Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(52): e2313514120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109538

RESUMO

To cope with seasonal environmental changes, organisms have evolved approximately 1-y endogenous circannual clocks. These circannual clocks regulate various physiological properties and behaviors such as reproduction, hibernation, migration, and molting, thus providing organisms with adaptive advantages. Although several hypotheses have been proposed, the genes that regulate circannual rhythms and the underlying mechanisms controlling long-term circannual clocks remain unknown in any organism. Here, we show a transcriptional program underlying the circannual clock in medaka fish (Oryzias latipes). We monitored the seasonal reproductive rhythms of medaka kept under natural outdoor conditions for 2 y. Linear regression analysis suggested that seasonal changes in reproductive activity were predominantly determined by an endogenous program. Medaka hypothalamic and pituitary transcriptomes were obtained monthly over 2 y and daily on all equinoxes and solstices. Analysis identified 3,341 seasonally oscillating genes and 1,381 daily oscillating genes. We then examined the existence of circannual rhythms in medaka via maintaining them under constant photoperiodic conditions. Medaka exhibited approximately 6-mo free-running circannual rhythms under constant conditions, and monthly transcriptomes under constant conditions identified 518 circannual genes. Gene ontology analysis of circannual genes highlighted the enrichment of genes related to cell proliferation and differentiation. Altogether, our findings support the "histogenesis hypothesis" that postulates the involvement of tissue remodeling in circannual time-keeping.


Assuntos
Oryzias , Animais , Oryzias/genética , Estações do Ano , Ritmo Circadiano/fisiologia , Gônadas , Fotoperíodo
2.
Genes Dev ; 32(19-20): 1332-1343, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30254107

RESUMO

Plants have evolved complex photoreceptor-controlled mechanisms to sense and respond to seasonal changes in day length. This ability allows plants to optimally time the transition from vegetative growth to flowering. UV-B is an important part intrinsic to sunlight; however, whether and how it affects photoperiodic flowering has remained elusive. Here, we report that, in the presence of UV-B, genetic mutation of REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) renders the facultative long day plant Arabidopsis thaliana a day-neutral plant and that this phenotype is dependent on the UV RESISTANCE LOCUS 8 (UVR8) UV-B photoreceptor. We provide evidence that the floral repression activity of RUP2 involves direct interaction with CONSTANS, repression of this key activator of flowering, and suppression of FLOWERING LOCUS T transcription. RUP2 therefore functions as an essential repressor of UVR8-mediated induction of flowering under noninductive short day conditions and thus provides a crucial mechanism of photoperiodic flowering control.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Flores/crescimento & desenvolvimento , Fotoperíodo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Raios Ultravioleta
3.
Insect Mol Biol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989821

RESUMO

Insects use seasonal diapause as an alternative strategy to endure adverse seasons. This developmental trajectory is induced by environmental cues like short-day lengths in late summer and early fall, but how insects measure day length is unknown. The circadian clock has been implicated in regulating photoperiodic or seasonal responses in many insects, including the Northern house mosquito, Culex pipiens, which enters adult diapause. To investigate the potential control of diapause by circadian control, we employed ChIP-sequencing to identify the downstream targets of a circadian transcription factor, PAR domain protein 1 (PDP1), that contribute to the hallmark features of diapause. We identified the nearest genes in a 10 kb region of the anticipated PDP1 binding sites, listed prospective targets and searched for PDP1-specific binding sites. By examining the functional relevance to diapause-specific behaviours and modifications such as metabolic pathways, lifespan extension, cell cycle regulation and stress tolerance, eight genes were selected as targets and validated using ChIP-qPCR. In addition, qRT-PCR demonstrated that the mRNA abundance of PDP1 targets increased in the heads of diapausing females during the middle of the scotophase (ZT17) compared with the early photophase (ZT1), in agreement with the peak and trough of PDP1 abundance. Thus, our investigation uncovered the mechanism by which PDP1 might generate a diapause phenotype in insects.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38805044

RESUMO

In 1936, Erwin Bünning published his groundbreaking work that the endogenous clock is used to measure day length for initiating photoperiodic responses. His publication triggered years of controversial debate until it ultimately became the basic axiom of rhythm research and the theoretical pillar of chronobiology. Bünning's thesis is frequently quoted in the articles in this special issue on the subject of "A clock for all seasons". However, nowadays only few people know in detail about Bünning's experiments and almost nobody knows about the contribution of his former doctoral student, Wolfgang Engelmann, to his theory because most work on this topic is published in German. The aim of this review is to give an overview of the most important experiments at that time, including Wolfgang Engelmann's doctoral thesis, in which he demonstrated the importance of the circadian clock for photoperiodic flower induction in the Flaming Katy, Kalanchoë blossfeldiana, but not in the Red Morning Glory, Ipomoea coccinea.


Assuntos
Relógios Circadianos , Fotoperíodo , Animais , História do Século XX , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38896260

RESUMO

Circadian clocks play an essential role in adapting locomotor activity as well as physiological, and metabolic rhythms of organisms to the day-night cycles on Earth during the four seasons. In addition, they can serve as a time reference for measuring day length and adapt organisms in advance to annual changes in the environment, which can be particularly pronounced at higher latitudes. The physiological responses of organisms to day length are also known as photoperiodism. This special issue of the Journal of Comparative Physiology A aims to account for diurnal and photoperiodic adaptations by presenting a collection of ten review articles, five original research articles, and three perspective pieces. The contributions include historical accounts, circadian and photoperiodic clock models, epigenetic, molecular, and neuronal mechanisms of seasonal adaptations, latitudinal differences in photoperiodic responses and studies in the wild that address the challenges of global change.


Assuntos
Relógios Circadianos , Fotoperíodo , Estações do Ano , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Humanos , Adaptação Fisiológica/fisiologia
6.
Ann Bot ; 134(1): 43-58, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38430562

RESUMO

BACKGROUND AND AIMS: There is growing interest in the functional ecology of poikilohydric non-vascular photoautotrophs (NVPs), including 'cryptogamic' bryophytes and lichens. These organisms are structurally important in many ecosystems, contributing substantially to ecosystem function and services, while also being sensitive to climate change. Previous research has quantified the climate change response of poikilohydric NVPs using predictive bioclimatic models with standard climate variables including precipitation totals and temperature averages. This study aimed for an improved functional understanding of their climate change response based on their growth rate sensitivity to moisture and light. METHODS: We conducted a 24-month experiment to monitor lichen hydration and growth. We accounted for two well-known features in the ecology of poikilohydric NVPs, and exemplified here for a structurally dominant lichen epiphyte, Lobaria pulmonaria: (1) sensitivity to multiple sources of atmospheric moisture including rain, condensed dew-formation and water vapour; and (2) growth determined by the amount of time hydrated in the light, driving photosynthesis, referred to as the Iwet hypothesis. KEY RESULTS: First, we found that even within an oceanic high-rainfall environment, lichen hydration was better explained by vapour pressure deficit than precipitation totals. Second, growth at a monthly resolution was positively related to the amount of time spent hydrated in the light, and negatively related to the amount of time spent hydrated in the dark. CONCLUSIONS: Using multimodel averaging to project growth models for an ensemble of future climate change scenarios, we demonstrated reduced net growth for L. pulmonaria by the late 21st century, explained by extended climate dryness and lichen desiccation for periods when there is otherwise sufficient light to drive photosynthesis. The results further emphasize a key issue of photoperiodism when constructing functionally relevant models to understand the risk of climate change, especially for poikilohydric NVPs.


Assuntos
Mudança Climática , Líquens , Fotossíntese , Líquens/fisiologia , Líquens/crescimento & desenvolvimento , Líquens/efeitos da radiação , Fotossíntese/fisiologia , Água/fisiologia , Luz , Ecossistema , Chuva
7.
J Pineal Res ; 76(5): e12996, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39129720

RESUMO

In mammals, seasonal opportunities and challenges are anticipated through programmed changes in physiology and behavior. Appropriate anticipatory timing depends on synchronization to the external solar year, achieved through the use of day length (photoperiod) as a synchronizing signal. In mammals, nocturnal production of melatonin by the pineal gland is the key hormonal mediator of photoperiodic change, exerting its effects via the hypothalamopituitary axis. In this review/perspective, we consider the key developments during the history of research into the seasonal synchronizer effect of melatonin, highlighting the role that the pars tuberalis-tanycyte module plays in this process. We go on to consider downstream pathways, which include discrete hypothalamic neuronal populations. Neurons that express the neuropeptides kisspeptin and (Arg)(Phe)-related peptide-3 (RFRP-3) govern seasonal reproductive function while neurons that express somatostatin may be involved in seasonal metabolic adaptations. Finally, we identify several outstanding questions, which need to be addressed to provide a much thorough understanding of the deep impact of melatonin upon seasonal synchronization.


Assuntos
Mamíferos , Melatonina , Estações do Ano , Melatonina/metabolismo , Animais , Mamíferos/metabolismo , Fotoperíodo , Humanos , Glândula Pineal/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33622784

RESUMO

Animals show photoperiodic responses in physiology and behavior to adapt to seasonal changes. Recent genetic analyses have demonstrated the significance of circadian clock genes in these responses. However, the importance of clock genes in photoperiodic responses at the cellular level and the physiological roles of the cellular responses are poorly understood. The bean bug Riptortus pedestris shows a clear photoperiodic response in its reproduction. In the bug, the pars intercerebralis (PI) is an important brain region for promoting oviposition. Here, we analyzed the role of the photoperiodic neuronal response and its relationship with clock genes, focusing on PI neurons. Large PI neurons exhibited photoperiodic firing changes, and high firing activities were primarily found under photoperiodic conditions suitable for oviposition. RNA interference-mediated knockdown of the clock gene period abolished the photoperiodic response in PI neurons, as well as the response in ovarian development. To clarify whether the photoperiodic response in the PI was dependent on ovarian development, we performed an ovariectomy experiment. Ovariectomy did not have significant effects on the firing activity of PI neurons. Finally, we identified the output molecules of the PI neurons and analyzed the relevance of the output signals in oviposition. PI neurons express multiple neuropeptides-insulin-like peptides and diuretic hormone 44-and RNA interference of these neuropeptides reduced oviposition. Our results suggest that oviposition-promoting peptidergic neurons in the PI exhibit a circadian clock-dependent photoperiodic firing response, which contributes to the photoperiodic promotion of oviposition.


Assuntos
Ritmo Circadiano/genética , Heterópteros/fisiologia , Proteínas de Insetos/genética , Neurônios/metabolismo , Neuropeptídeos/genética , Ovário/metabolismo , Oviposição/fisiologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Relógios Circadianos/genética , Feminino , Regulação da Expressão Gênica , Heterópteros/efeitos da radiação , Proteínas de Insetos/metabolismo , Potenciais da Membrana/fisiologia , Neurônios/citologia , Neuropeptídeos/metabolismo , Ovariectomia , Ovário/efeitos da radiação , Ovário/cirurgia , Oviposição/efeitos da radiação , Fotoperíodo , Somatomedinas/genética , Somatomedinas/metabolismo , Luz Solar
9.
Cell Tissue Res ; 393(3): 547-558, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37418027

RESUMO

The pond snail Lymnaea stagnalis exhibits clear photoperiodism in egg laying; it lays more eggs in long-day conditions than in medium-day conditions. A key regulator of egg laying is neurosecretory caudo-dorsal cells (CDCs) producing an ovulation hormone in the cerebral ganglia. Paired small budding structures of the cerebral ganglia (viz. the lateral lobe) also promote egg laying in addition to spermatogenesis and maturation of female accessory sex organs. However, it remains unknown which cells in the lateral lobe are responsible for these. Previous anatomical and physiological studies prompted us to hypothesize that canopy cells in the lateral lobe modulate activity of CDCs. However, double labeling of the canopy cell and CDCs revealed no sign of direct neural connections, suggesting that activity of CDCs is regulated either humorally or through a neural pathway independent of canopy cells. In addition, our detailed anatomical re-evaluation confirmed previous observations that the canopy cell bears fine neurites along the ipsilateral axon and extensions from the plasma membrane of the cell body, although the function of these extensions remains unexplored. Furthermore, comparison of electrophysiological properties between long-day and medium-day conditions indicated that the canopy cell's activity is moderately under photoperiodic regulation: resting membrane potentials of long-day snails are shallower than those of medium-day snails, and spontaneously spiking neurons are only observed in long-day conditions. Thus, canopy cells appear to receive photoperiodic information and regulate photoperiod-dependent phenomena, but not provide direct neural inputs to CDCs.


Assuntos
Lymnaea , Sistemas Neurossecretores , Animais , Masculino , Feminino , Lymnaea/fisiologia , Neurônios/fisiologia , Caramujos , Axônios/fisiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-37322375

RESUMO

Wyeomyia smithii, the pitcher-plant mosquito, has evolved from south to north and from low to high elevations in eastern North America. Along this seasonal gradient, critical photoperiod has increased while apparent involvement of the circadian clock has declined in concert with the evolutionary divergence of populations. Response to classical experiments used to test for a circadian basis of photoperiodism varies as much within and among populations of W. smithii as have been found in the majority of all other insects and mites. The micro-evolutionary processes revealed within and among populations of W. smithii, programmed by a complex underlying genetic architecture, illustrate a gateway to the macro-evolutionary divergence of biological timing among species and higher taxa in general.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37695537

RESUMO

Seasonal adaptation in animals is a complex process that involves genetic, epigenetic, and environmental factors. The present review explores recent studies on epigenetic mechanisms implicated in seasonal adaptation in animals. The review is divided into three main sections, each focusing on a different epigenetic mechanism: DNA methylation, histone modifications, and non-coding RNA. Additionally, the review delves into the current understanding of how these epigenetic factors contribute to the regulation of circadian and seasonal cycles. Understanding these molecular mechanisms provides the first step in deciphering the complex interplay between genetics, epigenetics, and the environment in driving seasonal adaptation in animals. By exploring these mechanisms, a better understanding of how animals adapt to changing environmental conditions can be achieved.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37697123

RESUMO

The identity and nature of the photoperiodic photoreceptors are now quite well known, as is the nature of the endocrine regulation of the resulting diapauses. The central problem of time measurement-how the photoperiodic clock differentiates long from short days-however, is still obscure, known only from whole-animal experiments and abstract models, although it is clearly a function of the insect circadian system. This review describes some of these experiments in terms of oscillator entrainment and two widely applicable photoperiodic clock models, external and internal coincidence, mainly using data from experiments on flesh flies (Sarcophaga spp) and the parasitic wasp, Nasonia vitripennis.

13.
Artigo em Inglês | MEDLINE | ID: mdl-37329349

RESUMO

Animals living at high latitudes are exposed to prominent seasonal changes to which they need to adapt to survive. By applying Zeitgeber cycles of different periods and photoperiods we show here that high-latitude D. ezoana flies possess evening oscillators and highly damped morning oscillators that help them adapting their activity rhythms to long photoperiods. In addition, the damped morning oscillators are involved in timing diapause. The flies measure night length and use external coincidence for timing diapause. We discuss the clock protein TIMELESS (d-TIM) as the molecular correlate and the small ventrolateral clock neurons (s-LNvs) as the anatomical correlates of the components measuring night length.

14.
Artigo em Inglês | MEDLINE | ID: mdl-37302092

RESUMO

Numerous insect species living in temperate regions survive adverse conditions, such as winter, in a state of developmental arrest. The most reliable cue for anticipating seasonal changes is the day-to-night ratio, the photoperiod. The molecular mechanism of the photoperiodic timer in insects is mostly unclear. Multiple pieces of evidence suggest the involvement of circadian clock genes, however, their role might be independent of their well-established role in the daily oscillation of the circadian clock. Furthermore, reproductive diapause is preferentially studied in females, whereas males are usually used for circadian clock research. Given the idiosyncrasies of male and female physiology, we decided to test male reproductive diapause in a strongly photoperiodic species, the linden bug Pyrrhocoris apterus. The data indicate that reproduction is not under circadian control, whereas the photoperiod strongly determines males' mating capacity. Clock mutants in pigment dispersing factor and cryptochrome-m genes are reproductive even in short photoperiod. Thus, we provide additional evidence of the participation of circadian clock genes in the photoperiodic time measurement in insects.

15.
Artigo em Inglês | MEDLINE | ID: mdl-37543964

RESUMO

David S. Saunders was an outstanding scientist, who devoted his life to his family and to insects. He has made many fundamental contributions to our understanding of how insects reproduce and adapt their reproduction and development to the seasonal changes on our planet. Most importantly, he was a pioneer in demonstrating the role of the circadian clock in insect photoperiodic time measurement, first in the jewel wasp Nasonia vitripennis, and later in varies species of flies. His books on biological rhythms and insect clocks are important undergraduate, graduate and research reference literature. David was also a brilliant teacher and mentor and played a major role in establishing and teaching a series of successful Erasmus-funded Chronobiology Summer Schools in Europe. He leaves behind a legacy, both professionally and personally.

16.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031958

RESUMO

The polar regions receive less solar energy than anywhere else on Earth, with the greatest year-round variation in daily light exposure; this produces highly seasonal environments, with short summers and long, cold winters. Polar environments are also characterised by a reduced daily amplitude of solar illumination. This is obvious around the solstices, when the Sun remains continuously above (polar 'day') or below (polar 'night') the horizon. Even at the solstices, however, light levels and spectral composition vary on a diel basis. These features raise interesting questions about polar biological timekeeping from the perspectives of function and causal mechanism. Functionally, to what extent are evolutionary drivers for circadian timekeeping maintained in polar environments, and how does this depend on physiology and life history? Mechanistically, how does polar solar illumination affect core daily or seasonal timekeeping and light entrainment? In birds and mammals, answers to these questions diverge widely between species, depending on physiology and bioenergetic constraints. In the high Arctic, photic cues can maintain circadian synchrony in some species, even in the polar summer. Under these conditions, timer systems may be refined to exploit polar cues. In other instances, temporal organisation may cease to be dominated by the circadian clock. Although the drive for seasonal synchronisation is strong in polar species, reliance on innate long-term (circannual) timer mechanisms varies. This variation reflects differing year-round access to photic cues. Polar chronobiology is a productive area for exploring the adaptive evolution of daily and seasonal timekeeping, with many outstanding areas for further investigation.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Ritmo Circadiano/fisiologia , Aves/fisiologia , Regiões Árticas , Mamíferos , Estações do Ano
17.
Ecol Lett ; 25(9): 2022-2033, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35965449

RESUMO

Climate change allows species to expand polewards, but non-changing environmental features may limit expansions. Daylength is unaffected by climate and drives life cycle timing in many animals and plants. Because daylength varies over latitudes, poleward-expanding populations must adapt to new daylength conditions. We studied local adaptation to daylength in the butterfly Lasiommata megera, which is expanding northwards along several routes in Europe. Using common garden laboratory experiments with controlled daylengths, we compared diapause induction between populations from the southern-Swedish core range and recently established marginal populations from two independent expansion fronts in Sweden. Caterpillars from the northern populations entered diapause in clearly longer daylengths than those from southern populations, with the exception of caterpillars from one geographically isolated population. The northern populations have repeatedly and rapidly adapted to their local daylengths, indicating that the common use of daylength as seasonal cue need not strongly limit climate-induced insect range expansions.


Assuntos
Borboletas , Animais , Sinais (Psicologia) , Fotoperíodo , Estações do Ano , Temperatura
18.
Plant Mol Biol ; 109(1-2): 135-146, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35316425

RESUMO

KEY MESSAGE: Our findings suggest most wheat biological processes are under the control of the daily expressed genes. Plant circadian rhythms represent daily changes in the activity of various processes, which are based on changes in the levels of gene expression and protein synthesis. In wheat, some key components of plant circadian clock have been identified, but there is little data on the daily expression and interactions of these genes. To study the common wheat daily transcriptome, RNA sequencing was performed. Using these data, genes expressed in daily pattern and the metabolic pathways controlled by them were identified: responses to stimuli and nutrients, transport, photoperiodism, photomorphogenesis, synthesis and degradation of different metabolites, and regulation of the processes of RNA synthesis. It was shown that a significant part of the transcriptome can vary greatly daily. Five expression patterns were identified. They were characterized by peaks at different time points and described the genes underlying these patterns. The analysis of the enrichment of gene ontology terms with various patterns allowed us to describe the main metabolic pathways in each group. Wheat homologs of the genes related to circadian clock in Arabidopsis were identified. Most of them were represented by three homoeologous genes expressed uniformly. Comparison of their expression patterns demonstrated a shift in the expression peaks for some core and accessory genes; the majority of wheat circadian genes were expressed in accordance with Arabidopsis homologs. This may indicate a similar functional role of these genes in wheat.


Assuntos
Arabidopsis , Relógios Circadianos , Arabidopsis/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Triticum/genética
19.
Mol Ecol ; 31(12): 3360-3373, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398940

RESUMO

Many mammalian species use photoperiod as a predictive cue to time seasonal reproduction. In addition, metabolic effects on the reproductive axis may also influence seasonal timing, especially in female small, short-lived mammals. To get a better understanding of how annual cycling environmental cues impact reproductive function and plasticity in small, short-lived herbivores with different geographic origins, we investigated the mechanisms underlying integration of temperature in the photoperiodic-axis regulating female reproduction in a Northern vole species (tundra vole, Microtus oeconomus) and in a Southern vole species (common vole, Microtus arvalis). We show that photoperiod and temperature interact to determine appropriate physiological responses; there is species-dependent annual variation in the sensitivity to temperature for reproductive organ development. In common voles, temperature can overrule photoperiodical spring-programmed responses, with reproductive organ mass being higher at 10°C than at 21°C, whereas in autumn they are less sensitive to temperature. These findings are in line with our census data, showing an earlier onset of spring reproduction in cold springs, while reproductive offset in autumn is synchronized to photoperiod. The reproductive organs of tundra voles were relatively insensitive to temperature, whereas hypothalamic gene expression was generally upregulated at 10°C. Thus, both vole species use photoperiod, whereas only common voles use temperature as a cue to control spring reproduction, which indicates species-specific reproductive strategies. Due to global warming, spring reproduction in common voles will be delayed, perhaps resulting in shorter breeding seasons and thus declining populations, as observed throughout Europe.


Assuntos
Arvicolinae , Di-Hidrotaquisterol , Animais , Arvicolinae/genética , Di-Hidrotaquisterol/metabolismo , Feminino , Fotoperíodo , Reprodução/genética , Estações do Ano , Temperatura
20.
Insect Mol Biol ; 31(2): 159-169, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34743397

RESUMO

Aphids are paradigmatic photoperiodic animals often used to study the role of the circadian clock in the seasonal response. Previously, we described some elements of the circadian clock core (genes period and timeless) and output (melatonin, AANATs and PTTH) that could have a role in the regulation of the aphid seasonal response. More recently, we identified two opsins (C-ops and SWO4) as candidate input photoperiodic receptors. In the present report, we focus on the study of cryptochromes (cry) as photoreceptors of the circadian clock and discuss their involvement in the seasonal response. We analyse the expression of cry1 and cry2 genes in a circadian and seasonal context, and map their expression sites in the brain. We observe a robust rhythmic expression of cry2 peaking at dusk in phase with core clock genes period and timeless, while cry1 shows a weaker rhythm. Changes in cry1 and cry2 expression correlate with activation of the seasonal response, suggesting a possible link. Finally, we map the expression of cry1 and cry2 genes to clock neurons in the pars lateralis, a region essential for the photoperiodic response. Our results support a role for cry as elements of the aphid circadian clock and suggest a role in photoreception for cry1 and in clock repression for cry2.


Assuntos
Afídeos , Relógios Circadianos , Animais , Afídeos/genética , Afídeos/metabolismo , Encéfalo/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Criptocromos/metabolismo , Pisum sativum/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA