Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Small ; 20(35): e2401123, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38659372

RESUMO

Matching the thickness of the graphitic carbon nitride (CN) nanolayer with the charge diffusion length is expected to compensate for the poor intrinsic conductivity and charge recombination in CN for photoelectrochemical cells (PEC). Herein, the compact CN nanolayer with tunable thickness is in situ coated on carbon fibers. The compact packing along with good contact with the substrate improves the electron transport and alleviates the charge recombination. The PEC investigation shows CN nanolayer of 93 nm-thick yields an optimum photocurrent of 116 µA cm-2 at 1.23 V versus RHE, comparable to most micrometer-thick CN layers, with a low onset potential of 0.2 V in 1 m KOH under 1 sun illumination. This optimum performance suggests the electron diffusion length matches with the thickness of the CN nanolayer. Further deposition of NiFe-layered double hydroxide enhanced the surface water oxidation kinetics, delivering an improved photocurrent of 210 µA cm-2 with IPCE of 12.8% at 400 nm. The CN nanolayer also shows extended potential in PEC organic synthesis. This work experimentally reveals the PEC behavior of the nanometer-thick CN layer, providing new insights into CN in the application of energy and environment-related fields.

2.
Photosynth Res ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168914

RESUMO

Cyanobacteria play a crucial role in global carbon and nitrogen cycles through photosynthesis, making them valuable subjects for understanding the factors influencing their light utilization efficiency. Photosynthetic microorganisms offer a promising avenue for sustainable energy conversion in the field of photovoltaics. It was demonstrated before that application of an external electric field to the microbial biofilm or cell improves electron transfer kinetics and, consequently, efficiency of power generation. We have integrated live cyanobacterial cultures into photovoltaic devices by embedding Limnospira indica PCC 8005 cyanobacteria in agar and PEDOT:PSS matrices on the surface of boron-doped diamond electrodes. We have subjected them to varying external polarizations while simultaneously measuring current response and photosynthetic performance. For the latter, we employed Pulse-Amplitude-Modulation (PAM) fluorometry as a non-invasive and real-time monitoring tool. Our study demonstrates an improved light utilization efficiency for L. indica PCC 8005 when immobilized in a conductive matrix, particularly so for low-intensity light. Simultaneously, the impact of electrical polarization as an environmental factor influencing the photosynthetic apparatus diminishes as matrix conductivity increases. This results in only a slight decrease in light utilization efficiency for the illuminated sample compared to the dark-adapted state.

3.
Environ Sci Technol ; 58(23): 10072-10083, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38810213

RESUMO

The oxygen reduction process generating H2O2 in the photoelectrochemical (PEC) system is milder and environmentally friendly compared with the traditional anthraquinone process but still lacks the efficient electron-oxygen-proton coupling interfaces to improve H2O2 production efficiency. Here, we propose an integrated active site strategy, that is, designing a hydrophobic C-B-N interface to refine the dearth of electron, oxygen, and proton balance. Computational calculation results show a lower energy barrier for H2O2 production due to synergistic and coupling effects of boron sites for O2 adsorption, nitrogen sites for H+ binding, and the carbon structure for electron transfer, demonstrating theoretically the feasibility of the strategy. Furthermore, we construct a hydrophobic boron- and nitrogen-doped carbon black gas diffusion cathode (BN-CB-PTFE) with graphite carbon dots decorated on a BiVO4 photoanode (BVO/g-CDs) for H2O2 production. Remarkably, this approach achieves a record H2O2 production rate (9.24 µmol min-1 cm-2) at the PEC cathode. The BN-CB-PTFE cathode exhibits an outstanding Faraday efficiency for H2O2 production of ∼100%. The newly formed h-BN integrative active site can not only adsorb more O2 but also significantly improve the electron and proton transfer. Unexpectedly, coupling BVO/g-CDs with the BN-CB-PTFE gas diffusion cathode also achieves a record H2O2 production rate (6.60 µmol min-1 cm-2) at the PEC photoanode. This study opens new insight into integrative active sites for electron-O2-proton coupling in a PEC H2O2 production system that may be meaningful for environment and energy applications.


Assuntos
Eletrodos , Elétrons , Peróxido de Hidrogênio , Oxigênio , Prótons , Oxigênio/química , Peróxido de Hidrogênio/química , Técnicas Eletroquímicas
4.
Angew Chem Int Ed Engl ; 62(7): e202215227, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36542061

RESUMO

The electrochemical activation of CuInS2 /MoSx for photoelectrochemical (PEC) H2 production was revealed for the first time through in operando Raman spectroscopy. During the activation process, the initial metallic MoSx phase was transformed to semiconducting MoSx , which facilitates charge carrier transfer between CuInS2 and MoSx . Ex situ X-ray photoelectron spectroscopy and Raman spectroscopy suggest the existence of MoO3 after the activation process. However, apart from contradicting these results, in operando Raman spectroscopy revealed some of the intermediate steps of the activation process.

5.
Angew Chem Int Ed Engl ; 62(40): e202308956, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37493175

RESUMO

Bio-inspired molecular-engineered systems have been extensively investigated for the half-reactions of H2 O oxidation or CO2 reduction with sacrificial electron donors/acceptors. However, there has yet to be reported a device for dye-sensitized molecular photoanodes coupled with molecular photocathodes in an aqueous solution without the use of sacrificial reagents. Herein, we will report the integration of SnIV - or AlIII -tetrapyridylporphyrin (SnTPyP or AlTPyP) decorated tin oxide particles (SnTPyP/SnO2 or AlTPyP/SnO2 ) photoanode with the dye-sensitized molecular photocathode on nickel oxide particles containing [Ru(diimine)3 ]2+ as the light-harvesting unit and [Ru(diimine)(CO)2 Cl2 ] as the catalyst unit covalently connected and fixed within poly-pyrrole layer (RuCAT-RuC2 -PolyPyr-PRu/NiO). The simultaneous irradiation of the two photoelectrodes with visible light resulted in H2 O2 on the anode and CO, HCOOH, and H2 on the cathode with high Faradaic efficiencies in purely aqueous conditions without any applied bias is the first example of artificial photosynthesis with only two-electron redox reactions.

6.
Nanotechnology ; 34(2)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36191561

RESUMO

Although black phosphorus analogue, bismuthene, has been extensively investigated in recent years, yet the investigation into the photoelectronic devices is still in its infancy. In this contribution, uniform zero-dimensional (0D) bismuth (Bi) quantum dots (QDs) with different sizes were successfully synthesized by a simple solvothermal method. The as-synthesized 0D Bi QDs serve as working electrode materials by a direct deposition for photoelectrochemical (PEC)-type photodetection. The PEC results demonstrate that the as-fabricated 0D Bi QD-based electrode not only possess suitable self-powered broadband photoresponse, but also displays excellent photodetection performance. Under simulated light, the photocurrent density and photoresponsivity of the as-fabricated 0D Bi QD-based electrode can reach 2690 nA cm-2, and 22.0µA W-1, respectively. In addition, the as-prepared Bi QDs with the average diameter of 17 nm exhibit the best PEC photoresponse behavior in the studied size range of Bi QDs, mainly ascribed to the synergistic effect of suitable band gap and accessible active sites. It is anticipated that the uniform Bi QDs can be served as building blocks for a variety of photoelectronic devices, further expanding the application prospects of bismuthene, and can provide in-depth acknowledge on the performance optimization of monoelement Bi-based optical devices.

7.
Proc Natl Acad Sci U S A ; 116(33): 16198-16203, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31366631

RESUMO

The direction of electron flow in molecular optoelectronic devices is dictated by charge transfer between a molecular excited state and an underlying conductor or semiconductor. For those devices, controlling the direction and reversibility of electron flow is a major challenge. We describe here a single-molecule photodiode. It is based on an internally conjugated, bichromophoric dyad with chemically linked (porphyrinato)zinc(II) and bis(terpyridyl)ruthenium(II) groups. On nanocrystalline, degenerately doped indium tin oxide electrodes, the dyad exhibits distinct frequency-dependent, charge-transfer characters. Variations in the light source between red-light (∼1.9 eV) and blue-light (∼2.7 eV) excitation for the integrated photodiode result in switching of photocurrents between cathodic and anodic. The origin of the excitation frequency-dependent photocurrents lies in the electronic structure of the chromophore excited states, as shown by the results of theoretical calculations, laser flash photolysis, and steady-state spectrophotometric measurements.

8.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563164

RESUMO

A film of ~40 layers of partially oriented photosystem I (PSI) complexes isolated from the red alga Cyanidioschyzon merolae formed on the conducting glass through electrodeposition was investigated by time-resolved absorption spectroscopy and chronoamperometry. The experiments were performed at a range of electric potentials applied to the film and at different compositions of electrolyte solution being in contact with the film. The amount of immobilized proteins supporting light-induced charge separation (active PSI) ranged from ~10%, in the absence of any reducing agents (redox compounds or low potential), to ~20% when ascorbate and 2,6-dichlorophenolindophenol were added, and to ~35% when the high negative potential was additionally applied. The origin of the large fraction of permanently inactive PSI (65-90%) was unclear. Both reducing agents increased the subpopulation of active PSI complexes, with the neutral P700 primary electron donor, by reducing significant fractions of the photo-oxidized P700 species. The efficiencies of light-induced charge separation in the PSI film (10-35%) did not translate into an equally effective generation of photocurrent, whose internal quantum efficiency reached the maximal value of 0.47% at the lowest potentials. This mismatch indicates that the vast majority of the charge-separated states in multilayered PSI complexes underwent charge recombination.


Assuntos
Elétrons , Complexo de Proteína do Fotossistema I , Transporte de Elétrons , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Substâncias Redutoras
9.
Angew Chem Int Ed Engl ; 61(21): e202200175, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35266261

RESUMO

This work reports an aqueous dye-sensitized photoelectrochemical cell (DSPEC) capable of oxidizing glycerol (an archetypical biobased compound) coupled with H2 production. We employed a mesoporous TiO2 photoanode sensitized with the high potential thienopyrroledione-based dye AP11, encased in an acetonitrile-based redox-gel that protects the photoanode from degradation by aqueous electrolytes. The use of the gel creates a biphasic system with an interface at the organic (gel) electrode and aqueous anolyte. Embedded in the acetonitrile gel is 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), acting as both a redox-mediator and a catalyst for oxidative transformations. Upon oxidation of TEMPO by the photoexcited dye, the in situ generated TEMPO+ shuttles through the gel to the acetonitrile-aqueous interface, where it acts as an oxidant for the selective conversion of glycerol to glyceraldehyde. The introduction of the redox-gel layer affords a 10-fold increase in the conversion of glycerol compared to the purely aqueous system. Our redox-gel protected photoanode yielded a stable photocurrent over 48 hours of continuous operation, demonstrating that this DSPEC is compatible with alkaline aqueous reactions.


Assuntos
Corantes , Energia Solar , Acetonitrilas , Corantes/química , Óxidos N-Cíclicos , Glicerol , Oxirredução , Fotossíntese , Água/química
10.
Proc Natl Acad Sci U S A ; 115(27): 6946-6951, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915092

RESUMO

Water oxidation has long been a challenge in artificial photosynthetic devices that convert solar energy into fuels. Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) provide a modular approach for integrating light-harvesting molecules with water-oxidation catalysts on metal-oxide electrodes. Despite recent progress in improving the efficiency of these devices by introducing good molecular water-oxidation catalysts, WS-DSPECs have poor stability, owing to the oxidation of molecular components at very positive electrode potentials. Here we demonstrate that a solid-state dye-sensitized solar cell (ss-DSSC) can be used as a buried junction for stable photoelectrochemical water splitting. A thin protecting layer of TiO2 grown by atomic layer deposition (ALD) stabilizes the operation of the photoanode in aqueous solution, although as a solar cell there is a performance loss due to increased series resistance after the coating. With an electrodeposited iridium oxide layer, a photocurrent density of 1.43 mA cm-2 was observed in 0.1 M pH 6.7 phosphate solution at 1.23 V versus reversible hydrogen electrode, with good stability over 1 h. We measured an incident photon-to-current efficiency of 22% at 540 nm and a Faradaic efficiency of 43% for oxygen evolution. While the potential profile of the catalyst layer suggested otherwise, we confirmed the formation of a buried junction in the as-prepared photoelectrode. The buried junction design of ss-DSSs adds to our understanding of semiconductor-electrocatalyst junction behaviors in the presence of a poor semiconducting material.

11.
Nano Lett ; 19(12): 9084-9094, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31738855

RESUMO

Monolayer heterojunctions such as MoS2/WS2 are attractive for solar energy conversion applications because the interfacial electric field spatially separates charge carriers in less than 100 fs. Photoelectrochemical cells represent an intriguing platform to collect the spatially separated carriers. However, the recombination, transport, and interfacial charge transfer processes that take place following the ultrafast charge separation step have not been investigated. Here we demonstrate novel charge recombination and transport pathways in monolayer MoS2/WS2 photoelectrochemical cells by spatially resolving the net collection of carriers (i.e., the photocurrent) at the single nanosheet level. We discovered an excitation-wavelength-dependent recombination pathway that depends on the heterojunction stacking configuration and the carrier generation profile in the heterostructure. Photocurrent mapping measurements revealed that charge transport occurs parallel to the layers over micrometer-scale distances even though the indium tin oxide electrode and liquid electrolyte provide efficient charge extraction pathways via intimate electron- and hole-selective contacts. Our results reveal how composition heterogeneity influences the performance of bulk heterojunction electrodes made from randomly oriented nanosheets and provide critical insight into the design of efficient heterojunction photoelectrodes for solar energy conversion applications.

12.
Chemphyschem ; 20(16): 2054-2059, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31260153

RESUMO

The development of nanostructured semiconductor electrodes represented by a mesoporous TiO2 nanocrystalline (mp-TiO2 ) film is currently bringing great progresses in photoelectrochemical (PEC) devices for solar-to-electricity and solar-to-chemical conversion. Two serious losses can occur in PEC devices: 1) recombination between the conduction band (CB) electrons and valence band (VB) holes in the bulk and at the surface and 2) back reaction or electron trapping by oxidant in the electrolyte solution during transport to the electron-collecting electrode. Thus, the major challenge in common with the nanostructured semiconductor photoanodes is to achieve efficient charge separation and electron transport. In this study, an ultrathin SiOx layer was formed on both the external and the internal surface of mp-TiO2 using an original chemisorption-calcination technique employing 1,3,5,7-tetramethyltetrasiloxane as a starting material. The SiOx surface modification of the mp-TiO2 photoanode drastically prolongs the mean lifetime of CB-electrons in TiO2 because of enhanced charge separation and electron transport by the negative charge applied in aqueous electrolyte solution. We have demonstrated that the performance of a one-compartment H2 O2 -photofuel cell using mp-TiO2 as the photoanode is greatly boosted by the surface modification with the SiOx layer. We anticipate that this methodology is widely applicable to nanostructured metal oxide semiconductor electrodes, contributing to the improvement in the performance of PEC devices.

13.
Chemphyschem ; 18(20): 2840-2845, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28833927

RESUMO

A major challenge in chemistry for the synthesis of hetero-nanostructures is to build up atomically commensurate interfaces for smooth interfacial charge transfer. Photodeposition of CdSe on a CdS-preloaded mesoporous TiO2 nanocrystalline film yields CdS(core)-CdSe(shell) quantum dots (CdS@CdSe/mp-TiO2 ) with a heteroepitaxial nanojunction at 298 K. Two-electrode quantum-dot-sensitized photoelectrochemical (QD-SPEC) cells with the structure photoanode |0.25 M Na2 S, 0.35 M Na2 SO3 (solvent=water)| cathode were fabricated. The CdS@CdSe QD-SPEC cell affords a solar-to-current efficiency (STCE) of 0.03 % without external bias under illumination of simulated sunlight (λ>430 nm, AM 1.5, one sun). By applying 0.1 V between the electrodes, the STCE increases up to 0.048 %, far surpassing the CdS/mp-TiO2 and CdSe/mp-TiO2 photoanode cells. The CdS-CdSe interfacial analysis by high-resolution transmission electron microscopy and the band energy analysis taking the size quantization and the electrolyte effect indicate that the excellent performance of the CdS@CdSe/mp-TiO2 photoanode originates from the effective charge separation due to the cascade-like band edge alignment and the heteroepitaxial junction between CdS and CdSe QDs. In addition, high surface coverage of TiO2 with QDs can contribute to the reduction in the loss of the electron transport from TiO2 to the electron collecting electrode.

14.
Nano Lett ; 15(2): 1076-82, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25564871

RESUMO

A quantitative description of recombination processes in nanostructured semiconductor photocatalysts-one that distinguishes between bulk (charge transport) and surface (chemical reaction) losses-is critical for advancing solar-to-fuel technologies. Here we present an in situ experimental framework that determines the bias-dependent quantum yield for ultrafast carrier transport to the reactive interface. This is achieved by simultaneously measuring the electrical characteristics and the subpicosecond charge dynamics of a heterostructured photoanode in a working photoelectrochemical cell. Together with direct measurements of the overall incident-photon-to-current efficiency, we illustrate how subtle structural modifications that are not perceivable by conventional X-ray diffraction can drastically affect the overall photocatalytic quantum yield. We reveal how charge carrier recombination losses occurring on ultrafast time scales can limit the overall efficiency even in nanostructures with dimensions smaller than the minority carrier diffusion length. This is particularly true for materials with high carrier concentration, where losses as high as 37% are observed. Our methodology provides a means of evaluating the efficacy of multifunctional designs where high overall efficiency is achieved by maximizing surface transport yield to near unity and utilizing surface layers with enhanced activity.

15.
Nano Lett ; 15(6): 3833-9, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25942281

RESUMO

Photoelectrochemical water splitting half reactions on semiconducting photoelectrodes have received much attention but efficient overall water splitting driven by a single photoelectrode has remained elusive due to stringent electronic and thermodynamic property requirements. Utilizing a tandem configuration wherein the total photovoltage is generated by complementary optical absorption across different semiconducting electrodes is a possible pathway to unassisted overall light-induced water splitting. Because of the low photovoltages generated by conventional photovoltaic materials (e.g., Si, CIGS), such systems typically consist of triple junction design that increases the complexity due to optoelectrical trade-offs and are also not cost-effective. Here, we show that a single solution processed organic-inorganic halide perovskite (CH3NH3PbI3) solar cell in tandem with a Fe2O3 photoanode can achieve overall unassisted water splitting with a solar-to-hydrogen conversion efficiency of 2.4%. Systematic electro-optical studies were performed to investigate the performance of tandem device. It was found that the overall efficiency was limited by the hematite's photocurrent and onset potential. To understand these limitations, we have estimated the intrinsic solar to chemical conversion efficiency of the doped and undoped Fe2O3 photoanodes. The total photopotential generated by our tandem system (1.87 V) exceeds both the thermodynamic and kinetic requirements (1.6 V), resulting in overall water splitting without the assistance of an electrical bias.


Assuntos
Compostos de Cálcio/química , Compostos Férricos/química , Óxidos/química , Fotólise , Luz Solar , Titânio/química , Água/química
16.
Chemistry ; 21(52): 19250-6, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26558337

RESUMO

A facile fabrication route towards a titanium-modified hematite photoanode has been developed, and the photoelectrochemical properties of this anode have been evaluated. Compared to pristine hematite, the activity of the modified photoanode in this work delivered almost twofold higher photocurrent under Air Mass 1.5G illumination. Further research revealed that the enhanced performance of the hematite photoanode with a titanium-modified surface resulted from the dominant impact of heterojunction formation and suppressed surface recombination, supplemented by a slightly improved light-harnessing ability.

17.
Bioresour Technol ; 394: 130206, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122998

RESUMO

Biophotovoltaic (BPV) devices are a potential decentralized and environmentally friendly energy source that harness solar energy through photosynthesis. BPV devices are self-regenerating, promising long-term usability. A practical strategy for enhancing BPV performance is to systematically screen for highly exoelectrogenic algal strains capable of generating large electric current density. In this study, a previously uncharacterized green algal strain - Parachlorella kessleri MACC-38 was found to generate over 340 µA mg-1 Chl cm-2. This output is approximately ten-fold higher than those of Chlamydomonas reinhardtii and Chlorella species. The current production of MACC-38 primarily originates from photosynthesis, and the strain maintains its physiological integrity throughout the process. MACC-38 exhibits unique traits such as low extracellular O2 and Fe(III) reduction, substantial copper (II) reduction, and significant extracellular acidification during current generation, contributing to its high productivity. The exoelectrogenic and growth characteristics of MACC-38 suggest that it could markedly boost BPV efficiency.


Assuntos
Chlamydomonas reinhardtii , Chlorella , Compostos Férricos , Fotossíntese
18.
ChemSusChem ; : e202400611, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38932662

RESUMO

Dye-sensitized photoelectrochemical cells can enable the production of molecules currently accessible through energetically demanding syntheses. Copper(I)-based dyes represent electronically tunable charge transfer and separation systems. Herein, we report a Cu(I)-bisdiimine donor-chromophore-acceptor dye with an absorbance in the visible part of the solar spectrum composed of a phenothiazine electron donor, and dipyrido[3,2-a:2',3'-c]phenazine electron acceptor. This complex is incorporated onto a zinc oxide nanowire semiconductor surface effectively forming a photoanode that is characterized spectroscopically and electrochemically. We investigate the photo-oxidation of hydroquinone, and the photosensitization of 2,2,6,6-tetramethylpiperidine-1-oxyl and N-hydroxyphthalimide for the oxidation of furfuryl alcohol to furfuraldehyde, resulting in near quantitative conversions, with poor selectivity to the alcohol.

19.
Heliyon ; 10(3): e24491, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318042

RESUMO

In this paper, we outline the development of stoichiometric chalcostibite, CuSbS2 thin films, from a single bath by pulse electrodeposition for its application as a photocathode in photoelectrochemical cells (PEC). The Cu/Sb precursor molar ratio of the deposition bath was varied to obtain stoichiometric CuSbS2 thin films. The optimized deposition and dissolution potentials were -0.72 V and -0.1 V vs saturated calomel electrode, respectively. The formation of CuSbS2 was analyzed using different characterization tools. X-ray diffraction and Raman results showed the formation of the pure chalcostibite phase from a precursor bath with molar ratio Cu/Sb = 0.41. The heterostructure CuSbS2/CdS/Pt was tested as a photocathode in the PEC. The energy positions of the conduction and valence bands were estimated from the Mott Schottky plots. The conduction band and valence band offset of CuSbS2/CdS heterojunction were 0.1 eV and 1.04 eV, respectively. The electric field created in the junction reduced the recombination of the electron/hole pairs and improved charge transfer in the interface. The heterostructure CuSbS2/CdS/Pt demonstrated an improved photocurrent density of 3.4 mA cm-2 at 0 V vs reversible hydrogen electrode. The PEC efficiency obtained from the CuSbS2/CdS heterojunction was 0.56 %. Therefore, we demonstrated the feasibility of an inexpensive technique like electrodeposition for the development of an efficient earth-abundant photocathode.

20.
Chemosphere ; 363: 142839, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019181

RESUMO

The compound 1,2-dichloroethane (1,2-DCA), a persistent and ubiquitous pollutant, is often found in groundwater and can strongly affect the ecological environment. However, the extreme bio-impedance of C-Cl bonds means that a high energy input is needed to drive biological dechlorination. Biotechnology techniques based on microbial photoelectrochemical cell (MPEC) could potentially convert solar energy into electricity and significantly reduce the external energy inputs currently needed to treat 1,2-DCA. However, low electricity-generating efficiency at the anode and sluggish bioreaction kinetics at the cathode limit the application of MPEC. In this study, a g-C3N4/Blue TiO2-NTA photoanode was fabricated and incorporated into an MPEC for 1,2-DCA removal. Optimal performance was achieved when Blue TiO2 nanotube arrays (Blue TiO2-NTA) were loaded with graphitic carbon nitride (g-C3N4) 10 times. The photocurrent density of the g-C3N4/Blue TiO2-NTA composite electrode was 2.48-fold higher than that of the pure Blue TiO2-NTA electrode under light irradiation. Furthermore, the MPEC equipped with g-C3N4/Blue TiO2-NTA improved 1,2-DCA removal efficiency by 45.21% compared to the Blue TiO2-NTA alone, which is comparable to that of a microbial electrolysis cell. In the modified MPEC, the current efficiency reached 69.07% when the light intensity was 150 mW cm-2 and the 1,2-DCA concentration was 4.4 mM. The excellent performance of the novel MPEC was attributed to the efficient direct electron transfer process and the abundant dechlorinators and electroactive bacteria. These results provide a sustainable and cost-effective strategy to improve 1,2-DCA treatment using a biocathode driven by a photoanode.


Assuntos
Eletrodos , Dicloretos de Etileno , Nanotubos , Titânio , Poluentes Químicos da Água , Titânio/química , Nanotubos/química , Dicloretos de Etileno/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Grafite/química , Nitrilas/química , Compostos de Nitrogênio/química , Fontes de Energia Bioelétrica , Técnicas Eletroquímicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA