Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
New Phytol ; 242(1): 61-76, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358032

RESUMO

Plants possess a large variety of nonacquisitive belowground organs, such as rhizomes, tubers, bulbs, and coarse roots. These organs determine a whole set of functions that are decisive in coping with climate, productivity, disturbance, and biotic interactions, and have been hypothesized to affect plant distribution along environmental gradients. We assembled data on belowground organ morphology for 1712 species from Central Europe and tested these hypotheses by quantifying relationships between belowground morphologies and species optima along ecological gradients related to productivity and disturbance. Furthermore, we linked these data with species co-occurrence in 30 115 vegetation plots from the Czech Republic to determine relationships between belowground organ diversity and these gradients. The strongest gradients determining belowground organ distribution were disturbance severity and frequency, light, and moisture. Nonclonal perennials and annuals occupy much smaller parts of the total environmental space than major types of clonal plants. Forest habitats had the highest diversity of co-occurring belowground morphologies; in other habitats, the diversity of belowground morphologies was generally lower than the random expectation. Our work shows that nonacquisitive belowground organs may be partly responsible for plant environmental niches. This adds a new dimension to the plant trait spectrum, currently based on acquisitive traits (leaves and fine roots) only.


Assuntos
Ecossistema , Plantas , Florestas , Clima , Europa (Continente)
2.
Glob Chang Biol ; 30(1): e17104, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273555

RESUMO

Globally pervasive increases in atmospheric CO2 and nitrogen (N) deposition could have substantial effects on plant communities, either directly or mediated by their interactions with soil nutrient limitation. While the direct consequences of N enrichment on plant communities are well documented, potential interactions with rising CO2 and globally widespread phosphorus (P) limitation remain poorly understood. We investigated the consequences of simultaneous elevated CO2 (eCO2 ) and N and P additions on grassland biodiversity, community and functional composition in P-limited grasslands. We exposed soil-turf monoliths from limestone and acidic grasslands that have received >25 years of N additions (3.5 and 14 g m-2 year-1 ) and 11 (limestone) or 25 (acidic) years of P additions (3.5 g m-2 year-1 ) to eCO2 (600 ppm) for 3 years. Across both grasslands, eCO2 , N and P additions significantly changed community composition. Limestone communities were more responsive to eCO2 and saw significant functional shifts resulting from eCO2 -nutrient interactions. Here, legume cover tripled in response to combined eCO2 and P additions, and combined eCO2 and N treatments shifted functional dominance from grasses to sedges. We suggest that eCO2 may disproportionately benefit P acquisition by sedges by subsidising the carbon cost of locally intense root exudation at the expense of co-occurring grasses. In contrast, the functional composition of the acidic grassland was insensitive to eCO2 and its interactions with nutrient additions. Greater diversity of P-acquisition strategies in the limestone grassland, combined with a more functionally even and diverse community, may contribute to the stronger responses compared to the acidic grassland. Our work suggests we may see large changes in the composition and biodiversity of P-limited grasslands in response to eCO2 and its interactions with nutrient loading, particularly where these contain a high diversity of P-acquisition strategies or developmentally young soils with sufficient bioavailable mineral P.


Assuntos
Dióxido de Carbono , Pradaria , Dióxido de Carbono/análise , Fósforo , Plantas , Poaceae , Nitrogênio , Solo/química , Carbonato de Cálcio
3.
Glob Chang Biol ; 30(1): e17034, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273527

RESUMO

Redesigning agrosystems to include more ecological regulations can help feed a growing human population, preserve soils for future productivity, limit dependency on synthetic fertilizers, and reduce agriculture contribution to global changes such as eutrophication and warming. However, guidelines for redesigning cropping systems from natural systems to make them more sustainable remain limited. Synthetizing the knowledge on biogeochemical cycles in natural ecosystems, we outline four ecological systems that synchronize the supply of soluble nutrients by soil biota with the fluctuating nutrient demand of plants. This synchrony limits deficiencies and excesses of soluble nutrients, which usually penalize both production and regulating services of agrosystems such as nutrient retention and soil carbon storage. In the ecological systems outlined, synchrony emerges from plant-soil and plant-plant interactions, eco-physiological processes, soil physicochemical processes, and the dynamics of various nutrient reservoirs, including soil organic matter, soil minerals, atmosphere, and a common market. We discuss the relative importance of these ecological systems in regulating nutrient cycles depending on the pedoclimatic context and on the functional diversity of plants and microbes. We offer ideas about how these systems could be stimulated within agrosystems to improve their sustainability. A review of the latest advances in agronomy shows that some of the practices suggested to promote synchrony (e.g., reduced tillage, rotation with perennial plant cover, crop diversification) have already been tested and shown to be effective in reducing nutrient losses, fertilizer use, and N2 O emissions and/or improving biomass production and soil carbon storage. Our framework also highlights new management strategies and defines the conditions for the success of these nature-based practices allowing for site-specific modifications. This new synthetized knowledge should help practitioners to improve the long-term productivity of agrosystems while reducing the negative impact of agriculture on the environment and the climate.


Assuntos
Ecossistema , Solo , Humanos , Agricultura , Plantas , Carbono
4.
Oecologia ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898337

RESUMO

The interplay of positive and negative species interactions controls species assembly in communities. Dryland plant communities, such as savannas, are important to global biodiversity and ecosystem functioning. Sandhill oaks in xeric savannas of the southeastern United States can facilitate longleaf pine by enhancing seedling survival, but the effects of oaks on recruitment and growth of longleaf pine have not been examined. We censused, mapped, and monitored nine contiguous hectares of longleaf pine in a xeric savanna to quantify oak-pine facilitation, and to examine other factors impacting recruitment, such as vegetation cover and longleaf pine tree density. We found that newly recruited seedlings and grass stage longleaf pines were more abundant in oak-dominated areas where densities were 230% (newly recruited seedlings) and 360% (grass stage) greater from lowest to highest oak neighborhood densities. Longleaf pine also grew faster under higher oak density. Longleaf pine recruitment was lowest under longleaf pine canopies. Mortality of grass stage and bolt stage longleaf pine was low (~1.0% yr-1) in the census interval without fire. Overall, our findings highlight the complex interactions between pines and oaks-two economically and ecologically important genera globally. Xeric oaks should be incorporated as a management option for conservation and restoration of longleaf pine ecosystems.

5.
Environ Geochem Health ; 46(5): 167, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592380

RESUMO

Microorganisms are crucial elements of terrestrial ecosystems, which play significant roles in improving soil physicochemical properties, providing plant growth nutrients, degrading toxic and harmful chemicals, and biogeochemical cycling. Variations in the types and quantities of root exudates among different plants greatly alter soil physicochemical properties and result in variations in the diversity, structure, and function of soil microorganisms. Not much is understood about the differences of soil fungi and archaea communities for different plant communities in coastal wetlands, and their response mechanisms to environmental changes. In this study, fungal and archaea communities in soils of Suaeda salsa, Phragmites australis, and Spartina alterniflora in the intertidal habitat of coastal wetlands were selected for research. Soil fungi and archaea were analyzed for diversity, community structure, and function using high throughput ITS and 16S rRNA gene sequencing. The study revealed significant differences in fungi and archaea's diversity and community structure in the rhizosphere soil of three plant communities. At the same time, there is no significant difference in the functional groups. SOM, TP, AP, MC, EC and SOM, TN, TP, AP, MC, EC are the primary environmental determinants affecting changes in soil fungal and archaeal communities, respectively. Variations in the diversity, community structure, and ecological functions of fungi and archaea can be used as indicators characterizing the impact of external disturbances on the soil environment, providing a theoretical foundation for the effective utilization of soil microbial resources, thereby achieving the goal of environmental protection and health promotion.


Assuntos
Ecossistema , Áreas Alagadas , Plantas Tolerantes a Sal , RNA Ribossômico 16S , Archaea/genética , Poaceae , Solo , Fungos/genética
6.
Am Nat ; 202(3): E83-E103, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37606944

RESUMO

AbstractAcross plant communities worldwide, fire regimes reflect a combination of climatic factors and plant characteristics. To shed new light on the complex relationships between plant characteristics and fire regimes, we developed a new conceptual mechanistic model that includes plant competition, stochastic fires, and fire-vegetation feedback. Considering a single standing plant functional type, we observed that highly flammable and slowly colonizing plants can persist only when they have a strong fire response, while fast colonizing and less flammable plants can display a larger range of fire responses. At the community level, the fire response of the strongest competitor determines the existence of alternative ecological states (i.e., different plant communities) under the same environmental conditions. Specifically, when the strongest competitor had a very strong fire response, such as in Mediterranean forests, only one ecological state could be achieved. Conversely, when the strongest competitor was poorly fire adapted, alternative ecological states emerged-for example, between tropical humid savannas and forests or between different types of boreal forests. These findings underline the importance of including the plant fire response when modeling fire ecosystems, for example, to predict the vegetation response to invasive species or to climate change.


Assuntos
Ecossistema , Incêndios , Florestas , Mudança Climática , Espécies Introduzidas
7.
Planta ; 258(3): 60, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37535207

RESUMO

MAIN CONCLUSION: Nicotiana attenuata's capacity to interact with arbuscular mycorrhizal fungi influences its intraspecific competitive ability under field and glasshouse conditions, but not its overall community productivity. Arbuscular mycorrhizal (AM) fungi can alter the nutrient status and growth of plants, and they can also affect plant-plant, plant-herbivore, and plant-pathogen interactions. These AM effects are rarely studied in populations under natural conditions due to the limitation of non-mycorrhizal controls. Here we used a genetic approach, establishing field and glasshouse communities of AM-harboring Nicotiana attenuata empty vector (EV) plants and isogenic plants silenced in calcium- and calmodulin-dependent protein kinase expression (irCCaMK), and unable to establish AM symbioses. Performance and growth were quantified in communities of the same (monocultures) or different genotypes (mixed cultures) and both field and glasshouse experiments returned similar responses. In mixed cultures, AM-harboring EV plants attained greater stalk lengths, shoot and root biomasses, clearly out-competing the AM fungal-deficient irCCaMK plants, while in monocultures, both genotypes grew similarly. Competitive ability was also reflected in reproductive traits: EV plants in mixed cultures outperformed irCCaMK plants. When grown in monocultures, the two genotypes did not differ in reproductive performance, though total leaf N and P contents were significantly lower independent of the community type. Plant productivity in terms of growth and seed production at the community level did not differ, while leaf nutrient content of phosphorus and nitrogen depended on the community type. We infer that AM symbioses drastically increase N. attenuata's competitive ability in mixed communities resulting in increased fitness for the individuals harboring AM without a net gain for the community.


Assuntos
Micorrizas , Micorrizas/fisiologia , Raízes de Plantas , Plantas , Nicotiana/genética , Nicotiana/microbiologia , Biomassa , Fungos/fisiologia , Solo , Simbiose
8.
Ann Bot ; 132(3): 471-484, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37724864

RESUMO

BACKGROUND AND AIMS: Submediterranean areas are rich ecotones, where slight modifications in environmental conditions can lead to substantial changes in the composition of plant communities. They thus offer an ideal scenario to examine plant community assembly. In this study, we followed a trait-based approach including intraspecific variability to elucidate (1) the relationship between niche occupancy components and species richness, (2) the processes governing the assembly of these communities and (3) the contribution of intraspecific trait variability in shaping the functional trait space. METHODS: We measured eight morphological and chemical traits in 405 individuals across 60 plots located in different forest communities (Mediterranean, Eurosiberian and Mixed) coexisting within a submediterranean ecosystem in central Spain. We calculated three niche occupancy components related to Hutchinson's n-dimensional hypervolumes: the total functional volume of the community, the functional overlap between species within the community and the average functional volume per species, and then used null models to explore the relative importance of habitat filtering, limiting similarity and intraspecific variability as assembly patterns. KEY RESULTS: Both habitat filtering and niche differentiation drive the community assembly of Mediterranean communities, whereas limiting similarity and hierarchical competition shape Eurosiberian communities. Intraspecific responses were mostly explained by shifts in species niches across the functional space (changes in the position of the centroids of hypervolumes). CONCLUSIONS: Different assembly mechanisms govern the structure of Mediterranean, Eurosiberian and Mixed plant communities. Combining niche occupancy components with a null model approach at different spatial scales offers new insights into the mechanisms driving plant community assembly. Consideration of intraspecific variability is key for understanding the mechanisms governing species coexistence in species-rich ecotones.


Assuntos
Ecossistema , Plantas , Humanos , Florestas , Fenótipo , Ocupações
9.
Ann Bot ; 131(7): 1107-1119, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36976581

RESUMO

BACKGROUND AND AIMS: Arbuscular mycorrhizal (AM) fungi enhance the uptake of water and minerals by the plant hosts, alleviating plant stress. Therefore, AM fungal-plant interactions are particularly important in drylands and other stressful ecosystems. We aimed to determine the combined and independent effects of above- and below-ground plant community attributes (i.e. diversity and composition), soil heterogeneity and spatial covariates on the spatial structure of the AM fungal communities in a semiarid Mediterranean scrubland. Furthermore, we evaluated how the phylogenetic relatedness of both plants and AM fungi shapes these symbiotic relationships. METHODS: We characterized the composition and diversity of AM fungal and plant communities in a dry Mediterranean scrubland taxonomically and phylogenetically, using DNA metabarcoding and a spatially explicit sampling design at the plant neighbourhood scale. KEY RESULTS: The above- and below-ground plant community attributes, soil physicochemical properties and spatial variables explained unique fractions of AM fungal diversity and composition. Mainly, variations in plant composition affected the AM fungal composition and diversity. Our results also showed that particular AM fungal taxa tended to be associated with closely related plant species, suggesting the existence of a phylogenetic signal. Although soil texture, fertility and pH affected AM fungal community assembly, spatial factors had a greater influence on AM fungal community composition and diversity than soil physicochemical properties. CONCLUSIONS: Our results highlight that the more easily accessible above-ground vegetation is a reliable indicator of the linkages between plant roots and AM fungi. We also emphasize the importance of soil physicochemical properties in addition to below-ground plant information, while accounting for the phylogenetic relationships of both plants and fungi, because these factors improve our ability to predict the relationships between AM fungal and plant communities.


Assuntos
Micorrizas , Micorrizas/genética , Ecossistema , Filogenia , Solo/química , Simbiose , Raízes de Plantas , Plantas/microbiologia , Microbiologia do Solo , Fungos
10.
Ecol Lett ; 25(8): 1813-1826, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35763598

RESUMO

Global change is altering patterns of community assembly, with net outcomes dependent on species' responses to the abiotic environment, both directly and mediated through biotic interactions. Here, we assess alpine plant community responses in a 15-year factorial nitrogen addition, warming and snow manipulation experiment. We used a dynamic competition model to estimate the density-dependent and -independent processes underlying changes in species-group abundances over time. Density-dependent shifts in competitive interactions drove long-term changes in abundance of species-groups under global change while counteracting environmental drivers limited the growth response of the dominant species through density-independent mechanisms. Furthermore, competitive interactions shifted with the environment, primarily with nitrogen and drove non-linear abundance responses across environmental gradients. Our results highlight that global change can either reshuffle species hierarchies or further favour already-dominant species; predicting which outcome will occur requires incorporating both density-dependent and -independent mechanisms and how they interact across multiple global change factors.


Assuntos
Nitrogênio , Plantas , Ecossistema
11.
Ecol Monogr ; 92(4): e1529, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36590329

RESUMO

Climate change is causing range shifts of many species to higher latitudes and altitudes and increasing their exposure to extreme weather events. It has been shown that range-shifting plant species may perform differently in new soil than related natives; however, little is known about how extreme weather events affect range-expanding plants compared to related natives. In this study we used outdoor mesocosms to study how range-expanding plant species responded to extreme drought in live soil from a habitat in a new range with and without live soil from a habitat in the original range (Hungary). During summer drought, the shoot biomass of the range-expanding plant community declined. In spite of this, in the mixed community, range expanders produced more shoot biomass than congeneric natives. In mesocosms with a history of range expanders in the previous year, native plants produced less biomass. Plant legacy or soil origin effects did not change the response of natives or range expanders to summer drought. During rewetting, range expanders had less biomass than congeneric natives but higher drought resilience (survival) in soils from the new range where in the previous year native plant species had grown. The biomass patterns of the mixed plant communities were dominated by Centaurea spp.; however, not all plant species within the groups of natives and of range expanders showed the general pattern. Drought reduced the litter decomposition, microbial biomass, and abundances of bacterivorous, fungivorous, and carnivorous nematodes. Their abundances recovered during rewetting. There was less microbial and fungal biomass, and there were fewer fungivorous nematodes in soils from the original range where range expanders had grown in the previous year. We concluded that in mixed plant communities of range expanders and congeneric natives, range expanders performed better, under both ambient and drought conditions, than congeneric natives. However, when considering the responses of individual species, we observed variations among pairs of congenerics, so that under the present mixed-community conditions there was no uniformity in responses to drought of range expanders versus congeneric natives. Range-expanding plant species reduced soil fungal biomass and the numbers of soil fungivorous nematodes, suggesting that the effects of range-expanding plant species can trickle up in the soil food web.

12.
New Phytol ; 234(1): 50-63, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34981534

RESUMO

Tropical forests are important to the regulation of climate and the maintenance of biodiversity on Earth. However, these ecosystems are threatened by climate change, as temperatures rise and droughts' frequency and duration increase. Xylem anatomical traits are an essential component in understanding and predicting forest responses to changes in water availability. We calculated the community-weighted means and variances of xylem anatomical traits of hydraulic and structural importance (plot-level trait values weighted by species abundance) to assess their linkages to local adaptation and community assembly in response to varying soil water conditions in an environmentally diverse Brazilian Atlantic Forest habitat. Scaling approaches revealed community-level tradeoffs in xylem traits not observed at the species level. Towards drier sites, xylem structural reinforcement and integration balanced against hydraulic efficiency and capacitance xylem traits, leading to changes in plant community diversity. We show how general community assembly rules are reflected in persistent fiber-parenchyma and xylem hydraulic tradeoffs. Trait variation across a moisture gradient is larger between species than within species and is realized mainly through changes in species composition and abundance, suggesting habitat specialization. Modeling efforts to predict tropical forest diversity and drought sensitivity may benefit from adding hydraulic architecture traits into the analysis.


Assuntos
Secas , Árvores , Ecossistema , Florestas , Folhas de Planta , Árvores/fisiologia , Clima Tropical , Água , Xilema/fisiologia
13.
Ann Bot ; 129(1): 29-36, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34543399

RESUMO

BACKGROUND AND AIMS: In 2019, Daou and Shipley produced an operational definition of 'generalized' soil fertility (FG) for plant community ecology and quantified FG using a structural equation model (SEM) invoking a single latent variable. We evaluate a critical assumption of this model: that FG is generalizable to any combination of plant species; i.e. that any combination of plant species will respond in the same direction to the soil 'fertility' gradient in terms of growth. METHODS: We grew nine widely different species singly in each of 25 soils from southern Quebec, Canada, whose FG value had been previously quantified. The original SEM was tested using every possible combination involving from four to nine species. KEY RESULTS: The assumption was rejected due to a subset of three species that responded to a second latent dimension. We then proposed an alternative model that includes FG plus a second latent variable that measures species' deviations from FG due to specific adaptations to soil pH. This alternative model was consistent with every combination of up to eight species. The predictions of FG when ignoring this second dimension and when using the new model were extremely correlated (r =0.98). CONCLUSIONS: The initial unidimensional model of Daou and Shipley was successful in non-acid soils but not in soils with extreme pH and when species specifically adapted to such extreme soils were included. The alternative two-dimensional model takes into account these exceptions and is consistent with the notion of shared physiological niche responses along a gradient of generalized soil fertility.


Assuntos
Plantas , Solo , Quebeque , Solo/química , Microbiologia do Solo
14.
Ecol Appl ; 32(3): e2520, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34918420

RESUMO

Over a quarter of the world's land surface is grazed by cattle and other livestock, which are replacing wild herbivores, potentially impairing ecosystem structure, and functions. Previous research suggests that cattle at moderate stocking rates can functionally replace wild herbivores in shaping understory communities. However, it is uncertain whether this is also true under high stocking rates and the effects of wild herbivore on plant communities are moderate, enhanced, or simply additive to the effects of cattle at high stocking rates. To evaluate the influence of cattle stocking rates on the ability of cattle to functionally replace wild herbivores and test for interactive effects between cattle and wild herbivores in shaping understory vegetation, we assessed herbaceous vegetation in a long-term exclosure experiment in a semi-arid savanna in central Kenya that selectively excludes wild mesoherbivores (50-1000 kg) and megaherbivores (elephant and giraffe). We tested the effects of cattle stocking rate (zero/moderate/high) on herbaceous vegetation (diversity, composition, leafiness). We also tested how those effects depend on the presence of wild mesoherbivores and megaherbivores. We found that herbaceous community composition (primary ordination axis) was better explained by the presence/absence of herbivore types than by total herbivory, suggesting that herbivore identity is a more important determinant of community composition than total herbivory at high cattle stocking rates. The combination of wild mesoherbivores and cattle stocked at high rates led to increased bare ground and annual grass cover, reduced perennial grass cover and understory leafiness, and enhanced understory diversity. These shifts were weaker or absent when cattle were stocked at high stocking rates in the absence of wild mesoherbivores. Megaherbivores tempered the effects of cattle stocked at high rates on herbaceous community composition but amplified the effects of high cattle stocking rate on bare ground and understory diversity. Our results show that cattle at high stocking rates do not functionally replace wild herbivores in shaping savanna herbaceous communities contrary to previous findings at moderate stocking rates. In mixed-use rangelands, interactions between cattle stocking rate and wild herbivore presence can lead to non-additive vegetation responses with important implications for both wildlife conservation and livestock production.


Assuntos
Elefantes , Herbivoria , Animais , Animais Selvagens , Bovinos , Ecossistema , Elefantes/fisiologia , Plantas
15.
Oecologia ; 199(1): 205-215, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35526202

RESUMO

Environmental heterogeneity is a key component in explaining the megadiversity of tropical forests. Despite its importance, knowledge about local drivers of environmental heterogeneity remains a challenge for ecologists. In Neotropical forests, epiphytic tank bromeliads store large amounts of water and nutrients in the tree canopy, and their tank overflow may create nutrient-rich patches in the soil. However, the effects of this nutrient flux on environmental heterogeneity and plant community structure in the understory remain unexplored. In a Brazilian coastal sandy forest, we investigated the effects of the presence of epiphytic tank bromeliads on throughfall chemistry, soil chemistry, soil litter biomass, light, and seedling community structure. In the presence of epiphytic tank bromeliads, the throughfall nitrogen concentration increased twofold, the throughfall phosphorus concentration increased threefold, and the soil patches had a 3.96% higher pH, a 50% higher calcium concentration, and 11.88% less light. By altering the availability of soil resources and conditions, the presence of bromeliads partially shifted the available niche spaces for plant species and indirectly affected the structure of the seedling communities, decreasing their diversity, density, and biomass. For the first time, we showed that the presence of tank bromeliads in the canopy can create characteristic soil patches in the understory, affecting the structure of seedling communities via fertilization. Our results reveal a novel local driver of environmental heterogeneity, reinforcing and expanding the key role of tank bromeliads both in nutrient cycling and plant community structuring of Neotropical coastal sandy forests.


Assuntos
Plântula , Solo , Florestas , Fósforo , Solo/química , Árvores
16.
Restor Ecol ; 30(8): e13641, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36589388

RESUMO

Establishment of semi-natural grasslands offers a valuable approach to the conservation of threatened grassland biodiversity. We established new grassland strips on former crop fields adjacent to old semi-natural grasslands and monitored the development of plant, carabid, spider, and wild bee communities over 3 years. The studied plant and arthropods communities were significantly different between newly established grassland strips and old grassland. Our results suggest that restoring plant and arthropod communities takes longer than 3 years to become similar to old semi-natural grasslands.

17.
Environ Manage ; 69(1): 45-60, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34436626

RESUMO

An improved understanding of the relationships among vegetation, groundwater level, and microtopography is crucial for making well-informed management decisions in areas with shallow groundwater resources. We measured plant species abundance/composition and richness in relation to depth to groundwater (DTW) and microtopography in Owens Valley, California, particularly in areas where DTW ranged from 0 to 4 m. Sampling occurred along 67 vegetation transects across three community types. Relationships between DTW and community composition were evaluated using non-metric multidimensional scaling (NMS), while non-parametric multiplicative regression was used to relate DTW and microtopography to species abundance. The dominant gradient in species composition (NMS Axis 1) explained ~51% of variation in our distance matrix and was most strongly associated (r = 0.55) with DTW. The graminoids Juncus arcticus, Leymus triticoides, and Distichlis spicata had strong affinities toward areas with the shallowest DTW (<1.5 m). One salt-adapted species Sporobolus airoides and one shrub Ericameria nauseosa dominated areas with intermediate DTW (1.5-2.0 m), whereas the shrubs Atriplex torreyi, Sarcobatus vermiculatus, and Artemisia tridentata were dominant in areas with deeper DTW (>2.0 m). Variation in microtopography affected species abundance and increased species richness for vegetation communities at either extreme of the water table gradient, shallow, and deep DTW but not the intermediate DTW. Findings indicate that desert plant communities from shallow aquifers have adapted to different DTW and microtopography conditions and that considering those adaptations may be important to manage groundwater and vegetation resources in these areas.


Assuntos
Clima Desértico , Ecossistema , Água Subterrânea , Plantas , Poaceae
18.
J Nematol ; 54(1): 20220039, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36457372

RESUMO

Taxonomic resolution is a critical component of biodiversity assessments. In this case study, we examined a single taxon within a larger study of nematode diversity to evaluate the taxonomic resolution of different diversity assessment methods. The selected taxon was the microbial-feeding genus Plectus, a group considered to include multiple cosmopolitan species. The methods included a morphological evaluation by light microscopy, Sanger sequencing of PCR amplicons of COI and 18S gene regions, and 18S metabarcoding sequencing. The study sites were 15 remnant tallgrass prairie plots in eastern Nebraska. In the morphological analysis, we observed two basic morphotypes, a short-tailed form with a small amphid and a long-tailed form with a large amphid. Sanger sequencing of COI sorted Plectus diversity into six distinct clades. The largest two of these six clades keyed to P. parietinus and P. rhizophilus based on morphology. BLAST analysis with COI revealed no close matches in GenBank. Sanger sequencing of the 18S region did not differentiate the six clades. These results illustrate that the method of diversity assessment strongly influences estimates of biodiversity. An additional 95 Plectus specimens, from outside the remnant sites, added taxonomic breadth to the COI phylogenetic tree. There were no geographically widespread COI haplotypes and no evidence of cosmopolitan Plectus species.

19.
J Environ Manage ; 280: 111698, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33349511

RESUMO

Ponds may hold significant stocks of organic carbon in their sediments and pond creation may offer a practical application for land managers to increase carbon storage. However, ponds are overlooked in global carbon budgets. Their potential significance is suggested by the abundance of ponds throughout terrestrial biomes and their high carbon burial rates, but we lack measures of sediment carbon stocks from typical ponds. We sampled sediment from lowland temperate ponds in north east England comparing carbon stocks from ponds categorised by surrounding land use, or dominant vegetation, or drying regime, along with measures of variation within ponds. Sediment carbon varied considerably between ponds. This variation was more important than any systematic variation between pond types grouped by land use, vegetation or drying, or any variation within an individual pond. Our estimates of pond sediment organic carbon give measures that are higher than from soils in widespread habitats such as temperate grassland and woodland, suggesting that ponds are significant for carbon budgets in their own right. Ponds are relatively easy to create, are ubiquitous throughout temperate biomes and can be fitted in amongst other land uses; our results show that pond creation would be a useful and practical application to boost carbon sequestration in temperate landscapes.


Assuntos
Carbono , Lagoas , Carbono/análise , Sequestro de Carbono , Inglaterra , Sedimentos Geológicos
20.
J Environ Manage ; 284: 112005, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33540197

RESUMO

Even though a growing amount of information about the effects of livestock grazing on soil microbial communities have accumulated in literature, less is known about the combined response of plants, soil properties, and their interactions with soil microbes. In this study, we used a seven-year controlled grazing experiment to quantify the response of plant and soil properties and their interactions with soil microbial communities to moderate grazing in a semiarid grassland of Northern China. Our results showed that moderate grazing reduced the richness and diversity of soil microbial communities, as well as weakened community interactions. However, bacterial communities and their linkages were more stable under moderate grazing than fungal communities. Changes in aboveground plant biomass, soil water content, NO3--N, and NO3/NH4 ratio dominated grazing effects on soil bacterial communities, while fungal communities were mainly influenced by plant N, soil NO3--N, and NO3/NH4 ratio. Changes in the plant community composition played a key role in driving the composition of the fungal community. Our results provide a new insight into the response of soil microbes to moderate grazing, and suggest that above- and belowground communities should be considered to be precise indicators of the state and characteristics of the grassland ecosystem.


Assuntos
Microbiota , Solo , Animais , China , Ecossistema , Pradaria , Plantas , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA