Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271185

RESUMO

Hard pans, soil compaction, soil aggregation and stones create physical barriers that can affect the development of a root system. Roots are known to exploit paths of least resistance to avoid such obstacles, but the mechanism through which this is achieved is not well understood. Here, we combined 3D-printed substrates with a high-throughput live imaging platform to study the responses of plant roots to a range of physical barriers. Using image analysis algorithms, we determined the properties of growth trajectories and identified how the presence of rigid circular obstacles affects the ability of a primary root to maintain its vertical trajectory. Results showed the types of growth responses were limited, both vertical and oblique trajectories were found to be stable and influenced by the size of the obstacles. When obstacles were of intermediate sizes, trajectories were unstable and changed in nature through time. We formalised the conditions for root trajectory to change from vertical to oblique, linking the angle at which the root detaches from the obstacle to the root curvature due to gravitropism. Exploitation of paths of least resistance by a root may therefore be constrained by the ability of the root to curve and respond to gravitropic signals.

2.
Ann Bot ; 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39497527

RESUMO

BACKGROUND AND AIMS: The transformation of sieve elements (SEs) from meristematic cells, equipped with a full complement of organelles, to specialized transport tubes devoid of a nucleus, has long been enigmatic. We hypothesized a strong involvement of various degradation pathways, particularly macroautophagy in this context, emphasizing the importance of autophagic selectivity in the remaining viability of these cells. METHODS: Experiments were performed on pioneer roots of Populus trichocarpa cultivated in rhizotrons under field conditions. Through anatomical, ultrastructural and molecular analyses, we delineate the stages of phloemogenesis and the concurrent alterations in the cytoplasmic composition of SEs. KEY RESULTS: Notably, we observed not only macroautophagic structures, but also the formation of autophagic plastids, the selective degradation of specific organelles, vacuole disruption and the release of vacuolar contents. These events initially lead to localized reductions in cytoplasm density, but organelle-rich cytoplasmic phase is safeguarded from the extensive damage by a membrane system derived from the endoplasmic reticulum. SE ultimately develops into a conduit containing electron-translucent cytoplasm. Eventually, mature SE is a tube filled only by the translucent cytoplasm, with sparse organelles tethered to the cell wall. CONCLUSIONS: Although the activation of programmed cell death pathways was postulated, the persistence of SEs indicates that protoplast depletion is meticulously regulated by hitherto unidentified mechanisms. This research elucidates the sequential processes occurring in these cells during phloemogenesis and unveils novel insights into the mechanisms of selective autophagy.

3.
J Environ Manage ; 355: 120468, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430883

RESUMO

Soil depth plays a crucial role in shaping the interactions between soil microbes and nutrient availability. However, there is limited understanding of how bacterial, fungal, and protistan communities respond to different soil depths, particularly in the unique geological context and soil properties of karst regions. Organic matter, total nitrogen, and phosphorus, ammonium, nitrate, and plant root biomass, as well as bacterial and fungal abundances, bacterial and protistan diversity were higher in the 0-20 cm soil layer than those in the 20-40 cm and soil-rock mixing layers. In contrast, soil pH was higher in the 20-40 cm and soil-rock mixing layers than that in the 0-20 cm soil layer. The soil exchange of calcium, nitrate, and root biomass were identified as the primary factors regulating microbial assemblages across the depth transect. Moreover, co-occurrence network analysis revealed a greater degree of connectivity between protistan taxa and fungal taxa in the 0-20 cm soil layer than those in the 20-40 cm and soil-rock mixing layers. In contrast, the number of association links between protist-bacteria and bacteria-bacteria was higher in the soil-rock mixing layers compared to the 0-20 cm soil layer. Actinobacteria, Ascomycota, and unclassified protistan taxa were identified as keystones, displaying the highest number of connections with other microbial taxa. Collectively, these results suggested that the increased plant root biomass, coupled with sufficient available nutrient inputs in the upper 0-20 cm soil layer, facilitates strong interactions among fungal and protistan taxa, which play crucial roles in the topsoil. However, as nutrients become less available with increasing depth, competition among bacterial taxa and the predation between bacterial and protistan taxa intensify. Therefore, these findings indicate the interactions among keystone taxa at different soil depths has the potential to generate ecological implications during vegetation restoration in fragile ecosystems.


Assuntos
Ecossistema , Solo , Biomassa , Solo/química , Fungos , Nitratos , Bactérias , Microbiologia do Solo
4.
J Sci Food Agric ; 103(7): 3531-3539, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36788119

RESUMO

BACKGROUND: Manganese (Mn) is an essential micronutrient for plants, whereas excess Mn(II) in soils leads to its toxicity to crops. Mn(II) is adsorbed onto plant roots from soil solution and then absorbed by plants. Root charge characteristics should affect Mn(II) toxicity to crops and Mn(II) uptake by the roots of the crops. However, the differences in the effects of root surface charge on the uptake of Mn(II) among various crop species are not well understood. RESULTS: The roots of nine legumes and six non-legume poaceae were obtained by hydroponics and the streaming potential method and spectroscopic analysis were used to measure the zeta potentials and functional groups on the roots, respectively. The results indicate that the exchangeable Mn(II) adsorbed by plant roots was significantly positively correlated with the Mn(II) accumulated in plant shoots. Legume roots carried more negative charges and functional groups than non-legume poaceae roots, which was responsible for the larger amounts of exchangeable Mn(II) on legume roots in 2 h and the Mn(II) accumulated in their shoots in 48 h. Coexisting cations, such as Ca2+ and Mg2+ , were most effective in decreasing Mn(II) taken up by roots and accumulated in shoots than K+ and Na+ . This was because Ca2+ and Mg2+ could compete with Mn(II) for active sites on plant roots more strongly compared to K+ and Na+ . CONCLUSION: The root surface charge and functional groups are two important factors influencing Mn(II) uptake by roots and accumulation in plant shoots. © 2023 Society of Chemical Industry.


Assuntos
Fabaceae , Poaceae , Manganês , Transporte Biológico , Produtos Agrícolas , Verduras , Solo , Raízes de Plantas
5.
Plant Cell Environ ; 45(3): 823-836, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34806183

RESUMO

Deep rooting winter wheat genotypes can reduce nitrate leaching losses and increase N uptake. We aimed to investigate which deep root traits are correlated to deep N uptake and to estimate genetic variation in root traits and deep 15 N tracer uptake. In 2 years, winter wheat genotypes were grown in RadiMax, a semifield root-screening facility. Minirhizotron root imaging was performed three times during the main growing season. At anthesis, 15 N was injected via subsurface drip irrigation at 1.8 m depth. Mature ears from above the injection area were analysed for 15 N content. From minirhizotron image-based root length data, 82 traits were constructed, describing root depth, density, distribution and growth aspects. Their ability to predict 15 N uptake was analysed with the least absolute shrinkage and selection operator (LASSO) regression. Root traits predicted 24% and 14% of tracer uptake variation in 2 years. Both root traits and genotype showed significant effects on tracer uptake. In 2018, genotype and the three LASSO-selected root traits predicted 41% of the variation in tracer uptake, in 2019 genotype and one root trait predicted 48%. In both years, one root trait significantly mediated the genotype effect on tracer uptake. Deep root traits from minirhizotron images can predict deep N uptake, indicating the potential to breed deep-N-uptake-genotypes.


Assuntos
Nitratos , Raízes de Plantas , Genótipo , Fenótipo , Raízes de Plantas/genética , Triticum/genética
6.
Environ Sci Technol ; 56(19): 14154-14165, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36150175

RESUMO

Plant roots are responsible for transporting large quantities of nutrients in forest ecosystems and yet are frequently overlooked in global assessments of Hg cycling budgets. In this study, we systematically determined the distribution of total Hg mass and its stable isotopic signatures in a subtropical evergreen forest to elucidate sources of Hg in plant root tissues and the associated translocation mechanisms. Hg stored in roots and its isotopic signatures show significant correlations to those found in surrounding soil at various soil depths. The odd mass-independent fractionation (MIF) of root Hg at a shallow soil depth displays a -0.10‰ to -0.50‰ negative transition compared to the values in aboveground woody biomass. The evidence suggests that root Hg is predominantly derived from surrounding soil, rather than translocation of atmospheric uptake via aboveground tissues. The cortex has a more negative mass-dependent fractionation (MDF) of -0.10‰ to -1.20‰ compared to the soil samples, indicating a preferential uptake of lighter isotopes by roots. The similar MDF and odd-MIF signals found in root components imply limited Hg transport in roots. This work highlights that Hg stored in plant roots is not a significant sink of atmospheric Hg. The heterogeneous distribution of Hg mass in roots of various sizes represents a significant uncertainty of current estimates of Hg pool size in forest ecosystems.


Assuntos
Mercúrio , Ecossistema , Monitoramento Ambiental , Florestas , Isótopos , Mercúrio/análise , Isótopos de Mercúrio/análise , Solo
7.
Environ Sci Technol ; 56(18): 13461-13472, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36041174

RESUMO

Mycorrhizae are ubiquitous symbiotic associations between arbuscular mycorrhizal fungi (AMF) and terrestrial plants, in which AMF receive photosynthates from and acquire soil nutrients for their host plants. Plant uptake of soil nitrogen (N) reduces N substrate for microbial processes that generate nitrous oxide (N2O), a potent greenhouse gas. However, the underlying microbial mechanisms remain poorly understood, particularly in agroecosystems with high reactive N inputs. We examined how plant roots and AMF affect N2O emissions, N2O-producing (nirK and nirS) and N2O-consuming (nosZ) microbes under normal and high N inputs in conventional (CONV) and organically managed (OM) soils. Here, we show that high N input increased soil N2O emissions and the ratio of nirK to nirS microbes. Roots and AMF did not affect the (nirK + nirS)/nosZ ratio but significantly reduced N2O emissions and the nirK/nirS ratio. They reduced the nirK/nirS ratio by reducing nirK-Rhodobacterales but increasing nirS-Rhodocyclales in the CONV soil while decreasing nirK-Burkholderiales but increasing nirS-Rhizobiales in the OM soil. Our results indicate that plant roots and AMF reduced N2O emission directly by reducing soil N and indirectly through shifting the community composition of N2O-producing microbes in N-enriched agroecosystems, suggesting that harnessing the rhizosphere microbiome through agricultural management might offer additional potential for N2O emission mitigation.


Assuntos
Gases de Efeito Estufa , Micorrizas , Desnitrificação , Nitrogênio , Óxido Nitroso/análise , Solo/química , Microbiologia do Solo
8.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012533

RESUMO

The function of the root system is crucial for plant survival, such as anchoring plants, absorbing nutrients and water from the soil, and adapting to stress. MYB transcription factors constitute one of the largest transcription factor families in plant genomes with structural and functional diversifications. Members of this superfamily in plant development and cell differentiation, specialized metabolism, and biotic and abiotic stress processes are widely recognized, but their roles in plant roots are still not well characterized. Recent advances in functional studies remind us that MYB genes may have potentially key roles in roots. In this review, the current knowledge about the functions of MYB genes in roots was summarized, including promoting cell differentiation, regulating cell division through cell cycle, response to biotic and abiotic stresses (e.g., drought, salt stress, nutrient stress, light, gravity, and fungi), and mediate phytohormone signals. MYB genes from the same subfamily tend to regulate similar biological processes in roots in redundant but precise ways. Given their increasing known functions and wide expression profiles in roots, MYB genes are proposed as key components of the gene regulatory networks associated with distinct biological processes in roots. Further functional studies of MYB genes will provide an important basis for root regulatory mechanisms, enabling a more inclusive green revolution and sustainable agriculture to face the constant changes in climate and environmental conditions.


Assuntos
Regulação da Expressão Gênica de Plantas , Fatores de Transcrição , Genes myb , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Physiol Mol Biol Plants ; 28(6): 1311-1321, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35910442

RESUMO

The phenotyping of plant roots is a challenging task and poses a major lacuna in plant root research. Roots rhizospheric zone is affected by several environmental cues among which salinity, drought, heavy metal and soil pH are key players. Among biological factors, fungal, nematode and bacterial interactions with roots are vital for improving nutrient uptake efficiency in plants. The subterranean nature of a plant root and the limited number of approaches for root phenotyping offers a great challenge to the plant breeders to select a desirable root trait under different stress conditions. Identification of key root traits can provide a basic understanding for generating crop plants with enhanced ability to withstand various biotic or abiotic stresses. For instance, crops with improved soil exploration potential, phosphate uptake efficiency, water use efficiency and others. Laboratory methods such as hydroponics, rhizotron, rhizoslide and luminescence observatory for roots do not provide precise and desired root quantification attributes. Though 3D imaging by X-ray computed tomography (X-ray-CT) and magnetic resonance imaging techniques are complex, however, it provides the most applicable and practically relevant data for quantifying root system architecture traits. This review outlines the current developments in root studies including recent approaches viz. X-ray-CT, MRI, thermal infrared imaging and minirhizotron. Although root phenotyping is a laborious procedure, it offers multiple advantages by removing discrepancies and providing the actual practical significance of plant roots for breeding programs.

10.
Semin Cell Dev Biol ; 92: 126-133, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30974171

RESUMO

Despite their paramount role in plant life, the study of roots has been largely neglected until recently. Here, I shortly describe a few newly-discovered abilities of plants to undergo adaptive changes and execute developmental decisions based on roots' perception of non-resource information pertaining to imminent challenges and opportunities. Seemingly simple in their morphology and architecture and lacking central information-processing centres, roots are able to sense and integrate complex cues and signals over time and space that allow plants to perform elaborate behaviours analogous, some claim even homologous, to those of intelligent animals. Although our knowledge of root behaviour is rapidly expanding, further understanding of its underlying mechanisms is largely preliminary, calling for detailed investigation of the involved cues, signals and information processing controls, as well as their implications for plant development, growth and reproduction under realistic ecological and agricultural settings.


Assuntos
Desenvolvimento Vegetal/genética , Raízes de Plantas/genética , Plantas
11.
Plant Cell Physiol ; 62(8): 1239-1250, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34027549

RESUMO

Many plant processes occur in the context of and in interaction with a surrounding matrix such as soil (e.g. root growth and root-microbe interactions) or surrounding tissues (e.g. pollen tube growth through the pistil), making it difficult to study them with high-resolution optical microscopy. Over the past decade, microfabrication techniques have been developed to produce experimental systems that allow researchers to examine cell behavior in microstructured environments that mimic geometrical, physical and/or chemical aspects of the natural growth matrices and that cannot be generated using traditional agar plate assays. These microfabricated environments offer considerable design flexibility as well as the transparency required for high-resolution, light-based microscopy. In addition, microfluidic platforms have been used for various types of bioassays, including cellular force assays, chemoattraction assays and electrotropism assays. Here, we review the recent use of microfluidic devices to study plant cells and organs, including plant roots, root hairs, moss protonemata and pollen tubes. The increasing adoption of microfabrication techniques by the plant science community may transform our approaches to investigating how individual plant cells sense and respond to changes in the physical and chemical environment.


Assuntos
Briófitas/anatomia & histologia , Imageamento Tridimensional/métodos , Células Vegetais/fisiologia , Raízes de Plantas/anatomia & histologia , Tubo Polínico/anatomia & histologia , Protoplastos/fisiologia , Bioensaio/métodos , Técnicas Analíticas Microfluídicas/métodos
12.
Plant Cell Physiol ; 61(3): 492-504, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738419

RESUMO

Festuca arundinacea is a model to work on the mechanisms of drought resistance in grasses. The crucial components of that resistance still remain not fully recognized. It was suggested that deep root system could be a crucial trait for drought avoidance strategy but the other components of root performance under water deficit have not paid much attention of scientists. In this study, two genotypes of F. arundinacea with a different ability to withstand soil water deficit were selected to perform comprehensive research, including analysis of root architecture, phytohormones, proteome, primary metabolome and lipidome under progressive stress conditions, followed by a rewatering period. The experiments were performed in tubes, thus enabling undisturbed development of root systems. We demonstrated that long roots are not sufficient to perfectly avoid drought damage in F. arundinacea and to withstand adverse environmental conditions without a disturbed cellular metabolism (with respect to leaf relative water potential and cellular membrane integrity). Furthermore, we proved that metabolic performance of roots is as crucial as its architecture under water deficit, to cope with drought stress via avoidance, tolerance and regeneration strategies. We believe that the presented studies could be a good reference for the other, more applied experiments, in closely related species.


Assuntos
Adaptação Fisiológica/fisiologia , Secas , Festuca/fisiologia , Raízes de Plantas/metabolismo , Metaboloma , Folhas de Planta/metabolismo , Poaceae/metabolismo , Proteoma/metabolismo , Solo , Água/metabolismo
13.
Electromagn Biol Med ; 39(2): 97-108, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32138556

RESUMO

The aim of this study was to investigate the response of chromosomes in typical human and plant cells under applied low-frequency magnetic fields at low and high intensities. Neuronal-like cells and roots of Allium sativum and Vicia faba were used to investigate chromosome's response to a static and 50 Hz magnetic fields at intensities ranging from 1 mT to 0.8 T, generated by two Helmholtz coils driven by direct current or alternate current voltage. Vertex spectrometer and Olympus microscope with camera were used. A significant decrease in intensity of the phosphate bands in the DNA infrared region was observed by FTIR spectroscopy analysis after exposure of neuronal-like cells to static and 50 Hz magnetic field at low intensity of 1 mT, which can be explained assuming that uncoiling and unpackaging of chromatin constituents occurred after exposure. This effect was directly observed by microscope in roots of Allium sativum and Vicia faba under exposure to a static magnetic field at high intensity of 0.8 T. These findings can be explained assuming that exposure to both low- and high-intensity magnetic fields of chromosomes in typical human and plant cells induces uncoiling and unpackaging of chromatin constituents, followed by chromosome alignment towards the direction of applied magnetic field, providing further demonstration that magnetic fields can induce the orientation of organic macromolecules even at low-intensity values.


Assuntos
Aberrações Cromossômicas , Campos Magnéticos/efeitos adversos , Linhagem Celular Tumoral , Alho/genética , Humanos , Neurônios/metabolismo , Vicia faba/genética
14.
Plant Cell Environ ; 42(11): 2999-3014, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31314912

RESUMO

Root anatomical phenotypes vary among maize (Zea mays) cultivars and may have adaptive value by modifying the metabolic cost of soil exploration. However, the microbial trade-offs of these phenotypes are unknown. We hypothesized that nodal roots of maize with contrasting cortical anatomy have different patterns of mutualistic and pathogenic fungal colonization. Arbuscular mycorrhizal colonization in the field and mesocosms, root rots in the field, and Fusarium verticillioides colonization in mesocosms were evaluated in maize genotypes with contrasting root cortical anatomy. Increased aerenchyma and decreased living cortical area were associated with decreased mycorrhizal colonization in mesocosm and field experiments with inbred genotypes. In contrast, mycorrhizal colonization of hybrids increased with larger aerenchyma lacunae; this increase coincided with larger root diameters of hybrid roots. F. verticillioides colonization was inversely correlated with living cortical area in mesocosm-grown inbreds, and no relation was found between root rots and living cortical area or aerenchyma in field-grown hybrids. Root rots were positively correlated with cortical cell file number and inversely correlated with cortical cell size. Mycorrhizae and root rots were inversely correlated in field-grown hybrids. We conclude that root anatomy is associated with differential effects on pathogens and mycorrhizal colonization of nodal roots in maize.


Assuntos
Micorrizas/metabolismo , Raízes de Plantas/anatomia & histologia , Zea mays/anatomia & histologia , Zea mays/microbiologia , Fusarium/patogenicidade , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Micorrizas/crescimento & desenvolvimento , Fenótipo , Doenças das Plantas/microbiologia , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Microbiologia do Solo , Simbiose/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
15.
J Environ Manage ; 233: 258-263, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30580121

RESUMO

Phosphate (P) is a biologically important compound that is commonly incorporated into fertilizers. Wastewater from agricultural processes results in excessive accumulation of P and eutrophication of lakes. We have developed a system for the remediation, recovery, and potential reuse of P from agricultural wastewater using tomato plant roots (roots) as a capture matrix and carboxymethyl cellulose (CMC) as an eluent and enhancer of P precipitation. Untreated roots can bind up to 55.2 ±â€¯15.2 grams of P per kilogram (g/kg) of roots in comparison to the maximum 8.2 ±â€¯1.5 g/kg bound by the previously used iron-chitosan (Fe-chito). The addition of CMC enhances the precipitation of P with a clearance of 97.2% as opposed to 33.3% without CMC. On site tests show an average removal of 226.5 µg/L per day or a total of ∼28 g of P removed after 23 days. This corresponds to a 71% P removal rate.


Assuntos
Solanum lycopersicum , Águas Residuárias , Carboximetilcelulose Sódica , Fosfatos , Raízes de Plantas
16.
New Phytol ; 217(3): 1128-1136, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29139121

RESUMO

Soil is a crucial component of the biosphere and is a major sink for organic carbon. Plant roots are known to release a wide range of carbon-based compounds into soils, including polysaccharides, but the functions of these are not known in detail. Using a monoclonal antibody to plant cell wall xyloglucan, we show that this polysaccharide is secreted by a wide range of angiosperm roots, and relatively abundantly by grasses. It is also released from the rhizoids of liverworts, the earliest diverging lineage of land plants. Using analysis of water-stable aggregate size, dry dispersion particle analysis and scanning electron microscopy, we show that xyloglucan is effective in increasing soil particle aggregation, a key factor in the formation and function of healthy soils. To study the possible roles of xyloglucan in the formation of soils, we analysed the xyloglucan contents of mineral soils of known age exposed upon the retreat of glaciers. These glacial forefield soils had significantly higher xyloglucan contents than detected in a UK grassland soil. We propose that xyloglucan released from plant rhizoids/roots is an effective soil particle aggregator and may, in this role, have been important in the initial colonization of land.


Assuntos
Glucanos/metabolismo , Plantas/metabolismo , Solo/química , Xilanos/metabolismo , Álcalis/química , Carbono/análise , Glucanos/ultraestrutura , Compostos Orgânicos/análise , Xilanos/ultraestrutura
17.
New Phytol ; 235(6): 2143-2145, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35979685
18.
Ecotoxicol Environ Saf ; 138: 170-178, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28056417

RESUMO

Rare earth element (REE) pollution and acid rain are major global environmental concerns, and their spatial distributions overlap. Thus, both forms of pollution combine to act on plants. Nitrogen is important for plant growth, and nitrate reductase (NR) is a key plant enzyme that catalyzes nitrogen assimilation. Studying the combined effects of REEs and acid rain on plant nitrogen-based nutrients has important environmental significance. Here, soybean (Glycine max) plants, commonly used for toxicological studies, were exposed to lanthanum (La), a REE, and acid rain to study the NR activities and NR transcriptional levels in the roots. To explain how the pollution affected the NR transcriptional level, we simultaneously observed the contents of intracellular La and nutrient elements, protoplast morphology, membrane lipid peroxidation and intracellular pH. A combined treatment of 0.08mmol/L La and pH 4.5 acid rain increased the NR activity, decreased the NR transcriptional level, increased the intracellular nutrient elements' contents and caused deformations in membrane structures. Other combined treatments significantly decreased the aforementioned parameters and caused serious damage to the membrane structures. The variation in the amplitudes of combined treatments was greater than those of individual treatments. Compared with the control and individual treatments, combined treatments increased membrane permeability, the malondialdehyde content, and intracellular H+ and La contents, and with an increasing La concentration or acid strength, the change in amplitude increased. Thus, the combined effects on NR gene transcription in soybean seedling roots were related to the intracellular nutrient elements' contents, protoplast morphology, membranous lipid peroxidation, intracellular pH and La content.


Assuntos
Chuva Ácida/efeitos adversos , Membrana Celular/metabolismo , Glycine max/enzimologia , Lantânio/farmacologia , Nitrato Redutase/metabolismo , Raízes de Plantas/enzimologia , Concentração de Íons de Hidrogênio , Lantânio/metabolismo , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Lipídeos de Membrana/metabolismo , Nitrato Redutase/genética , Permeabilidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Protoplastos/efeitos dos fármacos , Protoplastos/patologia , Plântula/efeitos dos fármacos , Plântula/enzimologia , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Transcrição Gênica/efeitos dos fármacos
19.
Microsc Microanal ; 23(3): 538-552, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28320487

RESUMO

The use of in vivo X-ray microcomputed tomography (µCT) to study plant root systems has become routine, but is often hampered by poor contrast between roots, soil, soil water, and soil organic matter. In clinical radiology, imaging of poorly contrasting regions is frequently aided by the use of radio-opaque contrast media. In this study, we present evidence for the utility of iodinated contrast media (ICM) in the study of plant root systems using µCT. Different dilutions of an ionic and nonionic ICM (Gastrografin 370 and Niopam 300) were perfused into the aerial vasculature of juvenile pea plants via a leaf flap (Pisum sativum). The root systems were imaged via µCT, and a variety of image-processing approaches used to quantify and compare the magnitude of the contrast enhancement between different regions. Though the treatment did not appear to significantly aid extraction of full root system architectures from the surrounding soil, it did allow the xylem and phloem units of seminal roots and the vascular morphology within rhizobial nodules to be clearly visualized. The nonionic, low-osmolality contrast agent Niopam appeared to be well tolerated by the plant, whereas Gastrografin showed evidence of toxicity. In summary, the use of iodine-based contrast media allows usually poorly contrasting root structures to be visualized nondestructively using X-ray µCT. In particular, the vascular structures of roots and rhizobial nodules can be clearly visualized in situ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA