Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2315509121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547055

RESUMO

Dysregulation of polyamine metabolism has been implicated in cancer initiation and progression; however, the mechanism of polyamine dysregulation in cancer is not fully understood. In this study, we investigated the role of MUC1, a mucin protein overexpressed in pancreatic cancer, in regulating polyamine metabolism. Utilizing pancreatic cancer patient data, we noted a positive correlation between MUC1 expression and the expression of key polyamine metabolism pathway genes. Functional studies revealed that knockdown of spermidine/spermine N1-acetyltransferase 1 (SAT1), a key enzyme involved in polyamine catabolism, attenuated the oncogenic functions of MUC1, including cell survival and proliferation. We further identified a regulatory axis whereby MUC1 stabilized hypoxia-inducible factor (HIF-1α), leading to increased SAT1 expression, which in turn induced carbon flux into the tricarboxylic acid cycle. MUC1-mediated stabilization of HIF-1α enhanced the promoter occupancy of the latter on SAT1 promoter and corresponding transcriptional activation of SAT1, which could be abrogated by pharmacological inhibition of HIF-1α or CRISPR/Cas9-mediated knockout of HIF1A. MUC1 knockdown caused a significant reduction in the levels of SAT1-generated metabolites, N1-acetylspermidine and N8-acetylspermidine. Given the known role of MUC1 in therapy resistance, we also investigated whether inhibiting SAT1 would enhance the efficacy of FOLFIRINOX chemotherapy. By utilizing organoid and orthotopic pancreatic cancer mouse models, we observed that targeting SAT1 with pentamidine improved the efficacy of FOLFIRINOX, suggesting that the combination may represent a promising therapeutic strategy against pancreatic cancer. This study provides insights into the interplay between MUC1 and polyamine metabolism, offering potential avenues for the development of treatments against pancreatic cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Poliaminas/metabolismo , Transdução de Sinais , Acetiltransferases/genética , Acetiltransferases/metabolismo , Mucina-1
2.
BMC Genomics ; 25(1): 370, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627628

RESUMO

BACKGROUND: Quinoa (Chenopodium quinoa Willd.) is valued for its nutritional richness. However, pre-harvest sprouting poses a significant threat to yield and grain quality. This study aims to enhance our understanding of pre-harvest sprouting mitigation strategies, specifically through delayed sowing and avoiding rainy seasons during quinoa maturation. The overarching goal is to identify cold-resistant varieties and unravel the molecular mechanisms behind the low-temperature response of quinoa. We employed bioinformatics and genomics tools for a comprehensive genome-wide analysis of polyamines (PAs) and ethylene synthesis gene families in quinoa under low-temperature stress. RESULTS: This involved the identification of 37 PA biosynthesis and 30 PA catabolism genes, alongside 227 ethylene synthesis. Structural and phylogenetic analyses showcased conserved patterns, and subcellular localization predictions indicated diverse cellular distributions. The results indicate that the PA metabolism of quinoa is closely linked to ethylene synthesis, with multiple genes showing an upregulation in response to cold stress. However, differential expression within gene families suggests a nuanced regulatory network. CONCLUSIONS: Overall, this study contributes valuable insights for the functional characterization of the PA metabolism and ethylene synthesis of quinoa, which emphasize their roles in plant low-temperature tolerance and providing a foundation for future research in this domain.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Filogenia , Temperatura , Poliaminas/metabolismo , Etilenos/metabolismo
3.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125742

RESUMO

Mammalian polyamines, including putrescine, spermidine, and spermine, are positively charged amines that are essential for all living cells including neoplastic cells. An increasing understanding of polyamine metabolism, its molecular functions, and its role in cancer has led to the interest in targeting polyamine metabolism as an anticancer strategy, as the metabolism of polyamines is frequently dysregulated in neoplastic disease. In addition, due to compensatory mechanisms, combination therapies are clinically more promising, as agents can work synergistically to achieve an effect beyond that of each strategy as a single agent. In this article, the nature of polyamines, their association with carcinogenesis, and the potential use of targeting polyamine metabolism in treating and preventing cancer as well as combination therapies are described. The goal is to review the latest strategies for targeting polyamine metabolism, highlighting new avenues for exploiting aberrant polyamine homeostasis for anticancer therapy and the mechanisms behind them.


Assuntos
Homeostase , Neoplasias , Poliaminas , Humanos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Poliaminas/metabolismo , Animais , Sinergismo Farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
4.
Biosci Biotechnol Biochem ; 86(8): 957-966, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35648468

RESUMO

Polyamines (putrescine, spermidine, and spermine) are compounds with amino groups at both ends of a hydrocarbon. Polyamines produced by intestinal bacteria suppress chronic inflammation and enhance the intestinal barrier in the colon, and are also transferred into the blood via the colonic epithelium, resulting in significant improvement of host cognitive performance and life extension in mice. Upregulation of polyamine production by gut microbes can help compensate for the aging-associated decrease in polyamine content through the uptake of intestinal luminal polyamine, thereby extending the healthy life expectancy of the host. This review summarizes recent advances in the study of polyamine metabolism and transport in gut microbes, with particular reference to Escherichia coli and the most predominant species of the gut microbiota. Furthermore, we describe polyamine production by a novel hybrid system comprised of multiple gut microbes, as well as from high-polyamine-producing lactic acid bacteria derived from fermented foods.


Assuntos
Microbioma Gastrointestinal , Animais , Transporte Biológico , Escherichia coli/metabolismo , Camundongos , Poliaminas/metabolismo , Putrescina , Espermidina , Espermina
5.
Physiology (Bethesda) ; 35(5): 328-337, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783609

RESUMO

Polyamines regulate a variety of physiological functions and are involved in pathogenesis of diverse human diseases. The epithelium of the mammalian gut mucosa is a rapidly self-renewing tissue in the body, and its homeostasis is preserved through well-controlled mechanisms. Here, we highlight the roles of cellular polyamines in maintaining the integrity of the gut epithelium, focusing on the emerging evidence of polyamines in the regulation of gut epithelial renewal and barrier function. Gut mucosal growth depends on the available supply of polyamines to the dividing cells in the crypts, and polyamines are also essential for normal gut epithelial barrier function. Polyamines modulate expression of various genes encoding growth-associated proteins and intercellular junctions via distinct mechanisms involving RNA-binding proteins and noncoding RNAs. With the rapid advance of polyamine biology, polyamine metabolism and transport are promising therapeutic targets in our efforts to protect the gut epithelium and barrier function in patients with critical illnesses.


Assuntos
Proliferação de Células , Autorrenovação Celular , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Poliaminas/metabolismo , Animais , Células Epiteliais/patologia , Humanos , Mucosa Intestinal/patologia , Permeabilidade , Transdução de Sinais
6.
Microb Pathog ; 158: 105076, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34216740

RESUMO

The urease enzyme of Cryptococcus neoformans is linked to different metabolic pathways within the yeast cell, several of which are involved in polyamine metabolism. Cryptococcal biogenic amine production is, however, largely unexplored and is yet to be investigated in relation to urease. The aim of this study was therefore to explore and compare polyamine metabolism in wild-type, urease-negative and urease-reconstituted strains of C. neoformans. Mass spectrometry analysis showed that agmatine and spermidine were the major extra- and intracellular polyamines of C. neoformans and significant differences were observed between 26 and 37 °C. In addition, compared to the wild-type, the relative percentages of extracellular putrescine and spermidine were found to be lower and agmatine higher in cultures of the urease-deficient mutant. The inverse was true for intracellular spermidine and agmatine. Cyclohexylamine was a more potent polyamine inhibitor compared to DL-α-difluoromethylornithine and inhibitory effects were more pronounced at 37 °C than at 26 °C. At both temperatures, the urease-deficient mutant was less susceptible to cyclohexylamine treatment compared to the wild-type. For both inhibitors, growth inhibition was alleviated with polyamine supplementation. This study has provided novel insight into the polyamine metabolism of C. neoformans, highlighting the involvement of urease in biogenic amine production.


Assuntos
Cryptococcus neoformans , Poliaminas/metabolismo , Urease/metabolismo , Putrescina , Espermidina
7.
Mol Pharm ; 15(2): 369-376, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29299930

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is highly chemo-resistant and has an extremely poor patient prognosis, with a survival rate at five years of <8%. There remains an urgent need for innovative treatments. Targeting polyamine biosynthesis through inhibition of ornithine decarboxylase with difluoromethylornithine (DFMO) has had mixed clinical success due to tumor escape via an undefined transport system, which imports exogenous polyamines and sustains intracellular polyamine pools. Here, we tested DFMO in combination with a polyamine transport inhibitor (PTI), Trimer44NMe, against Gemcitabine-resistant PDAC cells. DFMO alone and with Trimer44NMe significantly reduced PDAC cell viability by inducing apoptosis or diminishing proliferation. DFMO alone and with Trimer44NMe also inhibited in vivo orthotopic PDAC growth and resulted in decreased c-Myc expression, a readout of polyamine pathway dysfunction. Moreover, dual inhibition significantly prolonged survival of tumor-bearing mice. Collectively, these studies demonstrate that targeting polyamine biosynthesis and import pathways in PDAC can lead to increased survival in pancreatic cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Eflornitina/farmacologia , Inibidores da Ornitina Descarboxilase/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Poliaminas/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Eflornitina/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Ornitina Descarboxilase/metabolismo , Inibidores da Ornitina Descarboxilase/uso terapêutico , Pâncreas , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Análise de Sobrevida , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
8.
Biosci Biotechnol Biochem ; 82(9): 1606-1614, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29847302

RESUMO

Bifidobacteria are members of the human intestinal microbiota, being numerically dominant in the colon of infants, and also being prevalent in the large intestine of adults. In this study, we measured the concentrations of major polyamines (putrescine, spermidine, and spermine) in cells and culture supernatant of 13 species of human indigenous Bifidobacterium at growing and stationary phase. Except for Bifidobacterium bifidum and Bifidobacterium gallicum, 11 species contained spermidine and/or spermine when grown in Gifu-anaerobic medium (GAM). However, Bifidobacterium scardovii and Bifidobacterium longum subsp. infantis, which contain spermidine when grown in GAM, did not contain spermidine when grown in polyamine-free 199 medium. Of the tested 13 Bifidobacterium species, 10 species showed polyamine transport ability. Combining polyamine concentration analysis in culture supernatant and in cells, with basic local alignment search tool analysis suggested that novel polyamine transporters are present in human indigenous Bifidobacterium. ABBREVIATIONS: Put: putrescine; Spd: spermidine; Spm: spermine; GAM: Gifu anaerobic medium; BHI: brain-heart infusion.


Assuntos
Bifidobacterium/metabolismo , Putrescina/biossíntese , Espermidina/biossíntese , Espermina/biossíntese , Anaerobiose , Bifidobacterium/classificação , Transporte Biológico , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Especificidade da Espécie
9.
Plant Biotechnol J ; 15(9): 1186-1203, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28190292

RESUMO

MYB comprises a large family of transcription factors that play significant roles in plant development and stress response in plants. However, knowledge concerning the functions of MYBs and the target genes remains poorly understood. Here, we report the identification and functional characterization of a novel stress-responsive MYB gene from Pyrus betulaefolia. The MYB gene, designated as PbrMYB21, belongs to the R2R3-type and shares high degree of sequence similarity to MdMYB21. The transcript levels of PbrMYB21 were up-regulated under various abiotic stresses, particularly dehydration. PbrMYB21 was localized in the nucleus with transactivation activity. Overexpression of PbrMYB21 in tobacco conferred enhanced tolerance to dehydration and drought stresses, whereas down-regulation of PbrMYB21 in Pyrus betulaefolia by virus-induced gene silencing (VIGS) resulted in elevated drought sensitivity. Transgenic tobacco exhibited higher expression levels of ADC (arginine decarboxylase) and accumulated larger amount of polyamine in comparison with wild type (WT). VIGS of PbrMYB21 in Pyrus betulaefolia down-regulated ADC abundance and decreased polyamine level, accompanied by compromised drought tolerance. The promoter region of PbrADC contains one MYB-recognizing cis-element, which was shown to be interacted with PbrMYB21, indicating the ADC may be a target gene of PbrMYB21. Take together, these results demonstrated that PbrMYB21 plays a positive role in drought tolerance, which may be, at least in part, due to the modulation of polyamine synthesis by regulating the ADC expression.


Assuntos
Carboxiliases/metabolismo , Regulação da Expressão Gênica de Plantas , Poliaminas/metabolismo , Pyrus/enzimologia , Sequência de Aminoácidos , Carboxiliases/genética , Secas , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pyrus/genética , Pyrus/fisiologia , Alinhamento de Sequência , Estresse Fisiológico , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/fisiologia
10.
J Neurovirol ; 23(4): 568-576, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28462488

RESUMO

Peripheral neuropathy (PN) is a major comorbidity of HIV infection that is caused in part by chronic immune activation. HIV-PN is associated with infiltration of monocytes/macrophages to the dorsal root ganglia (DRG) causing neuronal loss and formation of Nageotte nodules. Here, we used an oral form of methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine biosynthesis inhibitor, to specifically reduce activation of myeloid cells. MGBG is selectively taken up by monocyte/macrophages in vitro and inhibits HIV p24 expression and DNA viral integration in macrophages. Here, MGBG was administered to nine SIV-infected, CD8-depleted rhesus macaques at 21 days post-infection (dpi). An additional nine SIV-infected, CD8-depleted rhesus macaques were used as untreated controls. Cell traffic to tissues was measured by in vivo BrdU pulse labeling. MGBG treatment significantly diminished DRG histopathology and reduced the number of CD68+ and CD163+ macrophages in DRG tissue. The number of recently trafficked BrdU+ cells in the DRG was significantly reduced with MGBG treatment. Despite diminished DRG pathology, intraepidermal nerve fiber density (IENFD) did not recover after treatment with MGBG. These data suggest that MGBG alleviated DRG pathology and inflammation.


Assuntos
Inibidores Enzimáticos/farmacologia , Gânglios Espinais/efeitos dos fármacos , Mitoguazona/farmacologia , Monócitos/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Administração Oral , Animais , Linfócitos T CD8-Positivos/virologia , Movimento Celular/efeitos dos fármacos , DNA Viral/genética , Gânglios Espinais/imunologia , Gânglios Espinais/patologia , Gânglios Espinais/virologia , Proteína do Núcleo p24 do HIV/genética , Depleção Linfocítica , Macaca mulatta , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Macrófagos/virologia , Masculino , Monócitos/imunologia , Monócitos/patologia , Monócitos/virologia , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/imunologia , Fibras Nervosas/patologia , Fibras Nervosas/virologia , Doenças do Sistema Nervoso Periférico/imunologia , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/virologia , Poliaminas/antagonistas & inibidores , Poliaminas/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento
11.
Tumour Biol ; 37(1): 1159-71, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26277788

RESUMO

The diamine putrescine and polyamines, spermidine (triamine) and spermine (tetraamine) are small organic polycations that play an indispensable role in key cellular processes such as the regulation of growth, differentiation, and macromolecular functions. Elevated levels of polyamines (PAs) have been shown to be one of the major factors involved in carcinogenesis. In this study, specific silencing of the expression of three genes of PA biosynthesis pathway, ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and spermidine synthase (SPDSYN) was achieved using RNA interference in MCF 7 breast cancer cell line. For optimizing the effective small interfering nucleic acid (siNA), three variants of ODC siNA [siRNA, locked nucleic acid (LNA)-modified siRNA, and siHybrid (RNA and DNA hybrid)] were used and a dose- and time-dependent study was conducted. The PA biosynthetic genes were targeted individually and in combination. RNAi-mediated reduction in the expression of PA biosynthesis genes resulted in distorted cell morphology, reduced cancer cell viability, and migration characteristic. The most promising results were observed with the combined treatment of siSPDSYN and siODC with 83 % cell growth inhibition. On analyzing the messenger RNA (mRNA) expression profile of the cell cycle and apoptosis-related genes, it was observed that RNAi against PA biosynthetic genes downregulated the expression of CDK8, CCNE2, CCNH, CCNT1, CCNT2, CCNF, PCNA, CCND1, and CDK2, and upregulated the expression of E2F4, BAX, FAS, TP53, CDKN1A, BAK1, CDKN1B, ATM, GRANB, and ATR genes when compared with control-transfected cells. These results suggest that the targeting polyamine biosynthesis through RNAi approach could be a promising strategy for breast cancer therapy and might be extended for therapy of other cancers.


Assuntos
Neoplasias da Mama/metabolismo , Poliaminas/química , Interferência de RNA , Adenosilmetionina Descarboxilase/metabolismo , Apoptose , Neoplasias da Mama/genética , Diferenciação Celular , Divisão Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Ornitina Descarboxilase/metabolismo , Putrescina/biossíntese , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Espermidina/biossíntese , Espermidina Sintase/metabolismo , Espermina/biossíntese
12.
Plant Cell Environ ; 38(11): 2248-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25808564

RESUMO

WRKY comprises a large family of transcription factors in plants, but most WRKY members are still poorly understood. In this study, we report functional characterization of a Group III WRKY gene (FcWRKY70) from Fortunella crassifolia. FcWRKY70 was greatly induced by drought and abscisic acid, but slightly or negligibly by salt and cold. Overexpression of FcWRKY70 in tobacco (Nicotiana nudicaulis) and lemon (Citrus lemon) conferred enhanced tolerance to dehydration and drought stresses. Transgenic tobacco and lemon exhibited higher expression levels of ADC (arginine decarboxylase), and accumulated larger amount of putrescine in comparison with wild type (WT). Treatment with D-arginine, an inhibitor of ADC, caused transgenic tobacco plants more sensitive to dehydration. Knock-down of FcWRKY70 in kumquat down-regulated ADC abundance and decreased putrescine level, accompanied by compromised dehydration tolerance. The promoter region of FcADC contained two W-box elements, which were shown to be interacted with FcWRKY70. Taken together, our data demonstrated that FcWRKY70 functions in drought tolerance by, at least partly, promoting production of putrescine via regulating ADC expression.


Assuntos
Carboxiliases/genética , Secas , Proteínas de Plantas/fisiologia , Putrescina/biossíntese , Rutaceae/fisiologia , Fatores de Transcrição/fisiologia , Adaptação Biológica/genética , Sequência de Aminoácidos , Arginina/farmacologia , Carboxiliases/química , Carboxiliases/metabolismo , Citrus/genética , Motivos de Nucleotídeos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/fisiologia , Regiões Promotoras Genéticas , Rutaceae/genética , Rutaceae/metabolismo , Alinhamento de Sequência , Estresse Fisiológico , Nicotiana/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
13.
Sci China Life Sci ; 67(1): 83-95, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37721637

RESUMO

SARS-CoV-2 continues to threaten human society by generating novel variants via mutation and recombination. The high number of mutations that appeared in emerging variants not only enhanced their immune-escaping ability but also made it difficult to predict the pathogenicity and virulence based on viral nucleotide sequences. Molecular markers for evaluating the pathogenicity of new variants are therefore needed. By comparing host responses to wild-type and variants with attenuated pathogenicity at proteome and metabolome levels, six key molecules on the polyamine biosynthesis pathway including putrescine, SAM, dc-SAM, ODC1, SAMS, and SAMDC were found to be differentially upregulated and associated with pathogenicity of variants. To validate our discovery, human airway organoids were subsequently used which recapitulates SARS-CoV-2 replication in the airway epithelial cells of COVID-19 patients. Using ODC1 as a proof-of-concept, differential activation of polyamine biosynthesis was found to be modulated by the renin-angiotensin system (RAS) and positively associated with ACE2 activity. Further experiments demonstrated that ODC1 expression could be differentially activated upon a panel of SARS-CoV-2 variants of concern (VOCs) and was found to be correlated with each VOCs' pathogenic properties. Particularly, the presented study revealed the discriminative ability of key molecules on polyamine biosynthesis as a predictive marker for virulence evaluation and assessment of SARS-CoV-2 variants in cell or organoid models. Our work, therefore, presented a practical strategy that could be potentially applied as an evaluation tool for the pathogenicity of current and emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Multiômica , Putrescina
14.
Int J Biol Sci ; 18(7): 3034-3047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35541910

RESUMO

5'-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway and has been reported to suppress tumorigenesis. The MTAP gene is located at 9p21, a chromosome region often deleted in breast cancer (BC). However, the clinical and biological significance of MTAP in BC is still unclear. Here, we reported that MTAP was frequently downregulated in 41% (35/85) of primary BCs and 89% (8/9) of BC cell lines. Low expression of MTAP was significantly correlated with a poor survival of BC patients (P=0.0334). Functional studies showed that MTAP was able to suppress both in vitro and in vivo tumorigenic ability of BC cells, including migration, invasion, angiogenesis, tumor growth and metastasis in nude mice with orthotopic xenograft tumor of BC. Mechanistically, we found that downregulation of MTAP could increase the polyamine levels by activating ornithine decarboxylase (ODC). By treating the MTAP-repressing BC cells with specific ODC inhibitor Difluoromethylornithine (DFMO) or treating the MTAP-overexpressing BC cells with additional putrescine, metastasis-promoting or -suppressing phenotype of these MTAP-manipulated cells was significantly reversed, respectively. Taken together, our data suggested that MTAP has a critical metastasis-suppressive role by tightly regulating ODC activity in BC cells, which may serve as a prominent novel therapeutic target for advanced breast cancer treatment.


Assuntos
Neoplasias da Mama , Ornitina Descarboxilase , Purina-Núcleosídeo Fosforilase , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação para Baixo , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Ornitina Descarboxilase/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo
15.
Front Microbiol ; 13: 890856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35794913

RESUMO

Francisella tularensis is a highly infectious zoonotic pathogen with as few as 10 organisms causing tularemia, a disease that is fatal if untreated. Although F. tularensis subspecies tularensis (type A) and subspecies holarctica (type B) share over 99.5% average nucleotide identity, notable differences exist in genomic organization and pathogenicity. The type A clade has been further divided into subtypes A.I and A.II, with A.I strains being recognized as some of the most virulent bacterial pathogens known. In this study, we report on major disparities that exist between the F. tularensis subpopulations in arginine catabolism and subsequent polyamine biosynthesis. The genes involved in these pathways include the speHEA and aguAB operons, along with metK. In the hypervirulent F. tularensis A.I clade, such as the A.I prototype strain SCHU S4, these genes were found to be intact and highly transcribed. In contrast, both subtype A.II and type B strains have a truncated speA gene, while the type B clade also has a disrupted aguA and truncated aguB. Ablation of the chromosomal speE gene that encodes a spermidine synthase reduced subtype A.I SCHU S4 growth rate, whereas the growth rate of type B LVS was enhanced. These results demonstrate that spermine synthase SpeE promotes faster replication in the F. tularensis A.I clade, whereas type B strains do not rely on this enzyme for in vitro fitness. Our ongoing studies on amino acid and polyamine flux within hypervirulent A.I strains should provide a better understanding of the factors that contribute to F. tularensis pathogenicity.

16.
Microorganisms ; 10(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889137

RESUMO

S-adenosylmethionine synthetase (SAMS) is a key enzyme for the synthesis of the lone methyl donor S-adenosyl methionine (SAM), which is involved in transmethylation reactions and hence required for cellular processes such as DNA, RNA, and histone methylation, but also polyamine biosynthesis and proteostasis. In the human malaria parasite Plasmodium falciparum, PfSAMS is encoded by a single gene and has been suggested to be crucial for malaria pathogenesis and transmission; however, to date, PfSAMS has not been fully characterized. To gain deeper insight into the function of PfSAMS, we generated a conditional gene knockdown (KD) using the glmS ribozyme system. We show that PfSAMS localizes to the cytoplasm and the nucleus of blood-stage parasites. PfSAMS-KD results in reduced histone methylation and leads to impaired intraerythrocytic growth and gametocyte development. To further determine the interaction network of PfSAMS, we performed a proximity-dependent biotin identification analysis. We identified a complex network of 1114 proteins involved in biological processes such as cell cycle control and DNA replication, or transcription, but also in phosphatidylcholine and polyamine biosynthesis and proteasome regulation. Our findings highlight the diverse roles of PfSAMS during intraerythrocytic growth and sexual stage development and emphasize that PfSAMS is a potential drug target.

17.
Front Microbiol ; 12: 765398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867896

RESUMO

Putrescine, spermidine, and spermine are the most common natural polyamines. Polyamines are ubiquitous organic cations of low molecular weight and have been well characterized for the cell function and development processes of organisms. However, the physiological functions of polyamines remain largely obscure in plant pathogenic fungi. Fusarium graminearum causes Fusarium head blight (FHB) and leads to devastating yield losses and quality reduction by producing various kinds of mycotoxins. Herein, we genetically analyzed the gene function of the polyamine biosynthesis pathway and evaluated the role of the endogenous polyamines in the growth, development, and virulence of F. graminearum. Our results found that deletion of spermidine biosynthesis gene FgSPE3 caused serious growth defects, reduced asexual and sexual reproduction, and increased sensitivity to various stresses. More importantly, ΔFgspe3 exhibited significantly decreased mycotoxin deoxynivalenol (DON) production and weak virulence in host plants. Additionally, the growth and virulence defects of ΔFgspe3 could be rescued by exogenous application of 5 mM spermidine. Furthermore, RNA-seq displayed that FgSpe3 participated in many essential biological pathways including DNA, RNA, and ribosome synthetic process. To our knowledge, these results indicate that spermidine is essential for growth, development, DON production, and virulence in Fusarium species, which provides a potential target to control FHB.

18.
Domest Anim Endocrinol ; 74: 106479, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615508

RESUMO

Approximately 90% of beef cattle on feed in the United States receive at least one anabolic implant, which results in increased growth, efficiency, and economic return to producers. However, the complete molecular mechanism through which anabolic implants function to improve skeletal muscle growth remains unknown. This study had 2 objectives: (1) determine the effect of polyamines and their precursors on proliferation rate in bovine satellite cells (BSC); and (2) understand whether trenbolone acetate (TBA), a testosterone analog, has an impact on the polyamine biosynthetic pathway. To address these, BSC were isolated from 3 finished steers and cultured. Once cultures reached 75% confluency, they were treated in 1% fetal bovine serum (FBS) and/or 10 nM TBA, 10 mM methionine (Met), 8 mM ornithine (Orn), 2 mM putrescine (Put), 1.5 mM spermidine (Spd), or 0.5 mM spermine (Spe). Initially, a range of physiologically relevant concentrations of Met, Orn, Put, Spd, and Spe were tested to determine experimental doses to implement the aforementioned experiments. One, 12, or 24 h after treatment, mRNA was isolated from cultures and abundance of paired box transcription factor 7 (Pax7), Sprouty 1 (Spry), mitogen-activated protein kinase-1 (Mapk), ornithine decarboxylase (Odc), and S adenosylmethionine (Amd1) were determined, and normalized to 18S. No treatment × time interactions were observed (P ≥ 0.05). Treatment with TBA, Met, Orn, Put, Spd, or Spe increased (P ≤ 0.05) BSC proliferation when compared with control cultures. Treatment of cultures with Orn or Met increased (P ≤ 0.01) expression of Odc 1 h after treatment when compared with control cultures. Abundance of Amd1 was increased (P < 0.01) 1 h after treatment in cultures treated with Spd or Spe when compared with 1% FBS controls. Cultures treated with TBA had increased (P < 0.01) abundance of Spry mRNA 12 h after treatment, as well as increased mRNA abundance of Mapk (P < 0.01) 12 h and 24 h after treatment when compared with 1% FBS control cultures. Treatment with Met increased (P < 0.01) mRNA abundance of Pax7 1 h after treatment as compared with 1% FBS controls. These results indicate that treatments of BSC cultures with polyamines and their precursors increase BSC proliferation rate, as well as abundance of mRNA involved in cell proliferation. In addition, treatment of BSC cultures with TBA, polyamines, or polyamine precursors impacts expression of genes related to the polyamine biosynthetic pathway and proliferation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Espermidina/farmacologia , Espermina/farmacologia , Acetato de Trembolona/farmacologia , Adenosilmetionina Descarboxilase/genética , Adenosilmetionina Descarboxilase/metabolismo , Animais , Bovinos , Proliferação de Células/fisiologia , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Metionina/farmacologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Ornitina/farmacologia , Células Satélites de Músculo Esquelético/metabolismo
19.
Front Plant Sci ; 11: 987, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754173

RESUMO

Arginine acts as a precursor of polyamines in plants in two known pathways, agmatine and ornithine routes. It is decarboxylated to agmatine by arginine decarboxylase, and then transformed to putrescine by the consecutive action of agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase. Alternatively, it can be hydrolyzed to ornithine by arginase and then decarboxylated by ornithine decarboxylase to putrescine. Some plants lack a functional ornithine pathway, but all have one or two arginases that can have dual cellular localization, in mitochondria and plastids. It was recently shown that arginases from Arabidopsis thaliana and soybean act also as agmatinases, thus they can produce putrescine directly from agmatine. Therefore, arginase (together with arginine decarboxylase) can complement putrescine production in plastids, providing a third polyamine biosynthesis pathway in plants. Phylogenetic analysis suggests that arginases, highly conserved in the plant kingdom, create the only group of enzymes recognized in the family of ureohydrolases in plants. Arginases are metalloenzymes with binuclear manganese cluster in the active site. In this work, two arginases from A. thaliana and Medicago truncatula are structurally characterized and their binding properties are discussed. Crystal structures with bound ornithine show that plant hexameric arginases engage a long loop from the neighboring subunit to stabilize α-amino and carboxyl groups of the ligand. This unique ligand binding mode is unobserved in arginases from other domains of life. Structural analysis shows that substrate binding by residues from two neighboring subunits might also characterize some prokaryotic agmatinases. This feature of plant arginases is most likely the determinant of their ability to recognize not only arginine but also agmatine as their substrates, thus, to act as arginase and agmatinase.

20.
Islets ; 12(5): 99-107, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32715853

RESUMO

Type 1 diabetes (T1D) is a disease characterized by destruction of the insulin-producing beta cells. Currently, there remains a critical gap in our understanding of how to reverse or prevent beta cell loss in individuals with T1D. Previous studies in mice discovered that pharmacologically inhibiting polyamine biosynthesis using difluoromethylornithine (DFMO) resulted in preserved beta cell function and mass. Similarly, treatment of non-obese diabetic mice with the tyrosine kinase inhibitor Imatinib mesylate reversed diabetes. The promising findings from these animal studies resulted in the initiation of two separate clinical trials that would repurpose either DFMO (NCT02384889) or Imatinib (NCT01781975) and determine effects on diabetes outcomes; however, whether these drugs directly stimulated beta cell growth remained unknown. To address this, we used the zebrafish model system to determine pharmacological impact on beta cell regeneration. After induction of beta cell death, zebrafish embryos were treated with either DFMO or Imatinib. Neither drug altered whole-body growth or exocrine pancreas length. Embryos treated with Imatinib showed no effect on beta cell regeneration; however, excitingly, DFMO enhanced beta cell regeneration. These data suggest that pharmacological inhibition of polyamine biosynthesis may be a promising therapeutic option to stimulate beta cell regeneration in the setting of diabetes.


Assuntos
Células Secretoras de Insulina/fisiologia , Poliaminas/metabolismo , Animais , Eflornitina/farmacologia , Imunofluorescência , Mesilato de Imatinib/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Regeneração/efeitos dos fármacos , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA