Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 470
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-19, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922612

RESUMO

The nutritional benefits of combining probiotics with plant proteins have sparked increasing research interest and drawn significant attention. The interactions between plant proteins and probiotics demonstrate substantial potential for enhancing the functionality of plant proteins. Fermented plant protein foods offer a unique blend of bioactive components and beneficial microorganisms that can enhance gut health and combat chronic diseases. Utilizing various probiotic strains and plant protein sources opens doors to develop innovative probiotic products with enhanced functionalities. Nonetheless, the mechanisms and synergistic effects of these interactions remain not fully understood. This review aims to delve into the roles of promoting health through the intricate interplay of plant proteins and probiotics. The regulatory mechanisms have been elucidated to showcase the synergistic effects, accompanied by a discussion on the challenges and future research prospects. It is essential to recognize that the interactions between plant proteins and probiotics encompass multiple mechanisms, highlighting the need for further research to address challenges in achieving a comprehensive understanding of these mechanisms and their associated health benefits.

2.
Br J Nutr ; 131(9): 1540-1553, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38220222

RESUMO

Whole-body tissue protein turnover is regulated, in part, by the postprandial rise in plasma amino acid concentrations, although minimal data exist on the amino acid response following non-animal-derived protein consumption. We hypothesised that the ingestion of novel plant- and algae-derived dietary protein sources would elicit divergent plasma amino acid responses when compared with vegan- and animal-derived control proteins. Twelve healthy young (male (m)/female (f): 6/6; age: 22 ± 1 years) and 10 healthy older (m/f: 5/5; age: 69 ± 2 years) adults participated in a randomised, double-blind, cross-over trial. During each visit, volunteers consumed 30 g of protein from milk, mycoprotein, pea, lupin, spirulina or chlorella. Repeated arterialised venous blood samples were collected at baseline and over a 5-h postprandial period to assess circulating amino acid, glucose and insulin concentrations. Protein ingestion increased plasma total and essential amino acid concentrations (P < 0·001), to differing degrees between sources (P < 0·001), and the increase was further modulated by age (P < 0·001). Postprandial maximal plasma total and essential amino acid concentrations were highest for pea (2828 ± 106 and 1480 ± 51 µmol·l-1) and spirulina (2809 ± 99 and 1455 ± 49 µmol·l-1) and lowest for chlorella (2053 ± 83 and 983 ± 35 µmol·l-1) (P < 0·001), but were not affected by age (P > 0·05). Postprandial total and essential amino acid availabilities were highest for pea, spirulina and mycoprotein and lowest for chlorella (all P < 0·05), but no effect of age was observed (P > 0·05). The ingestion of a variety of novel non-animal-derived dietary protein sources elicits divergent plasma amino acid responses, which are further modulated by age.


Assuntos
Aminoácidos , Estudos Cross-Over , Proteínas Alimentares , Insulina , Período Pós-Prandial , Spirulina , Humanos , Masculino , Feminino , Idoso , Adulto Jovem , Aminoácidos/sangue , Proteínas Alimentares/administração & dosagem , Método Duplo-Cego , Insulina/sangue , Aminoácidos Essenciais/sangue , Aminoácidos Essenciais/administração & dosagem , Chlorella , Glicemia/metabolismo , Glicemia/análise , Adulto , Animais , Proteínas de Vegetais Comestíveis/administração & dosagem , Pisum sativum/química , Proteínas de Ervilha/sangue , Leite/química , Proteínas do Leite/administração & dosagem , Fatores Etários
3.
Eur J Nutr ; 63(2): 445-460, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38063929

RESUMO

PURPOSE: To investigate the association between pro-inflammatory markers platelet-activating factor (PAF), lipoprotein-associated phospholipase A2 (Lp-PLA2), hsCRP, and intake of core food groups including fruit, cruciferous and other vegetables, grains, meat and poultry, fish and seafood, nuts and legumes, and dairy. METHODS: A cross-sectional study was conducted. 100 adults (49 ± 13 years, 31% male) with variable cardiovascular disease risk were recruited. Data were collected in 2021 and 2022. Fasting PAF, Lp-PLA2 activity, hsCRP and usual dietary intake (via a validated food frequency questionnaire) were measured. Intake of foods were converted into serves and classified into food groups. Correlations and multiple regressions were performed with adjustment for confounders. RESULTS: A one-serve increase in cruciferous vegetables per day was associated with 20-24% lower PAF levels. An increase of one serve per day of nuts and legumes was associated with 40% lower hsCRP levels. There were small correlations with PAF and Lp-PLA2 and cheese, however, these were not significant at the Bonferroni-adjusted P < 0.005 level. CONCLUSION: The lack of associations between PAF and Lp-PLA2 and other healthy foods may be due to confounding by COVID-19 infection and vaccination programs which prevents any firm conclusion on the relationship between PAF, Lp-PLA2 and food groups. Future research should aim to examine the relationship with these novel markers and healthy food groups in a non-pandemic setting.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Proteína C-Reativa , Masculino , Animais , Feminino , Proteína C-Reativa/análise , Estudos Transversais , Fator de Ativação de Plaquetas , Verduras
4.
Age Ageing ; 53(Suppl 2): ii13-ii19, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38745486

RESUMO

BACKGROUND: Emerging evidence suggests health-promoting properties of increased protein intake. There is increased interest in plant protein but a dearth of information in relation to its impact on muscle function. The objective of the present work was to examine the impact of intake of different types of proteins on muscle functional parameters including handgrip strength, biomarkers of metabolic health, sleep quality and quality of life in a group of older adults. METHODS: Healthy men and women aged 50 years and older entered a double-blinded, randomised, controlled nutritional intervention study with three parallel arms: high plant protein, high dairy protein and low protein. Participants consumed once daily a ready-to-mix shake (containing 20 g of protein in high protein groups) for 12 weeks. Changes in handgrip and leg strength, body composition, metabolic health, quality of life and sleep quality were analysed by linear mixed models in an intention-to-treat approach. RESULTS: Eligible participants (n = 171) were randomly assigned to the groups (plant: n = 60, dairy: n = 56, low protein: n = 55) and 141 completed the study. Handgrip strength increased after the intervention (Ptime = 0.038), with no significant difference between the groups. There was no significant difference between groups for any other health outcomes. CONCLUSIONS: In a population of older adults, increasing protein intake by 20 g daily for 12 weeks (whether plant-based or dairy-based) did not result in significant differences in muscle function, body composition, metabolic health, sleep quality or quality of life, compared with the low protein group.


Assuntos
Composição Corporal , Força da Mão , Qualidade de Vida , Sono , Humanos , Masculino , Feminino , Método Duplo-Cego , Idoso , Pessoa de Meia-Idade , Sono/fisiologia , Proteínas de Vegetais Comestíveis/administração & dosagem , Proteínas Alimentares/administração & dosagem , Músculo Esquelético/fisiologia , Fatores de Tempo , Fatores Etários , Dieta Rica em Proteínas , Estado Nutricional
5.
Nutr Neurosci ; : 1-14, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980695

RESUMO

BACKGROUND: Recent evidence suggests that diet composition is a key biological factor related to the development of depressive disorders. The present study was conducted to investigate the animal and plant protein intake and their replacement in association with depression, anxiety, and stress in Iranian adults. METHOD: In this cross-sectional study, the dietary intake of 7169 subjects were assessed using a validated food frequency questionnaire. The depression, anxiety, and stress Scale - 21 (DASS-21) questionnaire was used to psychological disorders. Logistic regression was used to obtain odds ratios for depression, anxiety, and stress across quintiles of animal and plant protein. RESULTS: The participants' age range was 20-69 years. Individuals with the highest animal protein consumption had a lower chance for developing depression compared to those with the lowest intakes (OR = 0.73, 95%CI: 0.59-0.90; Ptrend < 0.01). Results also showed a significant association between animal protein intake and anxiety, such that subjects in the highest quintile of animal protein intake had 24% lower odds for anxiety compared to those in the lowest quintile (p < 0.05). We found a significant association between highest quintiles of animal protein intake and a 40% lower risk for stress among female individuals (Ptrend = 0.05). The multivariable-adjusted non-linear analyses also revealed that the replacement of plant protein with animal protein was significantly associated with the likelihood of depression and anxiety (P < 0.05). CONCLUSION: Animal protein intake might lower the odds of depression and anxiety particularly. Future prospective investigations are proposed to confirm these findings.

6.
J Hum Nutr Diet ; 37(3): 762-771, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38534044

RESUMO

BACKGROUND: This study examined the effects of animal protein- and plant protein-rich diets on postprandial phosphorus metabolism in healthy male subjects. METHODS: The study was conducted by randomised parallel-group comparison of healthy men aged 21-24 years. In Study 1, participants were divided into two groups and consumed either a 70% animal protein diet (AD, n = 6) or a 70% plant protein diet (PD, n = 6). In Study 2, participants were divided into three groups and consumed either AD (n = 10), PD (n = 10) or AD + DF, a 70% animal protein diet loaded with the same amount of fibre as PD (n = 9). The phosphorus contents of the diets used in this study were nearly equivalent (AD, 710.1 mg; PD, 709.7 mg; AD + DF, 708.9 mg). Blood and urine samples were collected before, and 2 and 4 h after the meal to measure phosphorus and calcium levels. RESULTS: In Study 1, PD consumption resulted in lower blood and urinary phosphorus concentrations 2 h postprandially compared with AD (p < 0.05). In Study 2, blood phosphorus levels in AD + DF after the diet remained lower, but not significantly so compared with AD, and urinary phosphorus levels were significantly lower 2 h postprandially (p < 0.05). CONCLUSIONS: A plant protein-rich diet reduced rapid postprandial increases in blood and urinary phosphorus concentrations compared with the animal protein-rich diets, suggesting that dietary fibre may play a partial role in the postprandial decreases in blood and urinary phosphorus concentrations.


Assuntos
Período Pós-Prandial , Humanos , Masculino , Adulto Jovem , Fibras na Dieta/administração & dosagem , Proteínas Animais da Dieta , Fosfatos/sangue , Fosfatos/urina , Cálcio/sangue , Cálcio/urina , Fósforo/sangue , Fósforo/urina , Proteínas de Vegetais Comestíveis/administração & dosagem , Adulto , Dieta/métodos , Proteínas de Plantas/administração & dosagem
7.
Molecules ; 29(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38998943

RESUMO

The leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean are considered rich sources of plant protein with high levels of branched-chain amino acids. Furthermore, they contain beneficial phytochemicals such as antioxidants and anti-inflammatory agents. Additionally, there are reports suggesting that an adequate consumption of amino acids can reduce nerve cell damage, delay the onset of memory impairment, and improve sleep quality. In this study, protein isolates were prepared from the leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean. The amino acid profile, dietary fiber content, phenolic content, and flavonoid content were evaluated. Pharmacological properties, such as antioxidant, anticholinesterase, monoamine oxidase, and γ-aminobutyric acid transaminase (GABA-T) activities, were also assessed. This study found that concentrated protein from mung beans has a higher quantity of essential amino acids (52,161 mg/100 g protein) compared to concentrated protein from sunflower sprouts (47,386 mg/100 g protein), Azolla spp. (42,097 mg/100 g protein), cashew nut (26,710 mg/100 g protein), and mulberry leaves (8931 mg/100 g protein). The dietary fiber content ranged from 0.90% to 3.24%, while the phenolic content and flavonoid content ranged from 0.25 to 2.29 mg/g and 0.01 to 2.01 mg/g of sample, respectively. Sunflower sprout protein isolates exhibited the highest levels of dietary fiber (3.24%), phenolic content (2.292 ± 0.082 mg of GAE/g), and flavonoids (2.014 mg quercetin/g of sample). The biological efficacy evaluation found that concentrated protein extract from sunflower sprouts has the highest antioxidant activity; the percentages of inhibition of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical were 20.503 ± 0.288% and 18.496 ± 0.105%, respectively. Five plant-based proteins exhibited a potent inhibition of acetylcholinesterase (AChE) enzyme activity, monoamine oxidase (MAO) inhibition, and GABA-T ranging from 3.42% to 24.62%, 6.14% to 20.16%, and 2.03% to 21.99%, respectively. These findings suggest that these plant protein extracts can be used as natural resources for developing food supplements with neuroprotective activity.


Assuntos
Aminoácidos , Antioxidantes , Flavonoides , Fármacos Neuroprotetores , Fenóis , Extratos Vegetais , Proteínas de Plantas , 4-Aminobutirato Transaminase/antagonistas & inibidores , Aminoácidos/química , Anacardium/química , Antioxidantes/farmacologia , Antioxidantes/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Fibras na Dieta , Flavonoides/química , Flavonoides/farmacologia , Morus/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Tailândia , Vigna/química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia
8.
J Sci Food Agric ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619292

RESUMO

Chickpea is a field crop that is playing an emerging role in the provision of healthy and sustainable plant-based value-added ingredients for the food and nutraceutical industries. This article reviews the characteristics of chickpea (composition, health properties, and techno-functionality) and chickpea grain that influence their use as whole foods or ingredients in formulated food. It covers the exploitation of traditional and emerging processes for the conversion of chickpea into value-added differentiated food ingredients. The influence of processing on the composition, health-promoting properties, and techno-functionality of chickpea is discussed. Opportunities to tailor chickpea ingredients to facilitate their incorporation in traditional food applications and in the expanding plant-based meat alternative and dairy alternative markets are highlighted. The review includes an assessment of the possible uses of by-products of chickpea processing. Recommendations are provided for future research to build a sustainable industry using chickpea as a value-added ingredient. © 2024 Society of Chemical Industry.

9.
Compr Rev Food Sci Food Saf ; 23(1): e13269, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284590

RESUMO

Plant proteins are expected to become a major protein source to replace currently used animal-derived proteins in the coming years. However, there are always challenges when using these proteins due to their low water solubility induced by the high molecular weight storage proteins. One approach to address this challenge is to modify proteins through Maillard glycation, which involves the reaction between proteins and carbohydrates. In this review, we discuss various chemical methods currently available for determining the indicators of the Maillard reaction in the early stage, including the graft degree of glycation and the available lysine or sugar, which are involved in the very beginning of the reaction. We also provide a detailed description of the most popular methods for determining graft sites and assessing different plant protein structures and functionalities upon non-enzymatic glycation. This review offers valuable insights for researchers and food scientists in order to develop plant-based protein ingredients with improved functionality.


Assuntos
Reação de Maillard , Proteínas de Plantas , Animais , Alimentos
10.
Compr Rev Food Sci Food Saf ; 23(1): e13262, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284577

RESUMO

The growing emphasis on dietary health has facilitated the development of plant-based foods. Plant proteins have excellent functional attributes and health-enhancing effects and are also environmentally conscientious and animal-friendly protein sources on a global scale. The addition of plant proteins (including soy protein, pea protein, zein, nut protein, and gluten protein) to diverse cheese varieties and cheese analogs holds the promise of manufacturing symbiotic products that not only have reduced fat content but also exhibit improved protein diversity and overall quality. In this review, we summarized the utilization and importance of various plant proteins in the production of hybrid cheeses and cheese analogs. Meanwhile, classification and processing methods related to these cheese products were reviewed. Furthermore, the impact of different plant proteins on the microstructure, textural properties, physicochemical attributes, rheological behavior, functional aspects, microbiological aspects, and sensory characteristics of both hybrid cheeses and cheese analogs were discussed and compared. Our study explores the potential for the development of cheeses made from full/semi-plant protein ingredients with greater sustainability and health benefits. Additionally, it further emphasizes the substantial chances for scholars and developers to investigate the optimal processing methods and applications of plant proteins in cheeses, thereby improving the market penetration of plant protein hybrid cheeses and cheese analogs.


Assuntos
Queijo , Animais , Queijo/microbiologia , Proteínas de Plantas , Dieta
11.
Trop Anim Health Prod ; 56(2): 62, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38278967

RESUMO

A feeding trial was conducted to assess the effect of partial replacement of dietary soybean meal by three plant protein sources: coconut, rocket seed, and black cumin meals with their combination in the presence or absence of nano-chitosan (NCH) on growth performance and immune response in broiler chickens. Five starter and grower diets were formulated and used from 1 to 42 days of age. The NCH was added to starter and grower diets at 1.0 g/kg. Five-hundred-fifty-day-old Arbor Acres Plus broiler chicks were randomly divided into ten treatments with five equal replications. Final body weight (FBW), body weight gain (BWG), feed intake (FI), feed conversion ratio (FCR), and blood plasma parameters were investigated. Histological aspects of lymphoid organs (thymus: T, bursa of Fabricius: B, and spleen: S) were characterized. Apart from added NCH, the FBW, BWG, and FCR of broilers fed the diets containing the tested plant proteins were significantly superior to the control ones. However, FI of birds fed the diets containing CM alone or combined with RSM plus BCM was significantly reduced. All experimental broilers displayed high plasma levels of IgG compared with the control group. There were significant increases in plasma concentrations of IgM, IgA, and T4 for groups that fed the diets containing RSM, BCM, and mixture of CM, RSM, and BCM compared with their controls. The T3 levels of broilers fed the tested plant proteins were significantly increased compared with the controls. Aside from plant protein source, broilers fed the NCH-enriched diets achieved significant increases in levels of IgM, TAC, and FSH and activities of CAT and SOD but reduced the MDA level compared with control. The interactions between plant protein source and added nano-chitosan were not interrelated. Furthermore, CM, RSM, and BCM can be used as complementary dietary proteins singly or combined with NCH with no adverse effects on growth performance. Addition of NCH molecules has a positive effect on live body weight and increases feed intake compared with control chicks.


Assuntos
Galinhas , Dieta , Animais , Dieta/veterinária , Peso Corporal , Aumento de Peso , Proteínas Alimentares/metabolismo , Imunidade , Proteínas de Plantas/metabolismo , Imunoglobulina M , Ração Animal/análise , Suplementos Nutricionais , Fenômenos Fisiológicos da Nutrição Animal
12.
Plant Foods Hum Nutr ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795267

RESUMO

The chemical composition, antioxidant capacity and functional properties of mixtures of baru by-products, named baru food ingredients (BFI), were investigated and applied in a plant-based burger formulation. BFI were prepared from wasted baru by-products - partially defatted baru nut cake and baru pulp plus peel. A plant-based burger was developed and its chemical composition, antioxidant capacity, cooking and texture parameters were determined. BFI1 (50% partially defatted baru nut cake + 50% baru pulp plus peel) had the highest content of carbohydrate (31.9%), and dietary fibre (28.3%). BFI2 (75% partially defatted baru nut cake + 25% baru pulp plus peel) and BFI3 (90% partially defatted baru nut cake + 10% baru pulp plus peel) showed high concentration of protein and dietary fibre, and BFI3 had the highest protein content (29.5%). All BFI showed high concentration of total phenolics (402-443 mg GAE/100 g). Replacing textured pea protein of control burger (PPB) with 35% of BFI3 in the formulation of baru protein burger (BPB) resulted in a low-fat product (2.9%), with protein content (19.2%) comparable to the PPB (15.9%) and the commercial burger (mixed plant proteins - 16.3%). The BPB also showed a higher concentration of dietary fibre (4.9%) and phenolic compounds (128 mg GAE/100 g) than the control burger. BPB's cooking yield was the highest among the tested burgers. BPB had a softer texture when compared to other burgers. Baru food ingredients can be used as nutritive ingredients of health-promoting foods, especially in plant-based products, such as burger and meat analogues, or in hybrid meat products. BPB showed a healthy and nutritious profile.

13.
Am J Kidney Dis ; 82(6): 687-697.e1, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37517545

RESUMO

RATIONALE & OBJECTIVE: Data suggest that various dietary interventions slow kidney disease progression and improve clinical outcomes for those with chronic kidney disease (CKD). However, the association between plant protein intake and incident CKD has been uncertain. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: 117,809 participants who completed at least 1 dietary questionnaire and had an estimated glomerular filtration rate (eGFR) ≥ 60mL/min/1.73m2, a urinary albumin-creatinine ratio (UACR)<30mg/g, and no history of CKD. EXPOSURE: Daily plant protein intake in g/kg/day. OUTCOME: Incident CKD based on the International Classification of Diseases, 10th Revision (ICD-10) or the Office of Population Censuses and Surveys Classification of Interventions and Procedures, version 4 (OPCS-4) codes. ANALYTICAL APPROACH: A cause-specific proportional hazards analysis incorporating competing risks that treated death occurring before incident CKD as a competing event. RESULTS: During a median follow-up period of 9.9 years, incident CKD occurred in 3,745 participants (3.2%; incidence rate, 3.2 per 1,000 person-years). In a multivariable model, the adjusted hazard ratio (AHR) for the second, third, and highest quartiles of plant protein intake was 0.90 (95% CI, 0.82-0.99), 0.83 (95% CI, 0.75-0.92), and 0.82 (95% CI, 0.73-0.93), respectively, compared with the lowest quartile. Modeled as a continuous variable, the AHR per 0.1g/kg/day plant protein intake increase was 0.96 (95% CI, 0.93-0.99). This beneficial association was also consistent in secondary analyses for which CKD was defined based on codes or 2 consecutive measures of eGFR<60mL/min/1.73m2 or UACR>30mg/g. Various sensitivity analyses demonstrated consistent findings. LIMITATIONS: Potential incomplete dietary assessments; limited generalizability due to the characteristics of participants in the UK Biobank Study. CONCLUSIONS: In this large, prospective cohort study, greater dietary plant protein intake was associated with a lower risk of incident CKD. Further interventional studies demonstrating the kidney-protective benefits of plant protein intake are warranted. PLAIN-LANGUAGE SUMMARY: Plant-based diets confer various health benefits, including lowering the risk of cardiovascular disease and certain cancers. However, the relationship between plant protein intake and the risk of chronic kidney disease (CKD) remains unclear. Our study investigated the association between plant protein intake and the development of CKD. Using the UK Biobank Study data, we found that participants with a higher plant protein intake had a lower risk of developing CKD. Our finding suggests that a higher dietary intake of plant-based protein may be beneficial for kidney health and provides insight into dietary interventions to prevent CKD in primary care settings.


Assuntos
Proteínas de Plantas , Insuficiência Renal Crônica , Humanos , Estudos Prospectivos , Bancos de Espécimes Biológicos , Insuficiência Renal Crônica/epidemiologia , Reino Unido/epidemiologia , Taxa de Filtração Glomerular , Fatores de Risco
14.
Plant Cell Environ ; 46(6): 1946-1961, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36850039

RESUMO

Metallochaperones are a unique class of proteins that play crucial roles in metal homoeostasis and detoxification. However, few metallochaperones have been functionally characterised in rice. Heterologous expression of Heavy metal-associated Isoprenylated Plant Protein 9 (OsHIPP9), a metallochaperone, altered yeast tolerance to cadmium (Cd) and copper (Cu). We investigated the physiological role of OsHIPP9 in rice. OsHIPP9 was primarily expressed in the root exodermis and xylem region of enlarged vascular bundles (EVB) at nodes. KO of OsHIPP9 increased the Cd concentrations of the upper nodes and panicle, but decreased Cd in expanded leaves. KO of OsHIPP9 decreased Cu uptake and accumulation in rice. Constitutive OX of OsHIPP9 increased Cd and Cu accumulation in aboveground tissues and brown rice. OsHIPP9 showed binding capacity for Cd and Cu. We propose that OsHIPP9 has dual metallochaperone roles, chelating Cd in the xylem region of EVB for Cd retention in the nodes and chelating Cu in rice roots to aid Cu uptake.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cádmio/metabolismo , Cobre/metabolismo , Metalochaperonas/metabolismo , Oryza/metabolismo , Metais Pesados/metabolismo , Saccharomyces cerevisiae/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo
15.
J Nutr ; 153(1): 17-26, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913451

RESUMO

The digestible indispensable amino acid score uses ileal digestibility of each indispensable amino acid (IAA) of a dietary protein to calculate its protein quality. However, true ileal digestibility, which is the exclusive sum of digestion and absorption of a dietary protein up to the terminal ileum, is difficult to measure in humans. It is traditionally measured using invasive oro-ileal balance methods but can be confounded by endogenous secreted protein in the intestinal lumen, although the use of intrinsically labeled protein corrects for this. A recent, minimally invasive dual isotope tracer technique is now available to measure true IAA digestibility of dietary protein sources. This method involves simultaneous ingestion of 2 intrinsically but differently (stable) isotopically labeled proteins, a (2H or 15N-labeled) test protein and (13C-labeled) reference protein whose true IAA digestibility is known. Using a plateau-feeding protocol, the true IAA digestibility is determined by comparing the steady state ratio of blood to meal test protein IAA enrichment to the similar reference protein IAA ratio. The use of intrinsically labeled protein also distinguishes between IAA of endogenous and dietary origin. The collection of blood samples makes this method minimally invasive. As the α-15N and α-2H atoms of AAs of the intrinsically labeled protein are prone to label loss because of transamination, underestimation of digestibility, appropriate correction factors need to be employed when using 15N or 2H labeled test protein. The true IAA digestibility values of highly digestible animal protein by the dual isotope tracer technique are comparable to that measured by direct oro-ileal balance measurements, but no data are yet available for proteins with lower digestibility. A major advantage is that the minimally invasive method allows for true IAA digestibility measurement in humans across different age groups and physiological conditions.


Assuntos
Aminoácidos , Digestão , Humanos , Animais , Aminoácidos/metabolismo , Digestão/fisiologia , Isótopos/metabolismo , Proteínas Alimentares/metabolismo , Dieta , Íleo/metabolismo
16.
J Nutr ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972895

RESUMO

BACKGROUND: Plant-derived proteins are considered to have fewer anabolic properties when compared with animal-derived proteins. The anabolic properties of isolated proteins do not necessarily reflect the anabolic response to the ingestion of whole foods. The presence or absence of the various components that constitute the whole-food matrix can strongly impact protein digestion and amino acid absorption and, as such, modulate postprandial muscle protein synthesis rates. So far, no study has compared the anabolic response following ingestion of an omnivorous compared with a vegan meal. OBJECTIVES: This study aimed to compare postprandial muscle protein synthesis rates following ingestion of a whole-food omnivorous meal providing 100 g lean ground beef with an isonitrogenous, isocaloric whole-food vegan meal in healthy, older adults. METHODS: In a randomized, counter-balanced, cross-over design, 16 older (65-85 y) adults (8 males, 8 females) underwent 2 test days. On one day, participants consumed a whole-food omnivorous meal containing beef as the primary source of protein (0.45 g protein/kg body mass; MEAT). On the other day, participants consumed an isonitrogenous and isocaloric whole-food vegan meal (PLANT). Primed continuous L-[ring-13C6]-phenylalanine infusions were applied with blood and muscle biopsies being collected frequently for 6 h to assess postprandial plasma amino acid profiles and muscle protein synthesis rates. Data are presented as means ± standard deviations and were analyzed by 2 way-repeated measures analysis of variance and paired-samples t tests. RESULTS: MEAT increased plasma essential amino acid concentrations more than PLANT over the 6-h postprandial period (incremental area under curve 87 ± 37 compared with 38 ± 54 mmol·6 h/L, respectively; P-interaction < 0.01). Ingestion of MEAT resulted in ∼47% higher postprandial muscle protein synthesis rates when compared with the ingestion of PLANT (0.052 ± 0.023 and 0.035 ± 0.021 %/h, respectively; paired-samples t test: P = 0.037). CONCLUSIONS: Ingestion of a whole-food omnivorous meal containing beef results in greater postprandial muscle protein synthesis rates when compared with the ingestion of an isonitrogenous whole-food vegan meal in healthy, older adults. This study was registered at clinicaltrials.gov as NCT05151887.

17.
Crit Rev Food Sci Nutr ; 63(23): 6564-6579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35144507

RESUMO

Studies regarding spray drying microencapsulation are aplenty available; especially focusing on processing parameters, microparticle characteristics and encapsulation efficiency. Hence, there is a rising interest in tailoring wall materials aiming to improve the process's effectiveness. Reflecting a market trend in the food industry, plant-based proteins are emerging as alternative protein sources, and their application adaptability is an increasing research of interest related to consumers' demand for healthy food, product innovation, and sustainability. This review presents a perspective on the investigation of potato protein as a technological ingredient, considering it a nonconventional source obtained as by-product from starch industry. Furthermore, this piece emphasizes the potential application of potato protein as wall material in spray drying encapsulation, considering that this purpose is still limited for this ingredient. The literature reports that vegetal-based proteins might present compromised functionality due to processing conditions, impairing its technological application. Structural modification can offer a potential approach to modify potato protein configuration aiming to improve its utilization. Studies reported that modified proteins can perform as better emulsifiers and antioxidant agents compared to intact proteins. Hence, it is expected that their use in microencapsulation would improve process efficiency and protection of the core material, consequently delivering superior encapsulation performance.


Assuntos
Solanum tuberosum , Secagem por Atomização , Amido/química , Indústria Alimentícia , Extratos Vegetais/química
18.
Crit Rev Food Sci Nutr ; 63(30): 10585-10606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35603719

RESUMO

Plant-based food products have been receiving an astronomical amount of attention recently, and their demand will most likely soar in the future. However, their unpleasant, intrinsic flavor and odor are the major obstacles limiting consumer's acceptance. These off-flavors are often described as "green," "grassy," "beany," "fatty" and "bitter." This review highlights the presence and formation of common off-flavor volatiles (aldehydes, alcohols, ketones, pyrazines, furans) and nonvolatiles (phenolics, saponins, peptides, alkaloids) from a variety of plant-based foods, including legumes (e.g. lentil, soy, pea), fruits (e.g. apple, grape, watermelon) and vegetables (e.g. carrot, potato, radish). These compounds are formed through various pathways, including lipid oxidation, ethanol fermentation and Maillard reaction (and Strecker degradation). The effect of off-flavor compounds as received by the human taste receptors, along with its possible link of bioactivity (e.g. anti-inflammatory effect), are briefly discussed on a molecular level. Generation of off-flavor compounds in plants is markedly affected by the species, cultivar, geographical location, climate conditions, farming and harvest practices. The effects of genome editing (i.e. CRISPR-Cas9), various processing technologies, such as antioxidant supplementation, enzyme treatment, extrusion, fermentation, pressure application, and different storage and packaging conditions, have been increasingly studied in recent years to mitigate the formation of off-flavors in plant foods. The information presented in this review could be useful for agricultural practitioners, fruits and vegetables industry, and meat and dairy analogue manufacturers to improve the flavor properties of plant-based foods.


Assuntos
Reação de Maillard , Paladar , Humanos , Antioxidantes , Manipulação de Alimentos , Verduras
19.
Crit Rev Food Sci Nutr ; : 1-16, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063353

RESUMO

The application of plant proteins in food systems is largely hindered by their poor foaming or emulsifying properties and low digestibility compared with animal proteins, especially due to the aggregate state with tightly folded structure, slowly adsorbing at the interfaces, generating films with lower mechanical properties, and exposing less cutting sites. Physical fields and pH shifting have certain synergistic effects to efficiently tune the structure and redesign the interfacial layer of plant proteins, further enhancing their foaming or emulsifying properties. The improvement mechanisms mainly include: i) Aggregated plant proteins are depolymerized to form small protein particles and flexible structure is more easily exposed by combination treatment; ii) Particles with appropriate surface properties are quickly adsorbed to the interfacial layer, and then unfolded and rearranged to generate a tightly packed stiff interfacial layer to enhance bubble and emulsion stability; and iii) The unfolding and rearrangement of protein structure at the interface may result in the exposure of more cutting sites of digestive enzymes. This review summarizes the latest research progress on the structural changes, interfacial behaviors, and digestion properties of plant proteins under combined treatment, and elucidates the future development of these modification technologies for plant proteins in the food industry.

20.
Br J Nutr ; 130(6): 978-995, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36597816

RESUMO

For the omnivorous Cherax quadricarinatus crayfish, plant raw materials can be good alternatives to dietary fish meal (FM). A 56-d feeding trial was conducted in C. quadricarinatus (11·70 (se 0·13) g). Diet with 100 % FM as the protein source was the control. Seven experimental diets were formulated by replacing 75 or 100 % of FM with soyabean meal (SM75, SM100) or cottonseed meal (CM75 and CM100), and a mixture of SM and CM (protein content is 1:1) replacing 50, 75 or 100 % of FM (SC50, SC75 and SC100). Crayfish fed the CM100 and SC100 showed significantly lower weight gain (WG), specific growth rate, trypsin and pepsin activities compared with the control diet. Crayfish in CM100 group showed significantly higher GPx, alanine aminotransferase, aspartate aminotransferase activities and malondialdehyde content than the control. SM100 and CM100 diets can cause slight separation of the peritrophic membrane from the intestinal folds. The pepsin activity of crayfish in SC50 was significantly higher than those in other experimental diets. The highest WG and muscle arginine content were also found in crayfish fed SC50. The relative abundance of Proteobacteria, Unclassified Enterobacteriaceae and Candidatus Bacilloplasma was significantly higher, but Actinobacteriota was significantly lower in SM100, CM100 and SC100 than in control. Microbiota functional prediction indicated that the relative abundance of 'cell motility' pathway in crayfish fed CM100 was significantly decreased compared with the control. In conclusion, only half of the FM can be effectively substituted with a mixture of SM and CM (protein content is 1:1) for C. quadricarinatus.


Assuntos
Astacoidea , Estado Nutricional , Animais , Proteínas de Vegetais Comestíveis , Pepsina A , Intestinos , Dieta , Ração Animal/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA