Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 84(1): 131-141, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38103555

RESUMO

Nonexpressor of pathogenesis-related genes 1 (NPR1) was discovered in Arabidopsis as an activator of salicylic acid (SA)-mediated immune responses nearly 30 years ago. How NPR1 confers resistance against a variety of pathogens and stresses has been extensively studied; however, only in recent years have the underlying molecular mechanisms been uncovered, particularly NPR1's role in SA-mediated transcriptional reprogramming, stress protein homeostasis, and cell survival. Structural analyses ultimately defined NPR1 and its paralogs as SA receptors. The SA-bound NPR1 dimer induces transcription by bridging two TGA transcription factor dimers, forming an enhanceosome. Moreover, NPR1 orchestrates its multiple functions through the formation of distinct nuclear and cytoplasmic biomolecular condensates. Furthermore, NPR1 plays a central role in plant health by regulating the crosstalk between SA and other defense and growth hormones. In this review, we focus on these recent advances and discuss how NPR1 can be utilized to engineer resistance against biotic and abiotic stresses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácido Salicílico/química , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Fatores de Transcrição/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
2.
Plant J ; 119(5): 2288-2302, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969341

RESUMO

HSP90Cs are essential molecular chaperones localized in the plastid stroma that maintain protein homeostasis and assist the import and thylakoid transport of chloroplast proteins. While HSP90C contains all conserved domains as an HSP90 family protein, it also possesses a unique feature in its variable C-terminal extension (CTE) region. This study elucidated the specific function of this HSP90C CTE region. Our phylogenetic analyses revealed that this intrinsically disordered region contains a highly conserved DPW motif in the green lineages. With biochemical assays, we showed that the CTE is required for the chaperone to effectively interact with client proteins PsbO1 and LHCB2 to regulate ATP-independent chaperone activity and to effectuate its ATP hydrolysis. The CTE truncation mutants could support plant growth and development reminiscing the wild type under normal conditions except for a minor phenotype in cotyledon when expressed at a level comparable to wild type. However, higher HSP90C expression was observed to correlate with a stronger response to specific photosystem II inhibitor DCMU, and CTE truncations dampened the response. Additionally, when treated with lincomycin to inhibit chloroplast protein translation, CTE truncation mutants showed a delayed response to PsbO1 expression repression, suggesting its role in chloroplast retrograde signaling. Our study therefore provides insights into the mechanism of HSP90C in client protein binding and the regulation of green chloroplast maturation and function, especially under stress conditions.


Assuntos
Proteínas de Choque Térmico HSP90 , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Cloroplastos/metabolismo , Plastídeos/metabolismo , Plastídeos/genética , Filogenia , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
3.
Plant J ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222478

RESUMO

Plant hormones are chemical signals governing almost every aspect of a plant's life cycle and responses to environmental cues. They are enmeshed within complex signaling networks that can only be deciphered by using broad-scale analytical methods to capture information about several plant hormone classes simultaneously. Methods used for this purpose are all based on reversed-phase (RP) liquid chromatography and mass spectrometric detection. Hydrophilic interaction chromatography (HILIC) is an alternative chromatographic method that performs well in analyses of biological samples. We therefore developed and validated a HILIC method for broad-scale plant hormone analysis including a rapid sample preparation procedure; moreover, derivatization or fractionation is not required. The method enables plant hormone screening focused on polar and moderately polar analytes including cytokinins, auxins, jasmonates, abscisic acid and its metabolites, salicylates, indoleamines (melatonin), and 1-aminocyclopropane-1-carboxylic acid (ACC), for a total of 45 analytes. Importantly, the major pitfalls of ACC analysis have been addressed. Furthermore, HILIC provides orthogonal selectivity to conventional RP methods and displays greater sensitivity, resulting in lower limits of quantification. However, it is less robust, so procedures to increase its reproducibility were established. The method's potential is demonstrated in a case study by employing an approach combining hormonal analysis with phenomics to examine responses of three Arabidopsis ecotypes toward three abiotic stress treatments: salinity, low nutrient availability, and their combination. The case study showcases the value of the simultaneous determination of several plant hormone classes coupled with phenomics data when unraveling processes involving complex cross-talk under diverse plant-environment interactions.

4.
Plant J ; 116(4): 1097-1117, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37824297

RESUMO

We have developed a compendium and interactive platform, named Stress Combinations and their Interactions in Plants Database (SCIPDb; http://www.nipgr.ac.in/scipdb.php), which offers information on morpho-physio-biochemical (phenome) and molecular (transcriptome and metabolome) responses of plants to different stress combinations. SCIPDb is a plant stress informatics hub for data mining on phenome, transcriptome, trait-gene ontology, and data-driven research for advancing mechanistic understanding of combined stress biology. We analyzed global phenome data from 939 studies to delineate the effects of various stress combinations on yield in major crops and found that yield was substantially affected under abiotic-abiotic stresses. Transcriptome datasets from 36 studies hosted in SCIPDb identified novel genes, whose roles have not been earlier established in combined stress. Integretome analysis under combined drought-heat stress pinpointed carbohydrate, amino acid, and energy metabolism pathways as the crucial metabolic, proteomic, and transcriptional components in plant tolerance to combined stress. These examples illustrate the application of SCIPDb in identifying novel genes and pathways involved in combined stress tolerance. Further, we showed the application of this database in identifying novel candidate genes and pathways for combined drought and pathogen stress tolerance. To our knowledge, SCIPDb is the only publicly available platform offering combined stress-specific omics big data visualization tools, such as an interactive scrollbar, stress matrix, radial tree, global distribution map, meta-phenome analysis, search, BLAST, transcript expression pattern table, Manhattan plot, and co-expression network. These tools facilitate a better understanding of the mechanisms underlying plant responses to combined stresses.


Assuntos
Plantas , Proteômica , Plantas/genética , Transcriptoma , Estresse Fisiológico/genética , Fenótipo , Secas , Regulação da Expressão Gênica de Plantas/genética
5.
Small ; : e2402024, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766989

RESUMO

The rapidly changing climate is exacerbating the environmental stress that negatively impacts crop health and yield. Timely sensing of plant response to stress is beneficial to timely adjust planting conditions, promoting the healthy growth of plants, and improving plant productivity. Hydrogen peroxide (H2O2) is an important molecule of signal transduction in plants. However, the common methods for detecting H2O2  in plants are associated with certain drawbacks, such as long extraction time, cumbersome steps, dependence on large instruments, and difficulty in realizing in-field sensing. Therefore, it is urgent to establish more efficient detection methods to realize the rapid detection of H2O2 content in plants. In this research, poly (methyl vinyl ether-alt-maleic acid) (PMVE/MA) hydrogel microneedle (MN) patch for rapid extraction of leaf sap are prepared, and the extraction mechanism of PEG-crosslinked PMVE/MA hydrogel MN patch is studied. A method of rapid detection of H2O2 content in plants based on MN patch with optical detection technology is constructed. The hydrogel MN patch can be used for timely H2O2 analysis. This application enables new opportunities in plant engineering, and can be extended to the safety and health monitoring of other plants and animals.

6.
New Phytol ; 241(2): 703-714, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37915144

RESUMO

Abscisic acid (ABA) is best known for regulating the responses to abiotic stressors. Thus, applications of ABA signaling pathways are considered promising targets for securing yield under stress. ABA levels rise in response to abiotic stress, mounting physiological and metabolic responses that promote plant survival under unfavorable conditions. ABA elicits its effects by binding to a family of soluble receptors found in monomeric and dimeric states, differing in their affinity to ABA and co-receptors. However, the in vivo significance of the biochemical differences between these receptors remains unclear. We took a gain-of-function approach to study receptor-specific functionality. First, we introduced activating mutations that enforce active ABA-bound receptor conformation. We then transformed Arabidopsis ABA-deficient mutants with the constitutive receptors and monitored suppression of the ABA deficiency phenotype. Our findings suggest that PYL4 and PYL5, monomeric ABA receptors, have differential activity in regulating transpiration and transcription of ABA biosynthesis and stress response genes. Through genetic and metabolic data, we demonstrate that PYR1, but not PYL5, is sufficient to activate the ABA positive feedback mechanism. We propose that ABA signaling - from perception to response - flows differently when triggered by different PYLs, due to tissue and transcription barriers, thus resulting in distinct circuitries.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo
7.
Plant Cell Environ ; 47(7): 2336-2350, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38500380

RESUMO

Chloroplast function is essential for growth, development, and plant adaptation to stress. Organelle stress and plant defence responses were examined here using noxy8 (nonresponding to oxylipins 8) from a series of Arabidopsis mutants. The noxy8 mutation was located at the CLPC2 gene, encoding a chloroplast chaperone of the protease complex CLP. Although its CLPC1 paralogue is considered to generate redundancy, our data reveal significant differences distinguishing CLPC2 and CLPC1 functions. As such, clpc1 mutants displayed a major defect in housekeeping chloroplast proteostasis, leading to a pronounced reduction in growth and pigment levels, enhanced accumulation of chloroplast and cytosol chaperones, and resistance to fosmidomycin. Conversely, clpc2 mutants showed severe susceptibility to lincomycin inhibition of chloroplast translation and resistance to Antimycin A inhibition of mitochondrial respiration. In the response to Pseudomonas syringae pv. tomato, clpc2 but not clpc1 mutants were resistant to bacterial infection, showing higher salicylic acid levels, defence gene expression and 9-LOX pathway activation. Our findings suggest CLPC2 and CLPC1 functional specificity, with a preferential involvement of CLPC1 in housekeeping processes and of CLPC2 in stress responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Mutação , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Pseudomonas syringae/fisiologia , Lincomicina/farmacologia , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Proteínas de Cloroplastos/metabolismo , Proteínas de Cloroplastos/genética
8.
Plant Cell Environ ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041727

RESUMO

Very-long-chain fatty acids (VLCFAs) are essential precursors for plant membrane lipids, cuticular waxes, suberin, and storage oils. Integral to the fatty acid elongase (FAE) complex, 3-ketoacyl-CoA synthases (KCSs) function as crucial enzymes in the VLCFA pathway, determining the chain length of VLCFA. This study explores the in-planta role of the KCS19 gene. KCS19 is predominantly expressed in leaves and stem epidermis, sepals, styles, early silique walls, beaks, pedicels, and mature embryos. Localized in the endoplasmic reticulum, KCS19 interacts with other FAE proteins. kcs19 knockout mutants displayed reduced total wax and wax crystals, particularly alkanes, while KCS19 overexpression increased these components and wax crystals. Moreover, the cuticle permeability was higher for the kcs19 mutants compared to the wild type, rendering them more susceptible to drought and salt stress, whereas KCS19 overexpression enhanced drought and salt tolerance. Disrupting KCS19 increased C18 species and decreased C20 and longer species in seed fatty acids, indicating its role in elongating C18 to C20 VLCFAs, potentially up to C24 for seed storage lipids. Collectively, KCS19-mediated VLCFA synthesis is required for cuticular wax biosynthesis and seed storage lipids, impacting plant responses to abiotic stress.

9.
Plant Cell Environ ; 47(5): 1769-1781, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314642

RESUMO

Stomata play a pivotal role in regulating gas exchange between plants and the atmosphere controlling water and carbon cycles. Accordingly, we investigated the impact of ultraviolet-B radiation, a neglected environmental factor varying with ongoing global change, on stomatal morphology and function by a Comprehensive Meta-Analysis. The overall UV effect at the leaf level is to decrease stomatal conductance, stomatal aperture and stomatal size, although stomatal density was increased. The significant decline in stomatal conductance is marked (6% in trees and >10% in grasses and herbs) in short-term experiments, with more modest decreases noted in long-term UV studies. Short-term experiments in growth chambers are not representative of long-term field UV effects on stomatal conductance. Important consequences of altered stomatal function are hypothesized. In the short term, UV-mediated stomatal closure may reduce carbon uptake but also water loss through transpiration, thereby alleviating deleterious effects of drought. However, in the long term, complex changes in stomatal aperture, size, and density may reduce the carbon sequestration capacity of plants and increase vegetation and land surface temperatures, potentially exacerbating negative effects of drought and/or heatwaves. Therefore, the expected future strength of carbon sink capacity in high-UV regions is likely overestimated.


Assuntos
Estômatos de Plantas , Raios Ultravioleta , Estômatos de Plantas/fisiologia , Ecossistema , Folhas de Planta/fisiologia , Água/fisiologia , Plantas , Transpiração Vegetal/fisiologia
10.
J Exp Bot ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814918

RESUMO

Medicinal plants (MPs) are valued for their contributions to human health. However, the growing demand for MPs and the concerns regarding their quality and sustainability have prompted the reassessment of conventional production practices. Controlled environment cropping systems, such as vertical farms, offer a transformative approach to MP production. By enabling precise control over environment factors, such as light, carbon dioxide, temperature, humidity, nutrients, and airflow, controlled environments can improve the consistency, concentration, and yield of bioactive phytochemicals in MPs. This review explores the potential of controlled environment systems for enhancing MP production. First, we describe how controlled environments can overcome the limitations of conventional production in improving the quality of MP. Next, we propose strategies based on plant physiology to manipulate environment conditions for enhancing the levels of bioactive compounds in plants. These strategies include improving photosynthetic carbon assimilation, light spectrum signalling, purposeful stress elicitation, and chronoculture. We describe the underlying mechanisms and practical applications of these strategies. Finally, we highlight the major knowledge gaps and challenges that limit the application of controlled environments, and discuss future research directions.

11.
Microb Ecol ; 87(1): 73, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758374

RESUMO

Endophytes generally increase antioxidant contents of plants subjected to environmental stresses. However, the mechanisms by which endophytes alter the accumulation of antioxidants in plant tissues are not entirely clear. We hypothesized that, in stress situations, endophytes would simultaneously reduce oxidative damage and increase antioxidant contents of plants and that the accumulation of antioxidants would be a consequence of the endophyte ability to regulate the expression of plant antioxidant genes. We investigated the effects of the fungal endophyte Epichloë gansuensis (C.J. Li & Nan) on oxidative damage, antioxidant contents, and expression of representative genes associated with antioxidant pathways in Achnatherum inebrians (Hance) Keng plants subjected to low (15%) and high (60%) soil moisture conditions. Gene expression levels were measured using RNA-seq. As expected, the endophyte reduced the oxidative damage by 17.55% and increased the antioxidant contents by 53.14% (on average) in plants subjected to low soil moisture. In line with the accumulation of antioxidants in plant tissues, the endophyte increased the expression of most plant genes associated with the biosynthesis of antioxidants (e.g., MIOX, crtB, gpx) while it reduced the expression of plant genes related to the metabolization of antioxidants (e.g., GST, PRODH, ALDH). Our findings suggest that endophyte ability of increasing antioxidant contents in plants may reduce the oxidative damage caused by stresses and that the fungal regulation of plant antioxidants would partly explain the accumulation of these compounds in plant tissues.


Assuntos
Antioxidantes , Secas , Endófitos , Epichloe , Estresse Oxidativo , Endófitos/metabolismo , Endófitos/fisiologia , Antioxidantes/metabolismo , Epichloe/fisiologia , Epichloe/genética , Epichloe/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
12.
Phytopathology ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427607

RESUMO

The image-based detection and classification of plant diseases has become increasingly important to the development of precision agriculture. We consider the case of tomato, a high-value crop supporting the livelihoods of many farmers around the world. Many biotic and abiotic plant health issues impede the efficient production of this crop, and laboratory-based diagnostics are inaccessible in many remote regions. Early detection of these plant health issues is essential for efficient and accurate response, prompting exploration of alternatives for field detection. Considering the availability of low-cost smartphones, artificial intelligence-based classification facilitated by mobile phone imagery can be a practical option. This study introduces a smartphone-attachable 30x microscopic lens, used to produce the novel tomato microimaging dataset of 8500 images representing 34 tomato plant conditions on the upper and lower sides of leaves as well as on the surface of tomato fruits. We introduce TOMMicroNet, a 14-layer convolutional neural network (CNN) trained to classify amongst biotic and abiotic plant health issues, and we compare it against six existing pre-trained CNN models. We compared two separate pipelines of grouping data for training TOMMicroNet, either presenting all data at once or separating into subsets based on the three parts of the plant. Comparing configurations based on cross-validation and F1 scores, we determined that TOMMicroNet attained the highest performance when trained on the complete dataset, with 95% classification accuracy on both training and external datasets. Given TOMMicroNet's capabilities when presented with unfamiliar data, this approach has the potential for the identification of plant health issues.

13.
Phytopathology ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078312

RESUMO

California is the primary processing tomato (Solanum lycopersicum) producer in the United States. Fusarium oxysporum f. sp. lycopercisi race 3 (Fol3), the cause of Fusarium wilt, is a major yield loss driver. Fol3 has recently been observed causing disease in resistant cultivars (I-3 R-gene), often in association with high soil salinity. This study undertook to better understand the effect of salinity on resistance-based management of Fol3. Surveys established opportunity for salinity-Fol3-tomato interactions in 44% of commercial fields examined, with harmful soil salt levels up to 3.6 dS/m (P < 0.001), high sodium (P < 0.001), and high sodicity (SAR > 13, P < 0.001). In controlled field studies of Fol3 in NaCl:CaCl2-treated soil, Fol3-resistant cultivars either only developed wilt under salt or only developed wilt above the industry non-hybrid threshold (2%) under salt across two trial years. Absence of yield differences indicate low to no economic impact of disease enhancement (P > 0.05). NaCl, CaCl2 and Na2SO4 had no effect on Fol3 propagule production in liquid agar vs. water agar controls (P > 0.05) although CaCl2 increased propagule loads 7-fold vs. ionic controls (PEG) (P = 0.036). NaCl:CaCl2 (2:1) reduced propagule loads up to 65% vs. no-salt (P = 0.029) in soil with pathogen-infested tomato tissue. These results together establish the opportunity for salinity-Fol3-tomato interactions and potential for salt to influence efficacy of resistant cultivar-based management-this does not appear to be primarily due to salt-enhancement of pathogen populations, pointing to a yet unexplored direct influence of salt on host resistance.

14.
Phytopathology ; 114(8): 1742-1752, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776137

RESUMO

Plant-microbe interaction research has had a transformative trajectory, from individual microbial isolate studies to comprehensive analyses of plant microbiomes within the broader phytobiome framework. Acknowledging the indispensable role of plant microbiomes in shaping plant health, agriculture, and ecosystem resilience, we underscore the urgent need for sustainable crop production strategies in the face of contemporary challenges. We discuss how the synergies between advancements in 'omics technologies and artificial intelligence can help advance the profound potential of plant microbiomes. Furthermore, we propose a multifaceted approach encompassing translational considerations, transdisciplinary research initiatives, public-private partnerships, regulatory policy development, and pragmatic expectations for the practical application of plant microbiome knowledge across diverse agricultural landscapes. We advocate for strategic collaboration and intentional transdisciplinary efforts to unlock the benefits offered by plant microbiomes and address pressing global issues in food security. By emphasizing a nuanced understanding of plant microbiome complexities and fostering realistic expectations, we encourage the scientific community to navigate the transformative journey from discoveries in the laboratory to field applications. As companies specializing in agricultural microbes and microbiomes undergo shifts, we highlight the necessity of understanding how to approach sustainable agriculture with site-specific management solutions. While cautioning against overpromising, we underscore the excitement of exploring the many impacts of microbiome-plant interactions. We emphasize the importance of collaborative endeavors with societal partners to accelerate our collective capacity to harness the diverse and yet-to-be-discovered beneficial activities of plant microbiomes.


Assuntos
Agricultura , Microbiota , Plantas , Microbiota/fisiologia , Plantas/microbiologia , Produtos Agrícolas/microbiologia
15.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33879613

RESUMO

In eukaryotes, secretory proteins traffic from the endoplasmic reticulum (ER) to the Golgi apparatus via coat protein complex II (COPII) vesicles. Intriguingly, during nutrient starvation, the COPII machinery acts constructively as a membrane source for autophagosomes during autophagy to maintain cellular homeostasis by recycling intermediate metabolites. In higher plants, essential roles of autophagy have been implicated in plant development and stress responses. Nonetheless, the membrane sources of autophagosomes, especially the participation of the COPII machinery in the autophagic pathway and autophagosome biogenesis, remains elusive in plants. Here, we provided evidence in support of a novel role of a specific Sar1 homolog AtSar1d in plant autophagy in concert with a unique Rab1/Ypt1 homolog AtRabD2a. First, proteomic analysis of the plant ATG (autophagy-related gene) interactome uncovered the mechanistic connections between ATG machinery and specific COPII components including AtSar1d and Sec23s, while a dominant negative mutant of AtSar1d exhibited distinct inhibition on YFP-ATG8 vacuolar degradation upon autophagic induction. Second, a transfer DNA insertion mutant of AtSar1d displayed starvation-related phenotypes. Third, AtSar1d regulated autophagosome progression through specific recognition of ATG8e by a noncanonical motif. Fourth, we demonstrated that a plant-unique Rab1/Ypt1 homolog AtRabD2a coordinates with AtSar1d to function as the molecular switch in mediating the COPII functions in the autophagy pathway. AtRabD2a appears to be essential for bridging the specific AtSar1d-positive COPII vesicles to the autophagy initiation complex and therefore contributes to autophagosome formation in plants. Taken together, we identified a plant-specific nexus of AtSar1d-AtRabD2a in regulating autophagosome biogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Autofagossomos/metabolismo , Autofagia/fisiologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/fisiologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Fagossomos/metabolismo , Transporte Proteico/fisiologia , Proteômica/métodos , Proteínas R-SNARE/fisiologia , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia
16.
Sensors (Basel) ; 24(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38894052

RESUMO

Plant health monitoring is essential for understanding the impact of environmental stressors (biotic and abiotic) on crop production, and for tailoring plant developmental and adaptive responses accordingly. Plants are constantly exposed to different stressors like pathogens and soil pollutants (heavy metals and pesticides) which pose a serious threat to their survival and to human health. Plants have the ability to respond to environmental stressors by undergoing rapid transcriptional, translational, and metabolic reprogramming at different cellular compartments in order to balance growth and adaptive responses. However, plants' exceptional responsiveness to environmental cues is highly complex, which is driven by diverse signaling molecules such as calcium Ca2+, reactive oxygen species (ROS), hormones, small peptides and metabolites. Additionally, other factors like pH also influence these responses. The regulation and occurrence of these plant signaling molecules are often undetectable, necessitating nondestructive, live research approaches to understand their molecular complexity and functional traits during growth and stress conditions. With the advent of sensors, in vivo and in vitro understanding of some of these processes associated with plant physiology, signaling, metabolism, and development has provided a novel platform not only for decoding the biochemical complexity of signaling pathways but also for targeted engineering to improve diverse plant traits. The application of sensors in detecting pathogens and soil pollutants like heavy metal and pesticides plays a key role in protecting plant and human health. In this review, we provide an update on sensors used in plant biology for the detection of diverse signaling molecules and their functional attributes. We also discuss different types of sensors (biosensors and nanosensors) used in agriculture for detecting pesticides, pathogens and pollutants.


Assuntos
Técnicas Biossensoriais , Plantas , Plantas/metabolismo , Técnicas Biossensoriais/métodos , Estresse Fisiológico , Metais Pesados/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Fenômenos Fisiológicos Vegetais , Praguicidas , Transdução de Sinais
17.
Nano Lett ; 23(3): 916-924, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36651830

RESUMO

Gibberellins (GAs) are a class of phytohormones, important for plant growth, and very difficult to distinguish because of their similarity in chemical structures. Herein, we develop the first nanosensors for GAs by designing and engineering polymer-wrapped single-walled carbon nanotubes (SWNTs) with unique corona phases that selectively bind to bioactive GAs, GA3 and GA4, triggering near-infrared (NIR) fluorescence intensity changes. Using a new coupled Raman/NIR fluorimeter that enables self-referencing of nanosensor NIR fluorescence with its Raman G-band, we demonstrated detection of cellular GA in Arabidopsis, lettuce, and basil roots. The nanosensors reported increased endogenous GA levels in transgenic Arabidopsis mutants that overexpress GA and in emerging lateral roots. Our approach allows rapid spatiotemporal detection of GA across species. The reversible sensor captured the decreasing GA levels in salt-treated lettuce roots, which correlated remarkably with fresh weight changes. This work demonstrates the potential for nanosensors to solve longstanding problems in plant biotechnology.


Assuntos
Arabidopsis , Nanotubos de Carbono , Giberelinas/química , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/metabolismo , Nanotubos de Carbono/química , Fluorescência , Corantes
18.
Int J Mol Sci ; 25(16)2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39201675

RESUMO

Sugar beet is a significant sugar crop in China, primarily cultivated in arid regions of the north. However, drought often affects sugar beet cultivation, leading to reduced yield and quality. Therefore, understanding the impact of drought on sugar beets and studying their drought tolerance is crucial. Previous research has examined the role of SPL (SQUAMOSA promoter-binding protein-like) transcription factors in plant stress response; however, the precise contribution of SPLs to the drought stress response in sugar beets has yet to be elucidated. In this study, we identified and examined the BvSPL6, BvSPL7, and BvSPL9 genes in sugar beets, investigating their performance during the seedling stage under drought stress. We explored their drought resistance characteristics using bioinformatics, quantitative analysis, physiological experiments, and molecular biology experiments. Drought stress and rehydration treatments were applied to sugar beet seedlings, and the expression levels of BvSPL6, BvSPL7, and BvSPL9 genes in leaves were quantitatively analyzed at 11 different time points to evaluate sugar beets' response and tolerance to drought stress. Results indicated that the expression level of the BvSPL6/9 genes in leaves was upregulated during the mid-stage of drought stress and downregulated during the early and late stages. Additionally, the expression level of the BvSPL7 gene gradually increased with the duration of drought stress. Through analyzing changes in physiological indicators during different time periods of drought stress and rehydration treatment, we speculated that the regulation of BvSPL6/7/9 genes is associated with sugar beet drought resistance and their participation in drought stress response. Furthermore, we cloned the CDS sequences of BvSPL6, BvSPL7, and BvSPL9 genes from sugar beets and conducted sequence alignment with the database to validate the results. Subsequently, we constructed overexpression vectors, named 35S::BvSPL6, 35S::BvSPL7, and 35S::BvSPL9, and introduced them into sugar beets using Agrobacterium-mediated methods. Real-time fluorescence quantitative analysis revealed that the expression levels of BvSPL6/7/9 genes in transgenic sugar beets increased by 40% to 80%. The drought resistance of transgenic sugar beets was significantly enhanced compared with the control group.


Assuntos
Beta vulgaris , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plântula , Estresse Fisiológico , Beta vulgaris/genética , Plântula/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo
19.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732261

RESUMO

Abiotic stressors, including drought, salt, cold, and heat, profoundly impact plant growth and development, forcing elaborate cellular responses for adaptation and resilience. Among the crucial orchestrators of these responses is the CBL-CIPK pathway, comprising calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs). While CIPKs act as serine/threonine protein kinases, transmitting calcium signals, CBLs function as calcium sensors, influencing the plant's response to abiotic stress. This review explores the intricate interactions between the CBL-CIPK pathway and plant hormones such as ABA, auxin, ethylene, and jasmonic acid (JA). It highlights their role in fine-tuning stress responses for optimal survival and acclimatization. Building on previous studies that demonstrated the enhanced stress tolerance achieved by upregulating CBL and CIPK genes, we explore the regulatory mechanisms involving post-translational modifications and protein-protein interactions. Despite significant contributions from prior research, gaps persist in understanding the nuanced interplay between the CBL-CIPK system and plant hormone signaling under diverse abiotic stress conditions. In contrast to broader perspectives, our review focuses on the interaction of the pathway with crucial plant hormones and its implications for genetic engineering interventions to enhance crop stress resilience. This specialized perspective aims to contribute novel insights to advance our understanding of the potential of the CBL-CIPK pathway to mitigate crops' abiotic stress.


Assuntos
Reguladores de Crescimento de Plantas , Transdução de Sinais , Estresse Fisiológico , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Plantas/metabolismo , Plantas/genética
20.
J Environ Manage ; 359: 120761, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703641

RESUMO

Plants are arguably the most visible components of stormwater bioretention basins and play key roles in stabilizing soils and removing water through transpiration. In regions with cold winters, bioretention basins along roadways can receive considerable quantities of deicing salt, much of which migrates out of the systems prior to the onset of plant growth but the rest remains in the soil. The resulting effects on plants presumably vary with time (due to annual weather patterns), space (because stormwater exposure is location-dependent), and biology (because plant taxa differ in their salt tolerance). The goal of this study was to investigate the magnitude of deicing salt's effects on bioretention plants and how it varies with spatial, temporal, and biological factors. The study took place in a set of five bioretention basins in Philadelphia, USA that receive runoff from a major highway. Over a five-year period, the electrical conductivity (EC) of influent stormwater frequently exceeded 1 mS cm-1 in winter, and occasionally surpassed that of seawater (∼50 mS cm-1). In both of the years when soil EC was measured as well, it remained elevated through all spring months, especially near basin inlets and centers. Mortality of nine plant taxa ranged widely after three years (0-90%), with rankings largely corresponding to salt tolerances. Moreover, leaf areas and/or crown volumes were strongly reduced in proportion to stormwater exposure in seven of these taxa. In the three taxa evaluated for tissue concentrations of 14 potentially toxic elements (Hemerocallis 'Happy Returns', Iris 'Caesar's Brother', and Cornus sericea 'Cardinal'), only sodium consistently exceeded the toxicity limit for salt intolerant plants (500 mg kg-1). However, exceedance of the sodium toxicity limit was associated with plants' topographic positions, with median concentrations greatest in the bottom of basins and least on basin rims. This study demonstrates that deicing salts can have detrimental effects on plants in bioretention basins, with the strongest effects likely to occur in years with the greatest snowfall (and therefore deicing salt use), in portions of basins with greatest stormwater exposure (typically around inlets and centers), and in plants with minimal salinity tolerance. Our results therefore underscore the value of installing salt-tolerant taxa in basins likely to experience any frequency of deicing salt exposure.


Assuntos
Solo , Solo/química , Plantas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA