Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(35): e2301074, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38659180

RESUMO

The coating of filter media with silver is typically achieved by chemical deposition and aerosol processes. Whilst useful, such approaches struggle to provide uniform coating and are prone to blockage. To address these issues, an in situ method for coating glass fibers is presented via the dopamine-mediated electroless metallization method, yielding filters with low air resistance and excellent antibacterial performance. It is found that the filtration efficiency of the filters is between 94 and 97% and much higher than that of silver-coated filters produced using conventional dipping methods (85%). Additionally, measured pressure drops ranged between 100 and 150 Pa, which are lower than those associated with dipped filters (171.1 Pa). Survival rates of Escherichia coli and Bacillus subtilis bacteria exposed to the filters decreased to 0 and 15.7%±1.49, respectively after 2 h, with no bacteria surviving after 6 h. In contrast, survival rates of E. coli and B. subtilis bacteria on the uncoated filters are 92.5% and 89.5% after 6 h. Taken together, these results confirm that the in situ deposition of silver onto fiber surfaces effectively reduces pore clogging, yielding low air resistance filters that can be applied for microbial filtration and inhibition in a range of environments.


Assuntos
Antibacterianos , Bacillus subtilis , Dopamina , Escherichia coli , Vidro , Prata , Prata/química , Prata/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Vidro/química , Dopamina/química , Dopamina/farmacologia , Escherichia coli/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Filtração/métodos
2.
Mikrochim Acta ; 187(7): 411, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32602064

RESUMO

The preparation of a novel polymer (poly(dopamine quinone-vanadyl) (polyDQV)) bearing dopaminequinone and VOIV redox groups is described. PolyDQV was characterized using field emission scanning electron microscopy (FESEM), energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy, UV-Vis spectroscopy as well as electrochemical methods such as differential pulse voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The electrocatalytic activity of polyDQV was studied toward electrooxidation of uric acid using differential pulse voltammetry as well as cyclic voltammetry. PolyDQV presents interesting electrocatalytic activity toward UA oxidation in phosphate buffer solution (0.1 M, pH 2) to a well-defined oxidation peak at 0.65 V (vs. Ag/AgCl). The polyDQV-modified carbon paste electrode (CPE/polyDQV) presents a precise linear signal-concentration relationship in the ranges of 0.3-5 µM and 5 to 200 µM with a detection limit (S/N = 3) of 0.02 µM. The %RSD values for ten replicate measurements of 0.5 and 50 µM UA were 1.8 and 3%, respectively, indicating good repeatability of analytical signals. Appropriate recovery values (in the range 96 to 103%) and good selectivity for UA over common coexisting species (such as ascorbic acid and dopamine) exhibit that CPE/polyDQV is a promising novel platform for sensing UA in human blood serum and urine samples. Graphical abstract.


Assuntos
Dopamina/análogos & derivados , Técnicas Eletroquímicas/métodos , Polímeros/química , Ácido Úrico/sangue , Ácido Úrico/urina , Vanadatos/química , Carbono/química , Catálise , Dopamina/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Humanos , Limite de Detecção , Oxirredução , Reprodutibilidade dos Testes , Ácido Úrico/química
3.
Nanomedicine ; 14(3): 965-976, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29408735

RESUMO

Osseointegration is crucial for early fixation as well as long-term success of orthopedic implants. Bioactive composite containing lithium doping silica nanospheres (LSNs) and poly(dopamine) (PDA) were coated on polyetheretherketone (PK) surface (LPPK), and effects of the LSNs/PDA composite (LPC) coating on the biological properties of LPPK were assessed both in vitro and in vivo. Results showed that LPPK with improved bioactivity remarkably promoted apatite mineralization in simulated body fluid (SBF) compared with PDA coated on PK (PPK) and PK. Moreover, the LPPK remarkably stimulated rat bone marrow stromal cells (rBMSCs) responses compared with PPK and PK. Furthermore, the LPPK significantly promoted bone tissues responses in vivo compared with PPK and PK. It could be suggested that the improvements of cells and bone tissues responses were attributed to the surface characteristics of the bioactive LPC coating on LPPK. The LPPK would be a great candidate for orthopedic and dental applications.


Assuntos
Indóis/química , Cetonas/química , Lítio/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanosferas/administração & dosagem , Osseointegração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Polietilenoglicóis/química , Polímeros/química , Dióxido de Silício/química , Animais , Benzofenonas , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis , Cães , Masculino , Células-Tronco Mesenquimais/metabolismo , Nanosferas/química , Ratos , Ratos Sprague-Dawley
4.
J Fluoresc ; 26(5): 1645-52, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27325114

RESUMO

In this study, a selective method for the determination of atropine in pharmaceutical formulations was proposed. L-cysteine capped Mn-doped ZnS quantum dots (QDs) were prepared in an in-situ method using sodium thiosulfate precursor and characterized by spectrofluorometer, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope (TEM) and X-ray diffractometer (XRD). Dopamine hydrochloride was used as a precursor for preparation of poly dopamine-coated molecularly imprinted Mn-doped ZnS quantum dots. Finally, these prepared molecularly imprinted Mn-doped ZnS quantum dots were used for determination of atropine in pharmaceutical formulations. The obtained linear range for determination of atropine was in the range of 2 × 10(-8) - 7 × 10(-6) M, with a correlation coefficient (R(2)) of 0.9889; and the detection limit (S/N = 3) was 3.2 nM.


Assuntos
Atropina/análise , Dopamina/química , Composição de Medicamentos , Manganês/química , Impressão Molecular/métodos , Pontos Quânticos , Sulfetos/química , Compostos de Zinco/química , Humanos , Limite de Detecção , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Sensors (Basel) ; 16(5)2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27164108

RESUMO

We have developed a simple and selective method for the electrochemical detection of hydrazine (HZ) using poly(dopamine) (pDA)-modified indium tin oxide (ITO) electrodes. Modification with pDA was easily achieved by submerging the ITO electrode in a DA solution for 30 min. The electrocatalytic oxidation of HZ on the pDA-modified ITO electrode was measured by cyclic voltammetry. In buffer solution, the concentration range for linear HZ detection was 100 µM-10 mM, and the detection limit was 1 µM. The proposed method was finally used to determine HZ in tap water to simulate the analysis of real samples. This method showed good recovery (94%-115%) and was not affected by the other species present in the tap water samples.

6.
J Microencapsul ; 33(3): 257-62, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27174396

RESUMO

Stimuli-responsive drug carriers are considered to play important roles in chemotherapy. We fabricated pH-sensitive polydopamine-protected liposomes (liposome@PDA) drug delivery systems, which were characterised with microscope, scanning electron microscope (SEM), UV-vis spectrometer and Fourier transform infrared (FTIR) technieques. The typical chemotherapeutic agent, 5-fluorouracil (5-FU), was loaded into liposome@PDA capsules. The maximum release percentages of 5-FU are 3.2%, 29.5%, 52.7%, 76.7% in the solution with pH 7.42, 6.87, 4.11 and 3.16, respectively. The in vitro cell cytotoxity experiments were carried out using 5-FU-loaded capsules at pH 6.87 solution, which simulate the true pH around cancerous cells. At 1.5 µM concentration, the free 5-FU, 5-FU-loaded liposome capsules and 5-FU-loaded capsules showed the cell viability of 50.56%, 22.66% and 21.63%, respectively. It confirms that drug-loaded capsules performed better than free drug. The results demonstrate the great potential of liposome@PDA capsules as carriers in biomedical applications.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Fluoruracila/administração & dosagem , Indóis/química , Lipossomos/química , Polímeros/química , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/química , Fluoruracila/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Rim/efeitos dos fármacos , Neoplasias Renais/tratamento farmacológico
7.
J Sep Sci ; 38(16): 2915-23, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26017095

RESUMO

In this work, a facile approach was developed to modify a fused-silica capillary inner surface based on poly(dopamine) and poly(acrylamide) mixed coatings for protein separation by capillary electrophoresis. The surface morphology, thickness, and chemical components of poly(dopamine)/poly(acrylamide) mixed coatings on glass slides and silicon wafers were studied by atom force microscopy, ellipsometry, and X-ray photoelectron spectroscopy, respectively. The hydrophilicity and stability of the mixed coatings on glass slides were investigated by static water contact angle measurements. A comparative study of electroosmotic flow showed that the poly(dopamine)/poly(acrylamide) mixed coatings could provide effective suppression of electroosmotic flow. Meanwhile, the fast and efficient separations of the mixture of four alkaline proteins, the mixture of acidic, basic, and neutral proteins and egg white proteins were obtained by capillary electrophoresis. Furthermore, the consecutive protein separation runs and low RSDs of migration time demonstrated that these poly(dopamine)/poly(acrylamide) mixed coatings were capable of minimizing protein adsorption during the protein separation by using capillary electrophoresis.


Assuntos
Eletroforese Capilar/métodos , Proteínas/isolamento & purificação , Resinas Acrílicas/química , Adsorção , Eletroforese Capilar/instrumentação , Indóis/química , Polímeros/química , Proteínas/química
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123712, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38042126

RESUMO

Copolymerization is used to improve the solubility and processability of polymers and copolymers includes the individual properties of homopolymer. In this study, the poly(dopamine-co-aniline) (poly(DA-co-ANI) copolymer was synthesized and the UV-vis. absorption, optical band gap energy, fluorescence, FT-IR, SEM-EDS, MALDI-TOF-MS, XRD and electrical conductivity have been investigated. The obtained results for the poly(DA-co-ANI) copolymer were compared with the PDA and PANI homopolymers. It was observed that the poly(DA-co-ANI copolymer is soluble easily in NMP and DMF solvents. The optical band gap energy of the poly(DA-co-ANI) copolymer film were calculated. as 1.00 eV with favorable indirect transition. The poly(DA-co-ANI) copolymer showed the FL emission maximum bands at 390 and 533 nm wavelengths. It was observed from the SEM images that the poly(DA-co-ANI) has 0-1500 nm crystalline rectangular particles prepared in acidic media and 0-600 nm amorphous particles prepared in basic media. The electrical conductivity of the poly(DA-co-ANI) was 1.35 × 10-6 S/cm. In the MALDI-TOF-MS measurements, the number-average molecular weight of the copolymer was found as 2628 Da with a distribution up to 5500 Da. The poly(DA-co-ANI) copolymer, soluble in NMP and DMF solvents and with a low optical band gap energy can be utilized as optical, fluorescent, and semi-conductive material in biomedical applications.

9.
J Biol Eng ; 18(1): 3, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212854

RESUMO

Large skin wounds are one of the most important health problems in the world. Skin wound repair and tissue regeneration are complex processes involving many physiological signals, and effective wound healing remains an enormous clinical challenge. Therefore, there is an urgent need for a strategy to rapidly kill bacteria, promote cell proliferation and accelerate wound healing. At present, electrical stimulation (ES) is often used in the clinical treatment of skin wounds and can simulate the endogenous biological current of the body and accelerate the repair process of skin wounds. However, a single ES strategy has difficulty covering the entire wound area, which may lead to unsatisfactory therapeutic effects. To overcome this deficiency, it is essential to develop a collaborative treatment strategy that combines ES with other treatments. In this study, gold nanoparticles and antibacterial peptides (Os) were loaded on the surface of poly(lactic-co-glycolic acid) (PLGA) material through the reducibility and adhesion of polydopamine (PDA) and improved the electrical activity, anti-inflammatory, antibacterial and biocompatibility properties of the polymer material. At the same time, this composite membrane material (Os/Au-PDA@PLGA) combined with ES was used in wound therapy to improve the wound healing rate. The results show that the new wound repair material has good biocompatibility and can effectively promote cell proliferation and migration. Through the combined application of gold nanoparticles and antibacterial peptides Os, the polymer materials have more efficient bactericidal and antioxidant effects. The antibacterial experiment results showed that gold nanoparticles could further enhance the antibacterial activity of antibacterial peptides. Furthermore, the Os/Au-PDA@PLGA composite membrane has good hydrophilicity and electrical activity, which can provide a more favorable cell microenvironment for wound healing. In vivo studies using a full-thickness skin defect model in rats showed that the Os/Au-PDA@PLGA composite membrane had a better therapeutic effect than the pure PLGA material. More importantly, the combination of the Os/Au-PDA@PLGA composite with ES significantly accelerated the rate of vascularization and collagen deposition and promoted wound healing compared with non-ES controls. Therefore, the combination of the Au/Os-PDA@PLGA composite membrane with ES may provide a new strategy for the effective treatment of skin wounds.

10.
Acta Biomater ; 167: 219-233, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257575

RESUMO

Bio-factor stimulation is essential for axonal regeneration in the central nervous system. Thus, persistent and efficient factor delivery in the local microenvironment is an ideal strategy for spinal cord injury repair. We developed a biomimetic hydrogel scaffold to load biofactors in situ and release them in a controlled way as a promising therapeutic modality. Hyaluronic acid and silk fibroin were cross-linked as the basement of the scaffolds, and poly-dopamine coating was used to further increase the loading of factors and endow the hydrogel scaffolds with ideal physical and chemical properties and proper biocompatibility. Notably, neurotrophin-3 release from the hydrogel scaffolds was prolonged to 28 days. A spinal cord injury model was constructed for hydrogel scaffold transplantation. After eight weeks, significant NF200-positive nerve fibers were observed extending across the glial scar to the center of the injured area. Due to the release of neurotrophin-3, spinal cord regeneration was enhanced, and the cavity area of the injury graft site and inflammation associated with CD68 positive cells were reduced, which led to a significant improvement in hind limb motor function. The results show that the hyaluronic acid/silk fibroin/poly-dopamine-coated biomimetic hydrogel scaffold achieved locally slow release of neurotrophin-3, thus facilitating the regeneration of injured spinal cord. STATEMENT OF SIGNIFICANCE: Hydrogels have received great attention in spinal cord regeneration. Current research has focused on more efficient and controlled release of bio-factors. Here, we adopted a mussel-inspired strategy to functionalize the hyaluronic acid/silk fibroin hydrogel scaffold to increase the load of neurotrophin-3 and extend the release time. The hydrogel scaffolds have ideal physiochemical properties, proper release rate, and biocompatibility. Owing to the continuous neurotrophin-3 release from implanted scaffolds, cavity formation is reduced, inflammation alleviated, and spinal cord regeneration enhanced, indicating great potential for bio-factor delivery in soft tissue regeneration applications.


Assuntos
Fibroínas , Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Humanos , Ácido Hialurônico/farmacologia , Hidrogéis/química , Fibroínas/farmacologia , Dopamina , Biomimética , Alicerces Teciduais/química , Regeneração Nervosa , Traumatismos da Medula Espinal/terapia , Medula Espinal , Inflamação
11.
Nanomaterials (Basel) ; 13(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37176991

RESUMO

Breast cancer is a common malignant tumor among women and has a higher risk of early recurrence, distant metastasis, and poor prognosis. Systemic chemotherapy is still the most widely used treatment for patients with breast cancer. However, unavoidable side effects and acquired resistance severely limit the efficacy of treatment. The multi-drug combination strategy has been identified as an effective tumor therapy pattern. In this investigation, we demonstrated a triple collaboration strategy of incorporating the chemotherapeutic drug doxorubicin (DOX) and anti-angiogenesis agent combretastatin A4 (CA4) into poly(lactic-co-glycolic acid) (PLGA)-based co-delivery nanohybrids (PLGA/DC NPs) via an improved double emulsion technology, and then a polydopamine (PDA) was modified on the PLGA/DC NPs' surface through the self-assembly method for photothermal therapy. In the drug-loaded PDA co-delivery nanohybrids (PDA@PLGA/DC NPs), DOX and CA4 synergistically induced tumor cell apoptosis by interfering with DNA replication and inhibiting tumor angiogenesis, respectively. The controlled release of DOX and CA4-loaded PDA@PLGA NPs in the tumor region was pH dependent and triggered by the hyperthermia generated via laser irradiation. Both in vitro and in vivo studies demonstrated that PDA@PLGA/DC NPs enhanced cytotoxicity under laser irradiation, and combined therapeutic effects were obtained when DOX, CA4, and PDA were integrated into a single nanoplatform. Taken together, the present study demonstrates a nanoplatform for combined DOX, CA4, and photothermal therapy, providing a potentially promising strategy for the synergistic treatment of breast cancer.

12.
Talanta ; 257: 124343, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791596

RESUMO

Prostate cancer is one of the most common cancers in the world, and its early diagnosis can effectively reduce mortality. A new label-free photoelectrochemical (PEC) immunosensor on the basis of Bi2WO6/BiOBr nanocomposite materials has been successfully prepared for the test of prostate-specific antigen (PSA) in human serum in this work. The Ag2S-sensitized Bi2WO6/BiOBr heterojunction was used as a photosensitive material, which effectively improved the photocurrent response. On Bi2WO6/BiOBr surface, dopamine immobilized PSA antibody by self-polymerizing to form polydopamine membrane. Antigen and antibody are specifically combined to achieve quantitative detection of PSA according to the current changes at different concentrations of antigen. Under the optimal experimental conditions, the PEC immunosensor has an ideal linear relationship between 1 pg/mL - 50 ng/mL, and the detection limit is 0.084 pg/mL. In addition, the prepared immunosensor has good stability, reproducibility and selectivity, providing a new method for the detection of PSA in actual sample analysis.


Assuntos
Técnicas Biossensoriais , Antígeno Prostático Específico , Humanos , Masculino , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Imunoensaio/métodos , Técnicas Eletroquímicas/métodos , Anticorpos , Limite de Detecção
13.
J Chromatogr A ; 1708: 464336, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37660563

RESUMO

A rapid and accurate integrated QuEChERS method was established for the determination of multi-pesticide residues in fruits. Poly-dopamine-modified magnetic nanomaterial (Fe3O4-pDA) was homemade and characterized. The prepared Fe3O4-pDA has the functional group of absorbing the saccharides, and can be used as co-adsorbent with 3-(N, n­diethyl amino) propyl trimethoxy-silane (PSA) in the developed integrated QuEChERS method to purify the fruit matrix, thus achieve the accurate determination of multi-pesticides residue. Grape was used as the representative sample to explore the influence of the salting out agent and each purification adsorbent on the pesticide recoveries. Under the optimized conditions, the proposed method showed good linearity for 92.6% of pesticides in the concentration range of 1-150 µg L-1 with method limit of quantitative (mLOQs) ranged from 10 to 18 µg kg-1. Spiked recoveries experiments were performed on four kinds of grapes and other fruits (apple, watermelon, pear, jujube and peach), in which satisfactory recoveries and precision were obtained for most of the pesticides. Meanwhile, comparison experiments also verified this method was superior to the traditional QuEChERS method in terms of convenient operation, high efficiency and low reagent consumption. The further real sample analysis was performed using this method, and the overall detection rate was 52%, while 2% of samples were exceeding the maximum residue limits. All results confirmed that the proposed method could be used for the rapid, simple, low-costing and effective analyses of trace multi-pesticides residue in fruit samples.


Assuntos
Nanoestruturas , Resíduos de Praguicidas , Praguicidas , Frutas , Dopamina , Fenômenos Magnéticos
14.
Food Chem ; 390: 133193, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569395

RESUMO

In this work, a novel ratiometric electrochemical sensor based on dual-functional poly-dopamine (PDA) and nickel sulfide@hollow carbon spheres (NiS@HCS) was successfully developed for sunset yellow (SY) detection. The NiS@HCS nanocomposite possessing a large specific surface area, good catalytic activity and excellent electrical conductivity was employed for signal amplification. PDA films prepared by electropolymerization acted as an internal reference probe and enhanced the sensitivity of the proposed sensor through electrostatic attraction between SY and PDA. Under optimized conditions, the developed PDA/NiS@HCS/GCE sensor allowed SY quantification over wide linear range (0.01-100 µM), with a low limit of detection of 0.003 µM. SY recovery tests were carried out in rice vinegar and cooking wine with satisfactory recoveries (83.50-112.80 %). Meanwhile, the content of SY in two kinds of carbonated drinks was determined using the constructed sensor and a UV-Vis spectrometry method, with no significant difference found in the results.


Assuntos
Carbono , Dopamina , Compostos Azo , Carbono/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Níquel
15.
J Hazard Mater ; 403: 123722, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264896

RESUMO

Nowadays, the rare earth element-based conversion coatings (REE-based CCs) are a potential eco-friendly alternative for hazardous and carcinogenic Cr-based CCs. These coatings have morphological defects that impair their performance; therefore, they need to be surface modified. In this study, for the first time, the steel surface was coated with an eco-friendly Sm-based CC and then post-modified by poly-dopamine based biopolymer. The air-exposed based self-polymerization and oxidant-induced polymerization are two protocols which have been utilized for poly-dopamine synthesis. The SEM/EDS analysis and Raman spectroscopy have been employed for the treated steel surface characterization. In addition, the electrochemical impedance spectroscopy (EIS) analysis and salt-spray test (SST) were carried out to investigate the epoxy (EP) coating corrosion protection performance. The Rt values of the EP applied on the Sm-PDA modified steel, subjected to a 3.5 wt. % NaCl solution, are respectively 2550 GΩ.cm2 and 100 kΩ. cm2 before and after the creation of scratch. These values are about 94000-fold and 21-fold more than the Rt of the defected/un-defected EP coatings applied on the unmodified steel. In addition, the EP applied on the Sm-PDA modified steel showed lower corrosion and less disbonding in SST and higher resistance against CD than the EP applied on the unmodified steel.

16.
Int J Nanomedicine ; 16: 6693-6718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621123

RESUMO

PURPOSE: Insufficient biological activity heavily restricts the application and development of biodegradable bone implants. Functional modification of bone implants is critical to improve osseointegration and bone regeneration. METHODS: In this study, L-lysine functionalized graphene oxide (Lys-g-GO) nanoparticles and polydopamine-assisted gold nanoparticle (AuNPs-PDA) coatings were applied to improve the biological function of PLGA scaffold materials. The effects of Lys-g-GO nanoparticles and AuNPs-PDA functionalized coatings on the physicochemical properties of PLGA scaffolds were detected with scanning electron microscopy (SEM), contact angle measurement, and mechanical testing instruments. In vitro, the effects of composite scaffolds on MC3T3-E1 cell proliferation, adhesion, and osteogenic differentiation were studied. Finally, a radial defect model was used to assess the effect of composite scaffolds on bone defect healing. RESULTS: The prepared AuNPs-PDA@PLGA/Lys-g-GO composite scaffolds exhibited excellent mechanical strength, hydrophilicity and antibacterial properties. In vitro, this composite scaffold can significantly improve osteoblast adhesion, proliferation, osteogenic differentiation, calcium deposition, and other cell behaviour. In vivo, this composite scaffold can significantly promote the new bone formation and collagen deposition in the radial defect site and presented good biocompatibility. CONCLUSION: The combination of bioactive nanoparticles and surface coatings shows considerable potential to enhance the osseointegration of bone implants.


Assuntos
Nanopartículas Metálicas , Osteogênese , Regeneração Óssea , Ouro , Grafite , Lisina , Engenharia Tecidual , Alicerces Teciduais
17.
J Biomed Mater Res A ; 109(2): 159-169, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32445230

RESUMO

The presence of biological cues to promote the attachment, proliferation, and differentiation of neuronal cells is important in the process of nerve regeneration. In this study, laminin as a neurite promoting protein, has been used to modify poly-lactide-co-glycolide/carbon nanotube (PLGA/CNT) electrospun nanofibrous scaffolds by means of either mussel-inspired poly(dopamine) (PD) coating or via direct physical adsorption as a simple route for the functionalization of biomaterials. The laminin-modified scaffolds were characterized by a combination of field emission scanning electron microscopy (SEM), X-ray photoelectron spectroscopy, and contact angle measurements. Subsequently, various properties of scaffolds such as degradation time, amount of attached laminin and the rate of CNT release were investigated. The synergistic effect of topographical and biological cues for PC12 cell attachment, proliferation, and differentiation were then studied by SEM and confocal microscopy. The results of degradation study showed that laminin-modified scaffolds were biodegradable with good structural integrity that persisted about 4 weeks. The amount of laminin attached to the PLGA/CNT and PLGA/CNT-PD scaffolds was 3.12 ± 0.6 and 3.04 ± 071 µg per mg of the scaffold, respectively. Although laminin-modified scaffolds could improve cell proliferation identically, neurite extensions on the PLGA/CNT scaffold modified via PD coating (PLGA/CNT-PD-lam scaffold) were significantly longer than those observed on PLGA/CNT scaffold modified via physical adsorption (PLGA/CNT-lam scaffold) and unmodified scaffolds. Together, these results indicated that surface modification via PD coating could be a promising strategy to fabricate biomimetic scaffolds capable of sustaining longer neuronal growth for nerve tissue engineering.


Assuntos
Laminina/química , Nanotubos de Carbono/química , Tecido Nervoso , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Engenharia Tecidual , Alicerces Teciduais , Animais , Biomimética , Proliferação de Células/efeitos dos fármacos , Indóis/química , Microscopia Eletrônica de Varredura , Nanofibras/química , Células PC12 , Polímeros/química , Ratos , Propriedades de Superfície
18.
Mater Sci Eng C Mater Biol Appl ; 112: 110887, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409043

RESUMO

Carbon nanotube (CNT) has aroused much attention in biomedical field. However, the cytotoxicity and aggregation are critical factors that affect the application of carbon nanotube (CNT). Herein, gelatin was grafted on the surface of CNT via mussel-inspired method. The gelatin modified CNT can disperse homogeneously in water. The in vitro test showed that gelatin modified CNT showed much better biocompatibility than the native CNT, which may improve its potential application in biomedical field.


Assuntos
Materiais Biocompatíveis/química , Gelatina/química , Nanotubos de Carbono/química , Animais , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Indóis/química , Camundongos , Polímeros/química , Propriedades de Superfície
19.
Chem Asian J ; 15(17): 2742-2748, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32658379

RESUMO

Although linker-free Au nanoparticle superstructures (AuNPSTs) have demonstrated to have satisfactory photothermal conversion efficiency owing to their enhanced visible-near-infrared absorption caused by the interparticle coupling, they cannot be used directly for in vivo photothermal therapy (PTT) of cancer because of poor stability. To address this issue, we herein propose a polymer-coating strategy, dressing AuNPST on a poly(dopamine) (PDA) coat, and successfully investigate the in vivo PTT effect of AuNPSTs. By employing Triton X-100 as an emulsifier for the formation of AuNPSTs, dopamine was site-specifically polymerized around each AuNPST by the interaction between -OH of Triton X-100 and -NH2 of dopamine. As-fabricated AuNPST/PDA has a sphere-like shape with an average diameter of ∼106 nm and the PDA shell is about 10 nm PDA thick. The AuNPST/PDA shows enhanced durability to heat, acid, and alkali compared with bare AuNPST. Also, under 808 nm laser irradiation, AuNPST/PDA shows photothermal conversion efficiency of ∼33%, higher than bare AuNPST (∼23%). Significantly, AuNPST/PDA can be used as in-vitro and in-vivo PTT agent and shows excellent therapeutic efficacy for tumor ablation thanks to its enhanced stability and biocompatibility, indicative of its potential practicability in clinical PTT.


Assuntos
Antineoplásicos/farmacologia , Ouro/farmacologia , Indóis/farmacologia , Nanopartículas Metálicas/química , Terapia Fototérmica , Polímeros/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Ouro/química , Humanos , Indóis/química , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Polimerização , Polímeros/química , Propriedades de Superfície
20.
Macromol Biosci ; 20(2): e1900293, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31846219

RESUMO

Despite all the attempts to create advanced hemoglobin (Hb)-based oxygen carriers (HBOCs) employing an encapsulation platform, major challenges including attaining a high Hb loading and long circulation times still need to be overcome. Herein, the fabrication, for the first time, of nanoparticles fully made of Hb (Hb-NPs) employing the electrospray technique is reported. The Hb-NPs are then coated by antioxidant and self-polymerized poly(dopamine) (PDA) to minimize the conversion of Hb into nonfunctional methemoglobin (metHb). The PDA shell is further functionalized with poly(ethylene glycol) (PEG) to achieve stealth properties. The results demonstrate that the as-prepared Hb-NPs are hemo- and biocompatible while offering antioxidant protection and decreasing the formation of metHb. Additionally, decoration with PEG results in decreased protein adsorption onto the Hb-NPs surface, suggesting a prolonged retention time within the body. Finally, the Hb-NPs also preserve the reversible oxygen-binding and releasing properties of Hb. All in all, within this study, a novel HBOCs with high Hb content is fabricated and its potential as an artificial blood substitute is evaluated.


Assuntos
Antioxidantes , Substitutos Sanguíneos , Hemoglobinas , Nanopartículas/química , Oxigênio , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Substitutos Sanguíneos/química , Substitutos Sanguíneos/farmacologia , Bovinos , Hemoglobinas/química , Hemoglobinas/farmacologia , Camundongos , Oxigênio/química , Oxigênio/farmacologia , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA