Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202414938, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255399

RESUMO

Polarity-reversal catalysts (PRCs) for hydrogen-atom transfer reactions have been known in radical chemistry for more than 60 years but are rarely described and utilized in the field of photopolymerization up to now. Herein, we present the use of thiols in a unique dual function as thiol-ene click reagents and as polarity-reversal catalyst (PRC) for the radical-mediated redox rearrangements of benzylidene acetals. During the rearrangement reaction, cyclic benzylidene acetals are transformed into benzoate esters leading to a significant volumetric expansion to reduce thermoset shrinkage. We were able to show that this expansion on a molecular level reduces shrinkage and polymerization stress but does not significantly affect the (thermo-)mechanical properties of the cross-linked networks. One of the key advantages of this process lies in its simplicity. No additives like sensitizers or combinations of different initiators (radical and cationic) are needed. Furthermore, the same light source can be used for both the polymerization reaction and expansion through rearrangement. Additionally, the applied photoinitiator enables spatial and temporal control of the polymerization; thus, the developed system can be an excellent platform for additive manufacturing processes.

2.
Sensors (Basel) ; 23(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37960472

RESUMO

This paper presents a holographic sensor based on reflection holograms recorded in the commercial photopolymer Bayfol® HX 200. The recording geometry and index modulation of the hologram were optimised to improve accuracy for this specific application. The sensor was subjected to tests using various analytes, and it exhibited sensitivity to acetic acid and ethanol. The measurements revealed a correlation between the concentration of the analyte in contact with the sensor's surface and the resulting wavelength shift of the diffracted light. The minimum detectable concentrations were determined to be above 0.09 mol/dm3 for acetic acid and 5% (v/v) for ethanol. Notably, the sensors demonstrated a rapid response time. Given that ethanol serves as a base for alcoholic beverages, and acetic acid is commonly found in commercial vinegar, these sensors hold promise for applications in food quality control.

3.
Sensors (Basel) ; 23(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177479

RESUMO

Volume reflection hologram-based sensors are designed to visibly change colour in response to a target stressor or analyte. However, reflection holograms fabricated in thick photopolymer films are highly angularly selective, making these sensors challenging to view and interpret by non-experts. Here, the use of speckle holography to improve the visibility of reflection holograms is presented. A novel recording approach combining speckle recording techniques with Denisyuk reflection recording geometry is described. The recorded speckle reflection grating operates as a series of multiplexed reflection gratings with a range of spatial frequencies, capable of reflecting light at a wider range of angles. A comparative study of the angular and wavelength selectivity of speckle and standard reflection gratings was conducted. The FWHM of the angular selectivity curves of the speckle reflection gratings is doubled (4°) in comparison to standard 4500 lines/mm reflection gratings (2°). The wavelength selectivity FWHM is also doubled from 4.2 to 8.6 nm. The comparative ability of the speckle and standard reflection gratings to act as colour-changing compressional pressure sensors in the 0.88-5.31 MPa range is described. Finally, we present a prototype reflection hologram viewer which enables the easy observation of angularly specific reflection holograms by non-experts.

4.
Molecules ; 29(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38202797

RESUMO

Polarized holographic properties play an important role in the holographic data storage of traditional organic recording materials. In this study, reduced graphene oxide (RGO) was introduced into a phenanthraquinone-doped polymethylmethacrylate (PQ/PMMA) photopolymer to effectively improve the orthogonal polarization holographic properties of the material. Importantly, the lateral size of RGO nanosheets has an important influence on the polymerization of MMA monomers. To some extent, a larger RGO diameter is more conducive to promoting the polymerization of MMA monomers and can induce more PMMA polymers to be grafted on its surface, thus obtaining a higher PMMA molecular weight. However, too large of a RGO will lead to too much grafting of the PMMA chain to shorten the length of a single PMMA chain, which will lead to the degradation of PQ/PMMA holographic performance. Compared with the original PQ/PMMA, the diffraction efficiency of the RGO-doped PQ/PMMA photopolymer can reach more than 11.4% (more than 3.5 times higher than the original PQ/PMMA), and its photosensitivity is significantly improved by 4.6 times. This study successfully synthesized RGO-doped PQ/PMMA high-performance photopolymer functional materials for multi-dimensional holographic storage by introducing RGO nanoparticles. Furthermore, the polarization holographic properties of PQ/PMMA photopolymer materials can be further accurately improved to a new level.

5.
Regul Toxicol Pharmacol ; 133: 105198, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35659913

RESUMO

Material jetting and vat photopolymerization additive manufacturing (AM) processes use liquid resins to build objects. These resins can contain skin irritants and/or sensitizers but product safety data sheets (SDSs) might not declare all ingredients. We characterized elemental and organic skin irritants and sensitizers present in 39 commercial products; evaluated the influence of resin manufacturer, system, color, and AM process type on the presence of irritants and sensitizers; and compared product SDSs to results. Among all products, analyses identified 23 irritant elements, 54 irritant organic substances, 22 sensitizing elements, and 23 sensitizing organic substances; SDSs listed 3, 9, 4, and 6 of these ingredients, respectively. Per product, the number and total mass (an indicator of potential dermal loading) of ingredients varied: five to 17 irritant elements (8.32-4756.65 mg/kg), one to 17 irritant organics (3273 to 356,000 mg/kg), four to 17 sensitizing elements (8.27-4755.63 mg/kg), and one to seven sensitizing organics (15-382,170 mg/kg). Median numbers and concentrations of irritants and sensitizers were significantly influenced by resin system and AM process type. The presence of undeclared irritants and sensitizers in these resins supports the need for more complete information on product SDSs for comprehensive dermal risk assessments.


Assuntos
Qualidade de Produtos para o Consumidor , Irritantes , Lâmpadas de Polimerização Dentária , Irritantes/toxicidade , Cura Luminosa de Adesivos Dentários , Medição de Risco
6.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234816

RESUMO

Phenanthraquinone-doped polymethyl methacrylate (PQ/PMMA) photopolymers are considered to be the most promising holographic storage media due to their unique properties, such as high stability, a simple preparation process, low price, and volumetric shrinkage. This paper reviews the development process of PQ/PMMA photopolymers from inception to the present, summarizes the process, and looks at the development potential of PQ/PMMA in practical applications.


Assuntos
Holografia , Polimetil Metacrilato
7.
Sensors (Basel) ; 21(8)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920480

RESUMO

We propose a full-color see-through three-dimensional (3D) display method based on volume holography. This method is based on real object interference, avoiding the device limitation of spatial light modulator (SLM). The volume holography has a slim and compact structure, which realizes 3D display through one single layer of photopolymer. We analyzed the recording mechanism of volume holographic gratings, diffraction characteristics, and influencing factors of refractive index modulation through Kogelnik's coupled-wave theory and the monomer diffusion model of photopolymer. We built a multiplexing full-color reflective volume holographic recording optical system and conducted simultaneous exposure experiment. Under the illumination of white light, full-color 3D image can be reconstructed. Experimental results show that the average diffraction efficiency is about 53%, and the grating fringe pitch is less than 0.3 µm. The reconstructed image of volume holography has high diffraction efficiency, high resolution, strong stereo perception, and large observing angle, which provides a technical reference for augmented reality.

8.
Sensors (Basel) ; 20(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114765

RESUMO

Efficient and low-cost solar-energy collection has become the focus of many research works. This paper proposes a recording method and an experimental verification of a wide-band, large-angle, and high concentration-ratio volume-holographic grating for solar concentration. We applied the Kogelnik coupled-wave theory and photopolymer diffusion model to analyse the formation mechanism and influencing factors on the diffraction efficiency of monochromatic volume-holographic gratings. We design and construct a three-color laser-interference system to record three monochromatic volume-holographic gratings. The best recording conditions are determined by experiment and simulation. A trichromatic volume-holographic grating is obtained by gluing the three monochromatic gratings together. The experimental results show that the trichromatic volume-holographic grating with a working angle of 6.7° and a working band of visible light has a light concentration ratio of 149.2 under an illumination of the combined recorded three-color beams, and that under sunlight is 27.2. We find that the proposed trichromatic volume-holographic grating for light concentration offers the advantages of wide band and high light concentration ratio, which provide a reference for solar concentration.

9.
Sensors (Basel) ; 20(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287169

RESUMO

A new double-layer sunlight concentration system, where each layer is divided into two regions, is proposed, and the system has four volume holograms. Since the four holograms convert light in different directions, the interlayer crosstalk is reduced, and the system has a high concentration ratio. The simulation results show that the concentration system can achieve a 30° operation angle range. The holograms are fabricated on photopolymer substrates, and the left half of the system is implemented using two holograms. The characteristics of the left half of the system are assessed. The agreement of the simulation and experimental results on diffraction efficiency validates the proposed method. The tested monochromatic concentration ratio can achieve a record of 418.8, and the concentration ratio under sunlight is 5.38. The experiment results of light use efficiency are close to the simulation with non-crosstalk, which indicates that the interlayer crosstalk is small.

10.
Beilstein J Org Chem ; 16: 415-444, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32273905

RESUMO

Cyanines derived from heptamethines were mainly discussed regarding their functionalization to broaden the solubility in different surroundings exhibiting either hydrophilic or hydrophobic properties and to tailor made the ΔG et photopysical properties with respect to absorption and fluorescence. Electrochemical properties were additionally considered for some selected examples. The cyanines chosen comprised as end groups either indolenine, benzo[e]- or benzo[cd]indolium pattern, which facilitated to shift the absorption between 750-1000 nm. This enabled their use in applications with light sources emitting in the near-infrared (NIR) region selected from high power LEDs or lasers with line-shaped focus. The absorbers considered were discussed regarding their function as sensitizer for applications related to Chemistry 4.0 standards. These were mainly photopolymer coatings, which can be found for applications in the graphic industry or to protect selected substrates. The huge release of heat on demand upon turning ON or OFF the NIR light source enables them for photothermal treatment in processes requesting heat to initiate either chemical (activated reactions) or physical (melting, evaporation) events.

11.
J Prosthodont ; 28(2): e557-e562, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29968424

RESUMO

PURPOSE: To evaluate the accuracy (trueness and precision) of dental replica models produced by using photopolymer materials in additive manufacturing. MATERIALS AND METHODS: A complete arch model was scanned using an extraoral scanner (Identica Blue) and established as reference. For the control group, 10 stone models were acquired through the conventional method from the reference model. For the experimental groups, digital data were acquired using an intraoral scanner (CEREC Omnicam), and 10 stereolithographic apparatus (SLA) models and 10 PolyJet models were made. All models were scanned with an extraoral scanner. Three-dimensional analysis software was used to measure differences between the 3D scanned images in root mean square values. The ISO-5725-1 specification was followed to measure trueness and precision between two 3D scanned data. Trueness was calculated by overlapping scanned data with the reference model and precision by performing pairwise intragroup comparisons. Also the ratio of region out of tolerance (> ±50 µm) was measured. One-way ANOVA and Tukey's post hoc analysis were applied. RESULTS: There was no statistically significant difference in trueness between the stone and the SLA models (p > 0.05). Dental replica models using photopolymer materials showed statistically significantly better precision than that of the stone model (p < 0.05). Regarding tolerance, no statistically significant difference was observed between the stone and the SLA models (p > 0.05). CONCLUSIONS: Although the dental replica models using photopolymer materials did not show better trueness than the conventional stone models, there was no significant difference between the SLA and the stone models. Concerning precision, dental replica models using photopolymer materials presented better results than that of the conventional stone models. In sum, dental replica models using photopolymer materials showed sufficient accuracy for clinical use.


Assuntos
Desenho Assistido por Computador , Materiais Dentários/química , Modelos Dentários , Arco Dental , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Luz , Teste de Materiais , Polimerização , Reprodutibilidade dos Testes , Software , Estereolitografia
12.
Adv Mater ; : e2406600, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258368

RESUMO

Thermoset toughness and deconstructability are often opposing features; simultaneously improving both without sacrificing other mechanical properties (e.g., stiffness and tensile strength) is difficult, but, if achieved, could enhance the usage lifetime and end-of-life options for these materials. Here, a strategy that addresses this challenge in the context of photopolymer resins commonly used for 3D printing of glassy, acrylic thermosets is introduced. It is shown that incorporating bis-acrylate "transferinkers," which are cross-linkers capable of undergoing degenerative chain transfer and new strand growth, as additives (5-25 mol%) into homemade or commercially available photopolymer resins leads to photopolymer thermosets with substantially improved tensile toughness and triggered chemical deconstructability with minimal impacts on Young's moduli, tensile strengths, and glass transition temperatures. These properties result from a transferinker-driven topological transition in network structure from the densely cross-linked long, heterogeneous primary strands of traditional photopolymer networks to more uniform, star-like networks with few dangling ends; the latter structure more effectively bear stress yet is also more easily depercolated via solvolysis. Thus, transferinkers represent a simple and effective strategy for improving the mechanical properties of photopolymer thermosets and providing a mechanism for their triggered deconstructability.

13.
Polymers (Basel) ; 16(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794611

RESUMO

Urethane acrylate (UA) was synthesized from various di-polyols, such as poly(tetrahydrofuran) (PTMG, Mn = 1000), poly(ethylene glycol) (PEG, Mn = 1000), and poly(propylene glycol) (PPG, Mn = 1000), for use as a polymer binder for paint. Polymethyl methacrylate (PMMA) and UA were blended to form an acrylic resin with high transmittance and stress-strain curve. When PMMA was blended with UA, a network structure was formed due to physical entanglement between the two polymers, increasing the mechanical properties. UA was synthesized by forming a prepolymer using di-polyol and hexamethylene diisocyanate, which were chain structure monomers, and capping them with 2-hydroxyethyl methacrylate to provide an acryl group. Fourier transform infrared spectroscopy was used to observe the changes in functional groups, and gel permeation chromatography was used to confirm that the three series showed similar molecular weight and PDI values. The yellowing phenomenon that appears mainly in the curing reaction of the polymer binder was solved, and the mechanical properties according to the effects of the polyol used in the main chain were compared. The content of the blended UA was quantified using ultravioletvisible spectroscopy at a wavelength of 370 nm based on 5, 10, 15, and 20 wt%, and the shear strength and tensile strength were evaluated using specimens in a suitable mode. The ratio for producing the polymer binder was optimized. The mechanical properties of the polymer binder with 5-10 wt% UA were improved in all series.

14.
Polymers (Basel) ; 16(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38543426

RESUMO

The polarization state of light waves significantly affects the quality of holographic recordings. This paper quantitatively analyzes the impact of different polarization states of signal and reference beams on the quality of holographic recordings in PQ/PMMA photopolymer systems during the holography process. By deriving the light field distribution of the interference between two light waves of different polarization states and introducing the interference fringe contrast and the modulation of the refractive index of the photopolymer, we established the relationship between the diffraction efficiency of PQ/PMMA photopolymer holographic gratings and the angle between polarization directions. Based on this relationship, simulations and experiments were conducted. The experimental results demonstrated that as the angle between the polarization directions increased, the diffraction efficiency of the material decreased, with the efficiency dropping to 24.69% of its original value when the angle increased from 0° to 50°. When the angle increased to 60°, the influence of polarization characteristics became gradually significant, and at 90°, it was entirely dominated by polarization characteristics. The photoinduced birefringence properties of the PQ/PMMA prepared in the measurement experiment were studied, and the polarization characteristics of the reconstructed light under polarization direction angles of 0°, 60°, and 90° were investigated. The results indicated that at a polarization direction angle of 60 degrees, the material exhibited a significant response to the polarization information of the signal light. Finally, holographic recordings of objects at different polarization direction angles were conducted, and the reconstructed images were used to visually reflect the impact of the polarization direction angle on the quality of holographic recordings.

15.
ACS Appl Mater Interfaces ; 16(38): 51575-51583, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39276070

RESUMO

Holographic data storage technology is a cost-effective solution for long-term archival data storage. However, the development of suitable holographic recording materials remains a challenge. Among these materials, phenanthraquinone-doped poly(methyl methacrylate) (PQ/PMMA) stands out due to its low cost and controllable thickness. Nevertheless, its limited photosensitivity and diffraction efficiency hinder its widespread application. In order to solve these problems, we put forward a kind of convenient and simple, low cost strategy, by adding plasticizer N,N-dimethylformamide (DMF) for preparation of DMF-PQ/PMMA photopolymer, avoid the use of complex compounds. The addition of DMF not only influences the thermal polymerization stage but also forms weak interactions with PQ during the photoreaction process, thereby enhancing the holographic performance of DMF-PQ/PMMA. Consequently, we achieved a remarkable 9.1-fold increase in photosensitivity (from ∼0.35 to 3.18 cm J-1), improved diffraction efficiency by 20% (from 65% to 80%), and reduced volume shrinkage by a factor of 8 (from 0.4% to 0.05%). Furthermore, utilizing a collinear holographic storage system with multiplexing shift at a scale of 5 µm resulted in an impressively low minimum bit error rate (BER) of only 0.36% (with an average BER of 1.4%), highlighting the fast processing capability and potential for low BER applications in holographic information storage using DMF-PQ/PMMA.

16.
Materials (Basel) ; 17(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255490

RESUMO

In this study, caffeine-loaded photoresin composites with homogeneous structures, suitable for additive manufacturing of transdermal microneedle systems, were obtained. The properties of the composites with varying caffeine concentrations (0.1-0.4% w/w) were investigated for carbon-carbon double bond conversion using Fourier Transform Infrared Spectroscopy, surface wettability and mechanical properties using a static tensile test and nanoindentation, and caffeine release in ethanol using UV-Vis. The caffeine concentration did not affect the final degree of double bond conversion, which was confirmed in tensile tests, where the strength and Young's modulus of caffeine-loaded samples had comparable values to control ones. Samples with 0.1 and 0.2% caffeine content showed an increase in nanohardness and reduced elastic modulus of 50 MPa and 1.5 MPa, respectively. The good wettability of the samples with water and the increase in surface energy is a favorable aspect for the dedicated application of the obtained composite materials. The amount of caffeine released into the ethanol solution at 1, 3 and 7 days reached a maximum value of 81%, was higher for the lower concentration of caffeine in the sample and increased over time. The conducted research may enhance the potential application of composite materials obtained through the digital light processing method in additive manufacturing.

17.
Materials (Basel) ; 17(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39274704

RESUMO

Additive manufacturing (AM) techniques are among the fastest-growing technologies for producing even the most geometrically complex models. Unfortunately, the lack of development of metrology guidelines for these methods, related to dimensional and geometry accuracy and surface roughness, significantly limits the commercialization of finished products manufactured using these methods. This paper aims to evaluate the macro- and micro-geometry of models manufactured using the PolyJet method from three types of photopolymer resins: Digital ABS Plus, RGD 720, and Vero Clear. For this purpose, test parts were designed and then manufactured on an Object 350 Connex3 3D printer. The Atos II Triple Scan optical system and the InfiniteFocusG4 microscope were used to evaluate macro- and micro-geometry, respectively. For both systems, measurement procedures were developed to obtain statistical results for evaluating geometric accuracy and surface roughness parameters. In the case of macro-geometry, for Digital ABS Plus and Vero Clear materials, 50% of the central deviations (between first quartile Q1 and third quartile Q3) lie within the range (-0.06, 0.03 mm) and for RGD 720 material within the range (-0.08, 0.01 mm). For micro-geometry, the arithmetic mean height (Sa) values for the Digital ABS Plus and Vero Clear samples were approximately 1.6 and 2.0 µm, respectively, while for RGD 720, it was 15.9 µm. The total roughness height expressed by reduced peak height (Spk) + core height (Sk) + reduced dale depth (Svk) for the Digital ABS Plus and Vero Clear samples was approximately 9.1 and 10.5 µm, respectively, while for the RGD 720, it was 101.9 µm.

18.
Polymers (Basel) ; 16(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891431

RESUMO

Phenanthrenequinone-doped poly(methyl methacrylate) (PQ/PMMA) photopolymers are potential holographic storage media owing to their high-density storage capacities, low costs, high stability, and negligible shrinkage in volume holographic permanent memory. However, because of the limitations of the substrate, conventional Plexiglas materials do not exhibit a good performance in terms of photosensitivity and molding. In this study, the crosslinked structure of PMMA was modified by introducing a dendrimer monomer, pentaerythritol tetraacrylate (PETA), which increases the photosensitivity of the material 2 times (from ~0.58 cm/J to ~1.18 cm/J), and the diffraction efficiency is increased 1.6 times (from ~50% to ~80%). In addition, the modified material has a superior ability to mold compared to conventional materials. Moreover, the holographic performance enhancement was evaluated in conjunction with a quantum chemical analysis. The doping of PETA resulted in an overall decrease in the energy required for the reaction system of the material, and the activation energy decreased by ~0.5 KJ/mol in the photoreaction stage.

19.
Asian J Surg ; 47(1): 237-244, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37633781

RESUMO

OBJECTIVES: Among types of 3D printing, fused deposition modeling (FDM) and digital light processing (DLP) are the most accessible, making them attractive, low-cost options for simulating surgical procedures. This study characterized and compared inexpensive, synthetic temporal bone models printed using Resin, PETG, and Simubone™. MATERIALS AND METHODS: This study compared models made of polyethylene terephthalate glycol (PETG), Simubone™ produced from a FDM printer, and photopolymer resin from a DLP printer. These temporal bone models were processed by: (1) DICOM files from a patient's CT scan were segmented to define critical parts expected in a temporal bone surgery. (2) The model was appended with a base that articulates with a 3D-printed temporal bone holder. (3) The refined, patient-specific model was manufactured using FDM and DLP printing technologies. (4) The models were sent to evaluators, who assessed the models based on anatomic accuracy, dissection experience, and its applicability as a surgical simulation tool for temporal bone dissection. RESULTS: The photopolymer resin outperformed PETG and Simubone™ in terms of anatomical accuracy and dissection experience. Additionally, resin and PETG were evaluated to be appropriate for simple mastoidectomy and canal wall down mastoidectomy while Simubone™ was only suitable for simple mastoidectomy. All models were unsuitable for posterior tympanotomy and labyrinthectomy. CONCLUSIONS: Photopolymer resin and PETG have shown to be suitable materials for dissection models with 3D-printed resin models showing more accuracy in replicating anatomical structures and dissection experience. Hence, the use of 3D-printed temporal bones may be a suitable low-cost alternative to cadaveric dissection.


Assuntos
Modelos Anatômicos , Impressão Tridimensional , Humanos , Osso Temporal/diagnóstico por imagem , Osso Temporal/cirurgia
20.
Materials (Basel) ; 17(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793385

RESUMO

This study investigates how varying cell size affects the mechanical behaviour of photopolymer Triply Periodic Minimal Surfaces (TPMS) under different deformation rates. Diamond, Gyroid, and Primitive TPMS structures with spatially graded cell sizes were tested. Quasi-static experiments measured boundary forces, representing material behaviour, inertia, and deformation mechanisms. Separate studies explored the base material's behaviour and its response to strain rate, revealing a strength increase with rising strain rate. Ten compression tests identified a critical strain rate of 0.7 s-1 for "Grey Pro" material, indicating a shift in failure susceptibility. X-ray tomography, camera recording, and image correlation techniques observed cell connectivity and non-uniform deformation in TPMS structures. Regions exceeding the critical rate fractured earlier. In Primitive structures, stiffness differences caused collapse after densification of smaller cells at lower rates. The study found increasing collapse initiation stress, plateau stress, densification strain, and specific energy absorption with higher deformation rates below the critical rate for all TPMS structures. However, cell-size graded Primitive structures showed a significant reduction in plateau and specific energy absorption at a 500 mm/min rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA