos fármacos , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA