Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Physiol Rev ; 103(3): 2321-2347, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796098

RESUMO

The local environment surrounding airway smooth muscle (ASM) cells has profound effects on the physiological and phenotypic properties of ASM tissues. ASM is continually subjected to the mechanical forces generated during breathing and to the constituents of its surrounding extracellular milieu. The smooth muscle cells within the airways continually modulate their properties to adapt to these changing environmental influences. Smooth muscle cells connect to the extracellular cell matrix (ECM) at membrane adhesion junctions that provide mechanical coupling between smooth muscle cells within the tissue. Membrane adhesion junctions also sense local environmental signals and transduce them to cytoplasmic and nuclear signaling pathways in the ASM cell. Adhesion junctions are composed of clusters of transmembrane integrin proteins that bind to ECM proteins outside the cell and to large multiprotein complexes in the submembranous cytoplasm. Physiological conditions and stimuli from the surrounding ECM are sensed by integrin proteins and transduced by submembranous adhesion complexes to signaling pathways to the cytoskeleton and nucleus. The transmission of information between the local environment of the cells and intracellular processes enables ASM cells to rapidly adapt their physiological properties to modulating influences in their extracellular environment: mechanical and physical forces that impinge on the cell, ECM constituents, local mediators, and metabolites. The structure and molecular organization of adhesion junction complexes and the actin cytoskeleton are dynamic and constantly changing in response to environmental influences. The ability of ASM to rapidly accommodate to the ever-changing conditions and fluctuating physical forces within its local environment is essential for its normal physiological function.


Assuntos
Contração Muscular , Músculo Liso , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Miócitos de Músculo Liso , Fenótipo , Integrinas/metabolismo
2.
Pharmacology ; 109(4): 183-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38493769

RESUMO

BACKGROUND: According to the World Health Organisation's Health Report 2019, approximately 17.18 million people die from cardiovascular disease each year, accounting for more than 30% of all global deaths. Therefore, the occurrence of cardiovascular disease is still a global concern. The transcription factor 21 (TCF21) plays an important role in cardiovascular diseases. This article reviews the regulation mechanism of TCF21 expression and activity and focuses on its important role in atherosclerosis in order to contribute to the development of diagnosis and treatment of cardiovascular diseases. SUMMARY: TCF21 is involved in the phenotypic regulation of vascular smooth muscle cells (VSMCs), promotes the proliferation and migration of VSMCs, and participates in the activation of inflammatory sequences. Increased proliferation and migration of VSMCs can lead to neointimal hyperplasia after vascular injury. Abnormal hyperplasia of neointima and inflammation are one of the main features of atherosclerosis. Therefore, targeting TCF21 may become a potential treatment for relieving atherosclerosis. KEY MESSAGES: TCF21 as a member of basic helix-loop-helix transcription factors regulates cell growth and differentiation by modulating gene expression during the development of different organs and plays an important role in cardiovascular development and disease. VSMCs and cells derived from VSMCs constitute the majority of plaques in atherosclerosis. TCF21 plays a key role in regulation of VSMCs' phenotype, thus accelerating atherogenesis in the early stage. However, TCF21 enhances plaque stability in late-stage atherosclerosis. The dual role of TCF21 should be considered in the translational medicine.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Doenças Cardiovasculares , Músculo Liso Vascular , Humanos , Animais , Músculo Liso Vascular/metabolismo , Doenças Cardiovasculares/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Aterosclerose/metabolismo , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Movimento Celular
3.
Mater Today Bio ; 26: 101063, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698884

RESUMO

Effective tissue repair relies on the orchestration of different macrophage phenotypes, both the M2 phenotype (promotes tissue repair) and M1 phenotype (pro-inflammatory) deserve attention. In this study, we propose a sequential immune activation strategy to mediate bone regeneration, by loading lipopolysaccharide (LPS) onto the surface of a strontium (Sr) ions -contained composite scaffold, which was fabricated by combining Sr-doped micro/nano-hydroxyapatite (HA) and dual degradable matrices of polycaprolactone (PCL) and poly (lactic-co-glycolic acid) (PLGA). Our strategy involves the sequential release of LPS to promote macrophage homing and induce the expression of the pro-inflammatory M1 phenotype, followed by the release of Sr ions to suppress inflammation. In vitro and in vivo experiments demonstrated that, the appropriate pro-inflammatory effects at the initial stage of implantation, along with the anti-inflammatory effects at the later stage, as well as the structural stability of the scaffolds conferred by the composition, can synergistically promote the regeneration and repair of bone defects.

4.
Adv Healthc Mater ; 13(23): e2400864, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38771618

RESUMO

Osteosarcoma (OS) is a primary malignant bone tumor that emanates from mesenchymal cells, commonly found in the epiphyseal end of long bones. The highly recurrent and metastatic nature of OS poses significant challenges to the efficacy of treatment and negatively affects patient prognosis. Currently, available clinical treatment strategies primarily focus on maximizing tumor resection and reducing localized symptoms rather than the complete eradication of malignant tumor cells to achieve ideal outcomes. The biomaterials-boosted immunotherapy for OS is characterized by high effectiveness and a favorable safety profile. This therapeutic approach manipulates the tumor microenvironments at the cellular and molecular levels to impede tumor progression. This review delves into the mechanisms underlying the treatment of OS, emphasizing biomaterials-enhanced tumor immunity. Moreover, it summarizes the immune cell phenotype and tumor microenvironment regulation, along with the ability of immune checkpoint blockade to activate the autoimmune system. Gaining a profound comprehension of biomaterials-boosted OS immunotherapy is imperative to explore more efficacious immunotherapy protocols and treatment options in this setting.


Assuntos
Materiais Biocompatíveis , Neoplasias Ósseas , Imunoterapia , Osteossarcoma , Humanos , Osteossarcoma/terapia , Osteossarcoma/imunologia , Osteossarcoma/patologia , Imunoterapia/métodos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Neoplasias Ósseas/terapia , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Animais
5.
Regen Biomater ; 11: rbae005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414797

RESUMO

For repairing peripheral nerve and spinal cord defects, biomaterial scaffold-based cell-therapy was emerged as an effective strategy, requiring the positive response of seed cells to biomaterial substrate and environment signals. Previous work highlighted that the imposed surface properties of scaffold could provide important guidance cues to adhered cells for polarization. However, the insufficiency of native Schwann cells and unclear cellular response mechanisms remained to be addressed. Given that, this study aimed to illuminate the micropatterned chitosan-film action on the rat skin precursor-derived Schwann cells (SKP-SCs). Chitosan-film with different ridge/groove size was fabricated and applied for the SKP-SCs induction. Results indicated that SKP-SCs cultured on 30 µm size microgroove surface showed better oriented alignment phenotype. Induced SKP-SCs presented similar genic phenotype as repair Schwann cells, increasing expression of c-Jun, neural cell adhesion molecule, and neurotrophic receptor p75. Moreover, SKP-SC-secretome was subjected to cytokine array GS67 assay, data indicated the regulation of paracrine phenotype, a panel of cytokines was verified up-regulated at secreted level and gene expression level in induced SKP-SCs. These up-regulated cytokines exhibit a series of promotive neural regeneration functions, including cell survival, cell migration, cell proliferation, angiogenesis, axon growth, and cellular organization etc. through bioinformatics analysis. Furthermore, the effectively polarized SKP-SCs-sourced secretome, promoted the proliferation and migration capacity of the primarily cultured native rat Schwann cells, and augmented neurites growth of the cultured motoneurons, as well as boosted axonal regrowth of the axotomy-injured motoneurons. Taken together, SKP-SCs obtained pro-neuroregeneration phenotype in adaptive response to the anisotropic topography surface of chitosan-film, displayed the oriented parallel growth, the transition towards repair Schwann cell genic phenotype, and the enhanced paracrine effect on neural regeneration. This study provided novel insights into the potency of anisotropic microtopography surface to Schwann-like cells phenotype regulation, that facilitating to provide promising engineered cell-scaffold in neural injury therapies.

6.
J Vet Med Sci ; 85(6): 680-690, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37150611

RESUMO

Pentosan polysulfate sodium (PPS) is a heparin-like polysaccharide that is applied as a therapeutic treatment for osteoarthritis (OA) in animals. This study investigated the efficacy of different molecular weights PPS (1,500-7,000 Da) on the phenotype regulatory and chondrogenic properties of canine articular chondrocytes. The cytotoxicity of PPS on chondrocytes was assessed using flow cytometry and 3-(4,5-dimehylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay. After 72 hr of exposure, PPS did not induce chondrocyte apoptosis, regardless of molecular weight. In addition, chondrogenic properties were determined according to the mRNA and protein levels in micromass-cultured chondrocytes. Quantitative polymerase chain reaction analysis confirmed that PPS promotes a chondrogenic phenotype in chondrocytes in a molecular weight-dependent manner, with significant upregulation of collagen type II alpha 1 chain, aggrecan, and SRY-box transcription factor 9 (SOX9) mRNA levels relative to those in the control. However, the collagen type I alpha 2 chain mRNA level simultaneously increased after 7,000 Da PPS treatment. PPS exposure also increased collagen type II and SOX9 protein production in a molecular weight-dependent manner and inhibited Akt phosphorylation in chondrocytes. Alcian blue staining indicated that PPS treatment enhanced proteoglycan deposition in micromass cultures, with stronger effects observed in 5,000 and 7,000 Da groups. Overall, these results indicate that PPS exerts protective effects on the chondrocyte phenotype and may represent a potential therapeutic target for OA treatment. Increasing the molecular weight of PPS could enhance these anabolic effects.


Assuntos
Cartilagem Articular , Doenças do Cão , Osteoartrite , Animais , Cães , Condrócitos/metabolismo , Poliéster Sulfúrico de Pentosana/farmacologia , Peso Molecular , Colágeno Tipo II/metabolismo , Fenótipo , Osteoartrite/tratamento farmacológico , Osteoartrite/veterinária , Células Cultivadas , RNA Mensageiro/metabolismo , Diferenciação Celular , Fatores de Transcrição SOX9/metabolismo , Doenças do Cão/metabolismo
7.
Biomater Adv ; 139: 213041, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35909053

RESUMO

Tissue engineering with human cardiac fibroblasts (CF) allows identifying novel mechanisms and anti-fibrotic drugs in the context of cardiac fibrosis. However, substantial knowledge on the influences of the used materials and tissue geometries on tissue properties and cell phenotypes is necessary to be able to choose an appropriate model for a specific research question. As there is a clear lack of information on how CF react to the mold architecture in engineered connective tissues (ECT), we first compared the effect of two mold geometries and materials with different hardnesses on the biomechanical properties of ECT. We could show that ECT, which formed around two distant poles (non-uniform model) were less stiff and more strain-resistant than ECT, which formed around a central rod (uniform model), independent of the materials used for poles and rods. Next, we investigated the cell state and could demonstrate that in the uniform versus non-uniform model, the embedded cells have a higher cell cycle activity and display a more pronounced myofibroblast phenotype. Differential gene expression analysis revealed that uniform ECT displayed a fibrosis-associated gene signature similar to the diseased heart. Furthermore, we were able to identify important relationships between cell and tissue characteristics, as well as between biomechanical tissue parameters by implementing cells from normal heart and end-stage heart failure explants from patients with ischemic or dilated cardiomyopathy. Finally, we show that the application of pro- and anti-fibrotic factors in the non-uniform and uniform model, respectively, is not sufficient to mimic the effect of the other geometry. Taken together, we demonstrate that modifying the mold geometry in tissue engineering with CF offers the possibility to compare different cellular phenotypes and biomechanical tissue properties.


Assuntos
Fibroblastos , Miofibroblastos , Tecido Conjuntivo , Fibrose , Coração , Humanos , Fenótipo
8.
Colloids Surf B Biointerfaces ; 146: 280-8, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27351139

RESUMO

Contractile vascular smooth muscle accounts for the normal physiological function of artery. Heparin, as a native glycosaminoglycan, has been well known for its important function in promoting or maintaining the contractile phenotype of vascular smooth muscle cells (VSMCs). In this study, heparin-functionalized non-woven poly(ε-caprolactone) (PCL) mat was fabricated by a facile and efficient surface modification protocol, which enables the control of surface heparin density within a broad range. Surface heparization remarkably increased the hydrophilicity of PCL, and reduced platelet adhesion. MTT assay showed that VSMC proliferation was evidently inhibited on the heparin-functionalized PCL surface in a dose-dependent manner. Gene analysis confirmed that surface heparization also promoted the transition of VSMCs from synthetic phenotype to contractile one. Furthermore, with a proper surface density of heparin, it allowed VSMCs to grow in a certain rate, while exhibiting contractile phenotype. Culture of VSMCs on a modified PCL mat with moderate heparin density (PCL-Hep-20) for 2 days resulted in a confluent layer of contractile smooth muscle cells. These data suggest that the heparin-modified PCL scaffolds may be a promising candidate to generate functional vascular tissues in vitro.


Assuntos
Matriz Extracelular/química , Heparina/química , Músculo Liso Vascular/citologia , Adesividade Plaquetária , Poliésteres/química , Proliferação de Células , Células Cultivadas , Humanos , Técnicas In Vitro , Propriedades de Superfície , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA