RESUMO
The photocatalytic activity of titanium dioxide (TiO2) nanoparticles toward hydrogen generation can be significantly improved via the loading of various metals e.g., Ru, Co, Ni as co-catalysts. The metal co-catalysts are loaded into TiO2 nanoparticles via different deposition methods; incipient wet impregnation (Imp), hydrothermal (HT), or photocatalytic deposition (PCD). Among all of the tested materials, 0.1 wt% Ru-TiO2 (Imp) provided the highest initial hydrogen catalytic rate of 23.9 mmol h-1 g-1, compared to 10.82 and 16.55 mmol h-1 g-1 for 0.3 wt% Ni-TiO2 (Imp) and 0.3 wt% Co-TiO2 (Imp), respectively. The loading procedures, co-catalyst metals type, and their loading play a significant role in elevating the photocatalytic activity of pristine TiO2 semiconductors toward hydrogen generation. Redox transition metals e.g., Co and Ni exhibit comparable photocatalytic performance to expensive elements such as Ru.
RESUMO
Noble metal/semiconductor nanocomposites have been synthesized using various methods, including precipitation and hydrothermal and electrochemical processes. Among these, the photodeposition method stands out for its simplicity, without the need for high temperatures, redox agents, or complex steps. This method facilitates the control over noble metal nanoparticle size by adjusting parameters such as metal precursor concentration, irradiation time, and power. However, understanding the interaction between solid and liquid interfaces, particularly the role of solution viscosity in the growth process, remains a challenge. This knowledge is crucial for precise control over nanoparticle size and distribution. Our study highlights the influence of viscosity, manipulated through different alcohols, on the formation of Ag nanostructures on TiO2 thin films via photodeposition, offering insights into optimizing nanocomposite synthesis.
RESUMO
Au nanoparticle (NP) decorated heterogeneous TiO2 catalysts are known to be effective in the degradation of various organic pollutants. The photocatalytic performance of such Au-TiO2 structures remarkably depends on the size, morphology, and surface coverage of the Au NPs decorating TiO2. Here we propose an effective way of preparing a highly active Au nanocluster (NC) decorated TiO2 thin film by a novel photodeposition method. By altering the solvent type as well as the illumination time, we achieved well-controlled surface coverage of TiO2 by Au NCs, which directly influences the photocatalytic performance. Here the Au NCs coverage affects both the electron store capacity and the optical absorption of the hybrid Au-TiO2 system. At low surface coverage, 19.2-29.5%, the Au NCs seem to enhance significantly the optical adsorption of TiO2 at UV wavelengths which therefore leads to a higher photocatalytic performance.