Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(12): e2319465121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466854

RESUMO

In conventional thin materials, the diffraction limit of light constrains the number of waveguide modes that can exist at a given frequency. However, layered van der Waals (vdW) materials, such as hexagonal boron nitride (hBN), can surpass this limitation due to their dielectric anisotropy, exhibiting positive permittivity along one optic axis and negativity along the other. This enables the propagation of hyperbolic rays within the material bulk and an unlimited number of subdiffractional modes characterized by hyperbolic dispersion. By employing time-domain near-field interferometry to analyze ultrafast hyperbolic ray pulses in thin hBN, we showed that their zigzag reflection trajectories bound within the hBN layer create an illusion of backward-moving and leaping behavior of pulse fringes. These rays result from the coherent beating of hyperbolic waveguide modes but could be mistakenly interpreted as negative group velocities and backward energy flow. Moreover, the zigzag reflections produce nanoscale (60 nm) and ultrafast (40 fs) spatiotemporal optical vortices along the trajectory, presenting opportunities to chiral spatiotemporal control of light-matter interactions. Supported by experimental evidence, our simulations highlight the potential of hyperbolic ray reflections for molecular vibrational absorption nanospectroscopy. The results pave the way for miniaturized, on-chip optical spectrometers, and ultrafast optical manipulation.

2.
Proc Natl Acad Sci U S A ; 120(15): e2219223120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37023135

RESUMO

The study of molecular polaritons beyond simple quantum emitter ensemble models (e.g., Tavis-Cummings) is challenging due to the large dimensionality of these systems and the complex interplay of molecular electronic and nuclear degrees of freedom. This complexity constrains existing models to either coarse-grain the rich physics and chemistry of the molecular degrees of freedom or artificially limit the description to a small number of molecules. In this work, we exploit permutational symmetries to drastically reduce the computational cost of ab initio quantum dynamics simulations for large N. Furthermore, we discover an emergent hierarchy of timescales present in these systems, that justifies the use of an effective single molecule to approximately capture the dynamics of the entire ensemble, an approximation that becomes exact as N → ∞. We also systematically derive finite N corrections to the dynamics and show that addition of k extra effective molecules is enough to account for phenomena whose rates scale as 𝒪(N-k). Based on this result, we discuss how to seamlessly modify existing single-molecule strong coupling models to describe the dynamics of the corresponding ensemble. We call this approach collective dynamics using truncated equations (CUT-E), benchmark it against well-known results of polariton relaxation rates, and apply it to describe a universal cavity-assisted energy funneling mechanism between different molecular species. Beyond being a computationally efficient tool, this formalism provides an intuitive picture for understanding the role of bright and dark states in chemical reactivity, necessary to generate robust strategies for polariton chemistry.

3.
Nano Lett ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598721

RESUMO

Realizing lattices of exciton polariton condensates has been of much interest owing to the potential of such systems to realize analogue Hamiltonian simulators and physical computing architectures. Here, we report the realization of a room temperature polariton condensate lattice using a direct-write approach. Polariton condensation is achieved in a microcavity embedded with host-guest Frenkel excitons of an organic dye (rhodamine) in a small-molecule ionic isolation lattice (SMILES). The microcavity is patterned using focused ion beam etching to realize arbitrary lattice geometries, including defect sites on demand. The band structure of the lattice and the emergence of condensation are imaged using momentum-resolved spectroscopy. The introduction of defect sites is shown to lower the condensation threshold and result in the formation of a defect band in the condensation spectrum. The present approach allows us to study periodic, quasiperiodic, and disordered polariton condensate lattices at room temperature using a direct-write approach.

4.
Nano Lett ; 24(4): 1360-1366, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252685

RESUMO

Dielectric environment engineering is an efficient and general approach to manipulating polaritons. Liquids serving as the surrounding media of polaritons have been used to shift polariton dispersions and tailor polariton wavefronts. However, those liquid-based methods have so far been limited to their static states, not fully unleashing the promise offered by the mobility of liquids. Here, we propose a microfluidic strategy for polariton manipulation by merging polaritonics with microfluidics. The diffusion of fluids causes gradient refractive indices over microchannels, which breaks the symmetry of polariton dispersions and realizes the microfluidic analogue to nonreciprocal polariton dragging. Based on polariton microfluidics, we also designed a set of on-chip polaritonic elements to actively shape polaritons, including planar lenses, off-axis lenses, Janus lenses, bends, and splitters. Our strategy expands the toolkit for the manipulation of polaritons at the subwavelength scale and possesses potential in the fields of polariton biochemistry and molecular sensing.

5.
Nano Lett ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847791

RESUMO

This work reports in situ (active) electrochemical control over the coupling strength between semiconducting nanoplatelets and a plasmonic cavity. We found that by applying a reductive bias to an Al nanoparticle lattice working electrode the number of CdSe nanoplatelet emitters that can couple to the cavity is decreased. Strong coupling can be reversibly recovered by discharging the lattice at oxidative potentials relative to the conduction band edge reduction potential of the emitters. By correlating the number of electrons added or removed with the measured coupling strength, we identified that loss and recovery of strong coupling are likely hindered by side processes that trap and/or inhibit electrons from populating the nanoplatelet conduction band. These findings demonstrate tunable, external control of strong coupling and offer prospects to tune selectivity in chemical reactions.

6.
Nano Lett ; 24(2): 557-565, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38179964

RESUMO

The manipulation of molecular excited state processes through strong coupling has attracted significant interest for its potential to provide precise control of photochemical phenomena. However, the key limiting factor for achieving this control has been the "dark-state problem", in which photoexcitation populates long-lived reservoir states with energies and dynamics similar to those of bare excitons. Here, we use a sensitive ultrafast transient reflection method with momentum and spectral resolution to achieve the selective excitation of organic exciton-polaritons in open photonic cavities. We show that the energy dispersions of these systems allow us to avoid the parasitic effect of the reservoir states. Under phase-matching conditions, we observe the direct population and decay of polaritons on time scales of less than 100 fs and find that momentum scattering processes occur on even faster time scales. We establish that it is possible to overcome the "dark state problem" through the careful design of strongly coupled systems.

7.
Nano Lett ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38620069

RESUMO

Exciton-polariton systems composed of a light-matter quasi-particle with a light effective mass easily realize Bose-Einstein condensation. In this work, we constructed an annular trap in a halide perovskite semiconductor microcavity and observed the spontaneous formation of symmetrical petal-shaped exciton-polariton condensation in the annular trap at room temperature. In our study, we found that the number of petals of the petal-shaped exciton-polariton condensates, which is decided by the orbital angular momentum, is dependent on the light intensity distribution. Therefore, the selective excitation of perovskite microcavity exciton-polariton condensates under all-optical control can be realized by adjusting the light intensity distribution. This could pave the way to room-temperature topological devices, optical cryptographical devices, and new quantum gyroscopes in the exciton-polariton system.

8.
Nano Lett ; 24(27): 8240-8247, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38925628

RESUMO

The realization of efficient optical devices depends on the ability to harness strong nonlinearities, which are challenging to achieve with standard photonic systems. Exciton-polaritons formed in hybrid organic-inorganic perovskites offer a promising alternative, exhibiting strong interactions at room temperature (RT). Despite recent demonstrations showcasing a robust nonlinear response, further progress is hindered by an incomplete understanding of the microscopic mechanisms governing polariton interactions in perovskite-based strongly coupled systems. Here, we investigate the nonlinear properties of quasi-2D dodecylammonium lead iodide perovskite (n3-C12) crystals embedded in a planar microcavity. Polarization-resolved pump-probe measurements reveal the contribution of indirect exchange interactions assisted by dark states formation. Additionally, we identify a strong dependence of the unique spin-dependent interaction of polaritons on sample detuning. The results are pivotal for the advancement of polaritonics, and the tunability of the robust spin-dependent anisotropic interaction in n3-C12 perovskites makes this material a powerful choice for the realization of polaritonic circuits.

9.
Nano Lett ; 24(22): 6538-6544, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771703

RESUMO

With a seminal work of Raghu and Haldane in 2008, concepts of topology have been introduced into optical systems, where some of the most promising routes to an application are efficient and highly coherent topological lasers. While some attempts have been made to excite such structures electrically, the majority of published experiments use a form of laser excitation. In this paper, we use a lattice of vertical resonator polariton micropillars to form an exponentially localized topological Su-Schrieffer-Heeger defect. Upon electrical excitation, the system unequivocally shows polariton lasing from the topological defect using a carefully placed gold contact. Despite the presence of doping and electrical contacts, the polariton band structure clearly preserves its topological properties. At high excitation power the Mott density is exceeded, leading to highly efficient lasing in the weak coupling regime. This work is an important step toward applied topological lasers using vertical resonator microcavity structures.

10.
Nano Lett ; 24(38): 11859-11864, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39265052

RESUMO

Surface plasmon polaritons from plasmonic nanocavity have aroused great interest due to their applications in various fields, in which on-demand design is hindered by the lack of theoretical frameworks. Herein, based on its wave nature, we developed a wavefunction theory to explicitly describe individual surface plasmon polaritons and the resultant near-field and far-field behaviors, which serves as an efficient platform for high-throughput on-demand design of nanocavities. We found an applicative wavefunction form and proposed a two-body interaction function and a "shell" model for many-body interactions in surface plasmon polaritons' coupling. The wavefunction of individual surface plasmon polaritons and resultant near-field and far-field behaviors can be given explicitly and precisely. The theory provides a fundamental and quantitative understanding of surface plasmon polaritons and enables highly efficient on-demand design of plasmonic metamaterials and devices, leading to further methodological applications in numerous aspects.

11.
Nano Lett ; 24(1): 238-244, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38164905

RESUMO

The strong-coupling interaction between quantum emitters and cavities provides the archetypical platform for fundamental quantum electrodynamics. Here we show that methylene blue (MB) molecules interact coherently with subwavelength plasmonic nanocavity modes at room temperature. Experimental results show that the strong coupling can be switched on and off reversibly when MB molecules undergo redox reactions which transform them to leuco-methylene blue molecules. In simulations we demonstrate the strong coupling between the second excited plasmonic cavity mode and resonant emitters. However, we also show that other detuned modes simultaneously couple efficiently to the molecular transitions, creating unusual cascades of mode spectral shifts and polariton formation. This is possible due to the relatively large plasmonic particle size resulting in reduced mode splittings. The results open significant potential for device applications utilizing active control of strong coupling.

12.
Nano Lett ; 24(1): 466-471, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150569

RESUMO

Contemporary quantum plasmonics capture subtle corrections to the properties of plasmonic nano-objects in equilibrium. Here, we demonstrate non-equilibrium spill-out redistribution of the electronic density at the ultrafast time scale. As revealed by time-resolved 2D spectroscopy of nanoplasmonic Fe/Au bilayers, an injection of the laser-excited non-thermal electrons induces transient electron spill-out thus changing the plasma frequency. The response of the local electronic density switches the electronic density behavior from spill-in to strong (an order of magnitude larger) spill-out at the femtosecond time scale. The superdiffusive transport of hot electrons and the lack of a direct laser heating indicate significantly non-thermal origin of the underlying physics. Our results demonstrate an ultrafast and non-thermal way to control surface plasmon dispersion through transient variations of the spatial electron distribution at the nanoscale. These findings expand quantum plasmonics into previously unexplored directions by introducing ultrashort time scales in the non-equilibrium electronic systems.

13.
Nanotechnology ; 35(39)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838646

RESUMO

Transition metal (TM) ion doping in II-VI semiconductors can produce exciton magnetic polarons (EMPs) and localized EMPs containing longitudinal optical (LO) phonon coupling, which will be discussed in this paper. TM ion doping in II-VI semiconductors for a dilute magnetic semiconductor show emission via magnetic polarons (MPs) together with hot carrier effects that need to be understood via its optical properties. The high excitation power that is responsible for hot carrier effects suppresses the charge trapping effect in low exciton binding energy (8.12 meV) semiconductors, even at room temperature (RT). The large polaron radius exhibits strong interaction between the carrier and MP, resulting in anharmonicity effects, in which the side-band energy overtone to LO phonons. The photon-like polaritons exhibit polarized spin interactions with LO phonons that show strong spin-phonon polaritons at RT. The temperature-dependent photoluminescence spectra of Ni-doped ZnTe show free excitons (FX) and FXs interacting with 2LO phonon-spin interactions, corresponding to3T1(3F) →1T1(1G) and EMP peaks with ferromagnetically coupled Ni ions at3T1(3F) →1E(1G). In addition, other d-d transitions of single Ni ions (600-900 nm) appear at the low-energy side. RT energy shifts of 14-38 meV are observed due to localized states with density-of-states tails extending far into the bandgap-related spin-induced localization at the valence band. These results show spin-spin magnetic coupling and spin-phonon interactions at RT that open up a more realistic new horizon of optically controlled dilute magnetic semiconductor applications.

14.
Sensors (Basel) ; 24(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39204849

RESUMO

Helicobacter pylori (H. pylori) is a common pathogen with a high prevalence of infection in human populations. The diagnosis of H. pylori infection is critical for its treatment, eradication, and prognosis. Biosensors have been demonstrated to be powerful for the rapid onsite detection of pathogens, particularly for point-of-care test (POCT) scenarios. In this work, we propose a novel optical biosensor, based on nanomaterial porous silicon (PSi) and photonic surface state Tamm Plasmon Polariton (TPP), for the detection of cytotoxin-associated antigen A (CagA) of H. pylori bacterium. We fabricated the PSi TPP biosensor, analyzed its optical characteristics, and demonstrated through experiments, with the sensing of the CagA antigen, that the TPP biosensor has a sensitivity of 100 pm/(ng/mL), a limit of detection of 0.05 ng/mL, and specificity in terms of positive-to-negative ratio that is greater than six. From these performance factors, it can be concluded that the TPP biosensor can serve as an effective tool for the diagnosis of H. pylori infection, either in analytical labs or in POCT applications.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Técnicas Biossensoriais , Helicobacter pylori , Silício , Técnicas Biossensoriais/métodos , Silício/química , Helicobacter pylori/imunologia , Helicobacter pylori/isolamento & purificação , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/análise , Proteínas de Bactérias/imunologia , Porosidade , Humanos , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/microbiologia
15.
Nano Lett ; 23(18): 8704-8711, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37681647

RESUMO

Exciton polaritons are widely considered as promising platforms for developing room-temperature polaritonic devices, owing to the high-speed propagation and nonlinear interactions. However, it remains challenging to explore the dynamics of exciton polaritons specifically at room temperature, where the lifetime could be as small as a few picoseconds and the prevailing time-averaged measurement cannot give access to the true nature of it. Herein, by using the time-resolved photoluminescence, we have successfully traced the ultrafast coherent dynamics of a moving exciton polariton condensate in a one-dimensional perovskite microcavity. The propagation speed is directly measured to be ∼12.2 ± 0.8 µm/ps. Moreover, we have developed a time-resolved Michelson interferometry to quantify the time-dependent phase coherence, which reveals that the actual coherence time of exciton polaritons could be much longer (nearly 100%) than what was believed before. Our work sheds new light on the ultrafast coherent propagation of exciton polaritons at room temperature.

16.
Nano Lett ; 23(2): 469-475, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36630601

RESUMO

Sodium (Na) is predicted to be an ideal plasmonic material with ultralow optical loss across visible to near-infrared (NIR). However, there has been limited research on Na plasmonics. Here we develop a scalable fabrication method for Na nanostructures by combining phase-shift photolithography and a thermo-assisted spin-coating process. Using this method, we fabricated Na nanopit arrays with varying periodicities (300-600 nm) and with tunable surface plasmon polariton (SPP) modes spanning visible to NIR. We achieved SPP resonances as narrow as 9.3 nm. In addition, Na nanostructures showed line width narrowing from visible toward NIR, showing their prospect operating in the NIR. To address the challenges associated with the high reactivity of Na, we designed a simple encapsulation strategy and stabilized the Na nanostructures in ambient conditions for more than two months. As a low-cost and low-loss plasmonic material, Na offers a competitive option for nanophotonic devices and plasmon-enhanced applications.

17.
Nano Lett ; 23(9): 3985-3993, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37116103

RESUMO

Strong coupling (SC) between light and matter excitations bears intriguing potential for manipulating material properties. Typically, SC has been achieved between mid-infrared (mid-IR) light and molecular vibrations or between visible light and excitons. However, simultaneously achieving SC in both frequency bands remains unexplored. Here, we introduce polaritonic nanoresonators (formed by h-BN layers on Al ribbons) hosting surface plasmon polaritons (SPPs) at visible frequencies and phonon polaritons (PhPs) at mid-IR frequencies, which simultaneously couple to excitons and molecular vibrations in an adjacent layer of CoPc molecules, respectively. Employing near-field optical nanoscopy, we demonstrate the colocalization of near fields at both visible and mid-IR frequencies. Far-field transmission spectroscopy of the nanoresonator structure covered with a layer of CoPc molecules shows clear mode splittings in both frequency ranges, revealing simultaneous SPP-exciton and PhP-vibron coupling. Dual-band SC may offer potential for manipulating coupling between exciton and molecular vibration in future optoelectronics, nanophotonics, and quantum information applications.

18.
Nano Lett ; 23(18): 8490-8497, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37671916

RESUMO

Near-field radiative heat transfer (NFRHT) measurements often rely on custom microdevices that can be difficult to reproduce after their original demonstration. Here we study NFRHT using plain silicon nitride (SiN) membrane nanomechanical resonators─a widely available substrate used in applications such as electron microscopy and optomechanics─and on which other materials can easily be deposited. We report measurements down to a minimal distance of 180 nm between a large radius of curvature (15.5 mm) glass radiator and a SiN membrane resonator. At such deep sub-wavelength distance, heat transfer is dominated by surface polariton resonances over a (0.25 mm)2 effective area, which is comparable to plane-plane experiments employing custom microfabricated devices. We also discuss how measurements using nanomechanical resonators create opportunities for simultaneously measuring near-field radiative heat transfer and thermal radiation forces (e.g., thermal corrections to Casimir forces).

19.
Nano Lett ; 23(15): 7086-7091, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37471630

RESUMO

Metallic nanogaps have emerged as a versatile platform for realizing ultrastrong coupling in terahertz frequencies. Increasing the coupling strength generally involved reducing the gap width to minimize the mode volume, which presents challenges in fabrication and efficient material coupling. Here, we propose employing terahertz nanoslots, which can efficiently squeeze the mode volume in an extra dimension alongside the gap width. Our experiments using 500 nm wide nanoslots integrated with an organic-inorganic hybrid perovskite demonstrate ultrastrong phonon-photon coupling with a record-high Rabi splitting of 48% of the original resonance (Ω = 0.48ω0), despite having a gap width 5 times larger than previously reported structures with Ω = 0.45ω0. Mechanisms underlying this effective light--matter coupling are investigated with simulations using coupled mode theory. Moreover, bulk polariton analyses reveal that our results account for 68% of the theoretical maximum Rabi splitting, with the potential to reach 82% through further optimization of the nanoslots.

20.
Nano Lett ; 23(22): 10587-10593, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37910671

RESUMO

Controlling the relaxation dynamics of excitons is key to improving the efficiencies of semiconductor-based applications. Confined semiconductor nanocrystals (NCs) offer additional handles to control the properties of excitons, for example, by changing their size or shape, resulting in a mismatch between excitonic gaps and phonon frequencies. This has led to the hypothesis of a significant slowing-down of exciton relaxation in strongly confined NCs, but in practice due to increasing exciton-phonon coupling and rapid multiphonon relaxation channels, the exciton relaxation depends only weakly on the size or shape. Here, we focus on elucidating the nonradiative relaxation of excitons in NCs placed in an optical cavity. We find that multiphonon emission of carrier governs the decay, resulting in a polariton-induced phonon bottleneck with relaxation time scales that are slower by orders of magnitude compared to the cavity-free case, while the photon fraction plays a secondary role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA