Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Genet ; 37(4): 302-305, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33546926

RESUMO

Feral populations, those which successfully persist outside of cultivation or husbandry, provide unique opportunities to study the genomic impacts of domestication and local adaptation. We argue that by leveraging genomic resources designed for domestic counterparts, powerful phylogenetic and population genomic data collection and analyses can be designed to disentangle complex demographic processes.


Assuntos
Adaptação Fisiológica/genética , Domesticação , Variação Genética/genética , Seleção Genética/genética , Animais , Cruzamento , Genômica , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único/genética
2.
Trends Genet ; 37(7): 631-638, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33892958

RESUMO

The adaptation of populations to local environments often relies on the selection of optimal values for polygenic traits. Here, we first summarize the results obtained from different quantitative genetics and population genetics models, about the genetic architecture of polygenic traits and their response to directional selection. We then highlight the contribution of systems biology to the understanding of the molecular bases of polygenic traits and the evolution of gene regulatory networks involved in these traits. Finally, we discuss the need for a unifying framework merging the fields of population genetics, quantitative genetics and systems biology to better understand the molecular bases of polygenic traits adaptation.


Assuntos
Evolução Molecular , Redes Reguladoras de Genes/genética , Genética Populacional , Locos de Características Quantitativas/genética , Adaptação Fisiológica/genética , Variação Genética/genética , Humanos , Herança Multifatorial/genética , Seleção Genética/genética
3.
Am J Hum Genet ; 108(2): 219-239, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33440170

RESUMO

We present a full-likelihood method to infer polygenic adaptation from DNA sequence variation and GWAS summary statistics to quantify recent transient directional selection acting on a complex trait. Through simulations of polygenic trait architecture evolution and GWASs, we show the method substantially improves power over current methods. We examine the robustness of the method under stratification, uncertainty and bias in marginal effects, uncertainty in the causal SNPs, allelic heterogeneity, negative selection, and low GWAS sample size. The method can quantify selection acting on correlated traits, controlling for pleiotropy even among traits with strong genetic correlation (|rg|=80%) while retaining high power to attribute selection to the causal trait. When the causal trait is excluded from analysis, selection is attributed to its closest proxy. We discuss limitations of the method, cautioning against strongly causal interpretations of the results, and the possibility of undetectable gene-by-environment (GxE) interactions. We apply the method to 56 human polygenic traits, revealing signals of directional selection on pigmentation, life history, glycated hemoglobin (HbA1c), and other traits. We also conduct joint testing of 137 pairs of genetically correlated traits, revealing widespread correlated response acting on these traits (2.6-fold enrichment, p = 1.5 × 10-7). Signs of selection on some traits previously reported as adaptive (e.g., educational attainment and hair color) are largely attributable to correlated response (p = 2.9 × 10-6 and 1.7 × 10-4, respectively). Lastly, our joint test shows antagonistic selection has increased type 2 diabetes risk and decrease HbA1c (p = 1.5 × 10-5).


Assuntos
Genoma Humano , Herança Multifatorial , Seleção Genética , Simulação por Computador , Diabetes Mellitus Tipo 2/genética , Evolução Molecular , Interação Gene-Ambiente , Heterogeneidade Genética , Pleiotropia Genética , Estudo de Associação Genômica Ampla , Hemoglobinas Glicadas/genética , Humanos , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Tamanho da Amostra
4.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443182

RESUMO

Skin pigmentation is a classic example of a polygenic trait that has experienced directional selection in humans. Genome-wide association studies have identified well over a hundred pigmentation-associated loci, and genomic scans in present-day and ancient populations have identified selective sweeps for a small number of light pigmentation-associated alleles in Europeans. It is unclear whether selection has operated on all of the genetic variation associated with skin pigmentation as opposed to just a small number of large-effect variants. Here, we address this question using ancient DNA from 1,158 individuals from West Eurasia covering a period of 40,000 y combined with genome-wide association summary statistics from the UK Biobank. We find a robust signal of directional selection in ancient West Eurasians on 170 skin pigmentation-associated variants ascertained in the UK Biobank. However, we also show that this signal is driven by a limited number of large-effect variants. Consistent with this observation, we find that a polygenic selection test in present-day populations fails to detect selection with the full set of variants. Our data allow us to disentangle the effects of admixture and selection. Most notably, a large-effect variant at SLC24A5 was introduced to Western Europe by migrations of Neolithic farming populations but continued to be under selection post-admixture. This study shows that the response to selection for light skin pigmentation in West Eurasia was driven by a relatively small proportion of the variants that are associated with present-day phenotypic variation.


Assuntos
DNA Antigo/análise , Seleção Genética/genética , Pigmentação da Pele/genética , Alelos , Ásia , Povo Asiático/genética , Evolução Biológica , Bases de Dados Genéticas , Europa (Continente) , Frequência do Gene/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Haplótipos/genética , Humanos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Pigmentação da Pele/fisiologia , População Branca/genética
5.
Trends Genet ; 36(6): 415-428, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32396835

RESUMO

Modern humans inhabit a variety of environments and are exposed to a plethora of selective pressures, leading to multiple genetic adaptations to local environmental conditions. These include adaptations to climate, UV exposure, disease, diet, altitude, or cultural practice and have generated important genetic and phenotypic differences amongst populations. In recent years, new methods to identify the genomic signatures of natural selection underlying these adaptations, combined with novel types of genetic data (e.g., ancient DNA), have provided unprecedented insights into the origin of adaptive alleles and the modes of adaptation. As a result, numerous instances of local adaptation have been identified in humans. Here, we review the most exciting recent developments and discuss, in our view, the future of this field.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Variação Genética , Genômica/métodos , Seleção Genética , Animais , Humanos
6.
Mol Ecol ; 32(3): 542-559, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35000273

RESUMO

Inferring the genomic basis of local adaptation is a long-standing goal of evolutionary biology. Beyond its fundamental evolutionary implications, such knowledge can guide conservation decisions for populations of conservation and management concern. Here, we investigated the genomic basis of local adaptation in the Coho salmon (Oncorhynchus kisutch) across its entire North American range. We hypothesized that extensive spatial variation in environmental conditions and the species' homing behaviour may promote the establishment of local adaptation. We genotyped 7829 individuals representing 217 sampling locations at more than 100,000 high-quality RADseq loci to investigate how recombination might affect the detection of loci putatively under selection and took advantage of the precise description of the demographic history of the species from our previous work to draw accurate population genomic inferences about local adaptation. The results indicated that genetic differentiation scans and genetic-environment association analyses were both significantly affected by variation in recombination rate as low recombination regions displayed an increased number of outliers. By taking these confounding factors into consideration, we revealed that migration distance was the primary selective factor driving local adaptation and partial parallel divergence among distant populations. Moreover, we identified several candidate single nucleotide polymorphisms associated with long-distance migration and altitude including a gene known to be involved in adaptation to altitude in other species. The evolutionary implications of our findings are discussed along with conservation applications.


Assuntos
Oncorhynchus kisutch , Humanos , Animais , Oncorhynchus kisutch/genética , Genética Populacional , Adaptação Fisiológica/genética , Deriva Genética , Genoma , Polimorfismo de Nucleotídeo Único/genética
7.
Cereb Cortex ; 31(4): 1873-1887, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33290510

RESUMO

Structural brain changes along the lineage leading to modern Homo sapiens contributed to our distinctive cognitive and social abilities. However, the evolutionarily relevant molecular variants impacting key aspects of neuroanatomy are largely unknown. Here, we integrate evolutionary annotations of the genome at diverse timescales with common variant associations from large-scale neuroimaging genetic screens. We find that alleles with evidence of recent positive polygenic selection over the past 2000-3000 years are associated with increased surface area (SA) of the entire cortex, as well as specific regions, including those involved in spoken language and visual processing. Therefore, polygenic selective pressures impact the structure of specific cortical areas even over relatively recent timescales. Moreover, common sequence variation within human gained enhancers active in the prenatal cortex is associated with postnatal global SA. We show that such variation modulates the function of a regulatory element of the developmentally relevant transcription factor HEY2 in human neural progenitor cells and is associated with structural changes in the inferior frontal cortex. These results indicate that non-coding genomic regions active during prenatal cortical development are involved in the evolution of human brain structure and identify novel regulatory elements and genes impacting modern human brain structure.


Assuntos
Evolução Biológica , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Testes Genéticos/métodos , Humanos , Imageamento por Ressonância Magnética/tendências , Herança Multifatorial/genética , Tamanho do Órgão/genética , Locos de Características Quantitativas/genética
8.
Mol Biol Evol ; 37(5): 1420-1433, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935281

RESUMO

Anatomically modern humans carry many introgressed variants from other hominins in their genomes. Some of them affect their phenotype and can thus be negatively or positively selected. Several individual genes have been proposed to be the subject of adaptive introgression, but the possibility of polygenic adaptive introgression has not been extensively investigated yet. In this study, we analyze archaic introgression maps with refined functional enrichment methods to find signals of polygenic adaptation of introgressed variants. We first apply a method to detect sets of connected genes (subnetworks) within biological pathways that present higher-than-expected levels of archaic introgression. We then introduce and apply a new statistical test to distinguish between epistatic and independent selection in gene sets of present-day humans. We identify several known targets of adaptive introgression, and we show that they belong to larger networks of introgressed genes. After correction for genetic linkage, we find that signals of polygenic adaptation are mostly explained by independent and potentially sequential selection episodes. However, we also find some gene sets where introgressed variants present significant signals of epistatic selection. Our results confirm that archaic introgression has facilitated local adaptation, especially in immunity related and metabolic functions and highlight its involvement in a coordinated response to pathogens out of Africa.


Assuntos
Adaptação Biológica/genética , Introgressão Genética , Interações Hospedeiro-Patógeno/genética , Herança Multifatorial , Seleção Genética , Humanos , Melanesia
9.
Am J Phys Anthropol ; 175(2): 465-476, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33529393

RESUMO

OBJECTIVES: Debate about the cause of IQ score gaps between Black and White populations has persisted within genetics, anthropology, and psychology. Recently, authors claimed polygenic scores provide evidence that a significant portion of differences in cognitive performance between Black and White populations are caused by genetic differences due to natural selection, the "hereditarian hypothesis." This study aims to show conceptual and methodological flaws of past studies supporting the hereditarian hypothesis. MATERIALS AND METHODS: Polygenic scores for educational attainment were constructed for African and European samples of the 1000 Genomes Project. Evidence for selection was evaluated using an excess variance test. Education associated variants were further evaluated for signals of selection by testing for excess genetic differentiation (Fst ). Expected mean difference in IQ for populations was calculated under a neutral evolutionary scenario and contrasted to hereditarian claims. RESULTS: Tests for selection using polygenic scores failed to find evidence of natural selection when the less biased within-family GWAS effect sizes were used. Tests for selection using Fst values did not find evidence of natural selection. Expected mean difference in IQ was substantially smaller than postulated by hereditarians, even under unrealistic assumptions that overestimate genetic contribution. CONCLUSION: Given these results, hereditarian claims are not supported in the least. Cognitive performance does not appear to have been under diversifying selection in Europeans and Africans. In the absence of diversifying selection, the best case estimate for genetic contributions to group differences in cognitive performance is substantially smaller than hereditarians claim and is consistent with genetic differences contributing little to the Black-White gap.


Assuntos
População Negra , Escolaridade , Seleção Genética/genética , População Branca , Antropologia Física , População Negra/genética , População Negra/estatística & dados numéricos , Humanos , Herança Multifatorial/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , População Branca/genética , População Branca/estatística & dados numéricos
10.
Proc Natl Acad Sci U S A ; 114(16): 4189-4194, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373541

RESUMO

Indigenous Tibetan people have lived on the Tibetan Plateau for millennia. There is a long-standing question about the genetic basis of high-altitude adaptation in Tibetans. We conduct a genome-wide study of 7.3 million genotyped and imputed SNPs of 3,008 Tibetans and 7,287 non-Tibetan individuals of Eastern Asian ancestry. Using this large dataset, we detect signals of high-altitude adaptation at nine genomic loci, of which seven are unique. The alleles under natural selection at two of these loci [methylenetetrahydrofolate reductase (MTHFR) and EPAS1] are strongly associated with blood-related phenotypes, such as hemoglobin, homocysteine, and folate in Tibetans. The folate-increasing allele of rs1801133 at the MTHFR locus has an increased frequency in Tibetans more than expected under a drift model, which is probably a consequence of adaptation to high UV radiation. These findings provide important insights into understanding the genomic consequences of high-altitude adaptation in Tibetans.


Assuntos
Adaptação Fisiológica , Altitude , Etnicidade/genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Seleção Genética , Alelos , Feminino , Humanos , Masculino , Fenótipo , Tibet
11.
Mol Ecol ; 28(19): 4388-4403, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31482603

RESUMO

In contrast to the plethora of studies focusing on the genomic basis of adaptive phenotypic divergence, the role of gene expression during speciation has been much less investigated and consequently less understood. Yet, the convergence of differential gene expression patterns between closely related species-pairs might reflect the role of natural selection during the process of ecological speciation. Here, we test for intercontinental convergence in differential transcriptional signatures between limnetic and benthic sympatric species-pairs of Lake Whitefish (Coregonus clupeaformis) and its sister lineage, the European Whitefish (Coregonus lavaretus), using six replicated sympatric species-pairs (two in North America, two in Norway and two in Switzerland). We characterized both sequence variation in transcribed regions and differential gene expression between sympatric limnetic and benthic species across regions and continents. Our first finding was that differentially expressed genes (DEG) between limnetic and benthic whitefish tend to be enriched in shared polymorphism among sister lineages. We then used both genotypes and covariation in expression in order to infer polygenic selection at the gene level. We identified parallel outliers and DEG involving genes primarily overexpressed in limnetic species relative to the benthic species. Our analysis finally revealed the existence of shared genomic bases underlying parallel differential expression across replicated species-pairs from both continents, such as a cis-eQTL affecting the pyruvate kinase expression level involved in glycolysis. Our results are consistent with a long-standing role of natural selection in maintaining trans-continental diversity at phenotypic traits involved in ecological speciation between limnetic and benthic whitefishes.


Assuntos
Herança Multifatorial , Locos de Características Quantitativas/genética , Salmonidae/genética , Seleção Genética , Simpatria/genética , Transcriptoma , Animais , Ecologia , Feminino , Especiação Genética , Genótipo , Masculino , América do Norte , Noruega , Fenótipo , Suíça
12.
Mol Biol Evol ; 34(12): 3169-3175, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961935

RESUMO

Many experimental and field studies have shown that adaptation can occur very rapidly. Two qualitatively different modes of fast adaptation have been proposed: selective sweeps wherein large shifts in the allele frequencies occur at a few loci and evolution via small changes in the allele frequencies at many loci. Although the first process has been thoroughly investigated within the framework of population genetics, the latter is based on quantitative genetics and is much less understood. Here we summarize results from our recent theoretical studies of a quantitative genetic model of polygenic adaptation that makes explicit reference to population genetics to bridge the gap between the two frameworks. Our key results are that polygenic adaptation may be a rapid process and can proceed via subtle or dramatic changes in the allele frequency depending on the sizes of the phenotypic effects relative to a threshold value. We also discuss how the signals of polygenic selection may be detected in the genome. Although powerful methods are available to identify signatures of selective sweeps at loci controlling quantitative traits, the development of statistical tests for detecting small shifts of allele frequencies at quantitative trait loci is still in its infancy.


Assuntos
Adaptação Fisiológica/genética , Genética Populacional/métodos , Herança Multifatorial/genética , Aclimatação/genética , Alelos , Evolução Biológica , Evolução Molecular , Frequência do Gene/genética , Genética Populacional/estatística & dados numéricos , Modelos Genéticos , Locos de Características Quantitativas/genética , Seleção Genética/genética
13.
Mol Biol Evol ; 34(11): 2913-2926, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28962010

RESUMO

Siberia is one of the coldest environments on Earth and has great seasonal temperature variation. Long-term settlement in northern Siberia undoubtedly required biological adaptation to severe cold stress, dramatic variation in photoperiod, and limited food resources. In addition, recent archeological studies show that humans first occupied Siberia at least 45,000 years ago; yet our understanding of the demographic history of modern indigenous Siberians remains incomplete. In this study, we use whole-exome sequencing data from the Nganasans and Yakuts to infer the evolutionary history of these two indigenous Siberian populations. Recognizing the complexity of the adaptive process, we designed a model-based test to systematically search for signatures of polygenic selection. Our approach accounts for stochasticity in the demographic process and the hitchhiking effect of classic selective sweeps, as well as potential biases resulting from recombination rate and mutation rate heterogeneity. Our demographic inference shows that the Nganasans and Yakuts diverged ∼12,000-13,000 years ago from East-Asian ancestors in a process involving continuous gene flow. Our polygenic selection scan identifies seven candidate gene sets with Siberian-specific signals. Three of these gene sets are related to diet, especially to fat metabolism, consistent with the hypothesis of adaptation to a fat-rich animal diet. Additional testing rejects the effect of hitchhiking and favors a model in which selection yields small allele frequency changes at multiple unlinked genes.


Assuntos
Aclimatação/genética , Adaptação Biológica/genética , Alelos , Povo Asiático/genética , Evolução Biológica , DNA Mitocondrial/genética , Demografia/métodos , Dieta , Gorduras na Dieta , Etnicidade/genética , Exoma/genética , Fluxo Gênico/genética , Frequência do Gene/genética , Variação Genética/genética , Genética Populacional/métodos , Humanos , Herança Multifatorial/genética , Filogenia , Sibéria , Sequenciamento do Exoma/métodos
14.
Mol Biol Evol ; 33(8): 2088-101, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189540

RESUMO

Adaptation of a complex trait often requires the accumulation of many modifications to finely tune its underpinning molecular components to novel environmental requirements. The investigation of cis-acting regulatory modifications can be used to pinpoint molecular systems partaking in such complex adaptations. Here, we identify cis-acting modifications with the help of an interspecific crossing scheme designed to distinguish modifications derived in each of the two sister species, Arabidopsis halleri and A. lyrata Allele-specific expression levels were assessed in three environmental conditions chosen to reflect interspecific ecological differences: cold exposure, dehydration, and standard conditions. The functions described by Gene Ontology categories enriched in cis-acting mutations are markedly different in A. halleri and A. lyrata, suggesting that polygenic adaptation reshaped distinct polygenic molecular functions in the two species. In the A. halleri lineage, an excess of cis-acting changes affecting metal transport and homeostasis was observed, confirming that the well-known heavy metal tolerance of this species is the result of polygenic selection. In A. lyrata, we find a marked excess of cis-acting changes among genes showing a transcriptional response to cold stress in the outgroup species A. thaliana The adaptive relevance of these changes will have to be validated. We finally observed that polygenic molecular functions enriched in derived cis-acting changes are more constrained at the amino acid level. Using the distribution of cis-acting variation to tackle the polygenic basis of adaptation thus reveals the contribution of mutations of small effect to Darwinian adaptation.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Estresse Fisiológico/genética , Aclimatação/genética , Alelos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cruzamentos Genéticos , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Herança Multifatorial/genética , Filogenia , Transcriptoma
15.
BMC Genomics ; 17: 504, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27444955

RESUMO

BACKGROUND: The study of local adaptation processes is a very important research topic in the field of population genomics. There is a particular interest in the study of human populations because they underwent a process of rapid spatial expansion and faced important environmental changes that translated into changes in selective pressures. New mutations may have been selected for in the new environment and previously existing genetic variants may have become detrimental. Immune related genes may have been released from the selective pressure exerted by pathogens in the ancestral environment and new variants may have been positively selected due to pathogens present in the newly colonized habitat. Also, variants that had a selective advantage in past environments may have become deleterious in the modern world due to external stimuli including climatic, dietary and behavioral changes, which could explain the high prevalence of some polygenic diseases such as diabetes and obesity. RESULTS: We performed an enrichment analysis to identify gene sets enriched for signals of positive selection in humans. We used two genome scan methods, XPCLR and iHS to detect selection using a dense coverage of SNP markers combined with two gene set enrichment approaches. We identified immune related gene sets that could be involved in the protection against pathogens especially in the African population. We also identified the glycolysis & gluconeogenesis gene set, related to metabolism, which supports the thrifty genotype hypothesis invoked to explain the current high prevalence of diseases such as diabetes and obesity. Extending our analysis to the gene level, we found signals for 23 candidate genes linked to metabolic syndrome, 13 of which are new candidates for positive selection. CONCLUSIONS: Our study provides a list of genes and gene sets associated with immunity and metabolic syndrome that are enriched for signals of positive selection in three human populations (Europeans, Africans and Asians). Our results highlight differences in the relative importance of pathogens as drivers of local adaptation in different continents and provide new insights into the evolution and high incidence of metabolic syndrome in modern human populations.


Assuntos
Adaptação Biológica/genética , Adaptação Biológica/imunologia , Evolução Biológica , Metabolismo Energético/genética , Metabolismo Energético/imunologia , Seleção Genética , Estudos de Associação Genética , Predisposição Genética para Doença , Genética Populacional , Genoma Humano , Genômica/métodos , Haplótipos , Humanos , Polimorfismo de Nucleotídeo Único
16.
Mol Ecol ; 25(1): 219-37, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26562221

RESUMO

Measuring the effects of selection on the genome imposed by human-altered environment is currently a major goal in ecological genomics. Given the polygenic basis of most phenotypic traits, quantitative genetic theory predicts that selection is expected to cause subtle allelic changes among covarying loci rather than pronounced changes at few loci of large effects. The goal of this study was to test for the occurrence of polygenic selection in both North Atlantic eels (European Eel, Anguilla anguilla and American Eel, A. rostrata), using a method that searches for covariation among loci that would discriminate eels from 'control' vs. 'polluted' environments and be associated with specific contaminants acting as putative selective agents. RAD-seq libraries resulted in 23 659 and 14 755 filtered loci for the European and American Eels, respectively. A total of 142 and 141 covarying markers discriminating European and American Eels from 'control' vs. 'polluted' sampling localities were obtained using the Random Forest algorithm. Distance-based redundancy analyses (db-RDAs) were used to assess the relationships between these covarying markers and concentration of 34 contaminants measured for each individual eel. PCB153, 4'4'DDE and selenium were associated with covarying markers for both species, thus pointing to these contaminants as major selective agents in contaminated sites. Gene enrichment analyses suggested that sterol regulation plays an important role in the differential survival of eels in 'polluted' environment. This study illustrates the power of combining methods for detecting signals of polygenic selection and for associating variation of markers with putative selective agents in studies aiming at documenting the dynamics of selection at the genomic level and particularly so in human-altered environments.


Assuntos
Anguilla/genética , Genética Populacional , Metais/efeitos adversos , Seleção Genética , Poluentes Químicos da Água/efeitos adversos , Anguilla/classificação , Animais , Meio Ambiente , Genótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
17.
Mol Biol Evol ; 30(7): 1544-58, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23625889

RESUMO

Most approaches aiming at finding genes involved in adaptive events have focused on the detection of outlier loci, which resulted in the discovery of individually "significant" genes with strong effects. However, a collection of small effect mutations could have a large effect on a given biological pathway that includes many genes, and such a polygenic mode of adaptation has not been systematically investigated in humans. We propose here to evidence polygenic selection by detecting signals of adaptation at the pathway or gene set level instead of analyzing single independent genes. Using a gene-set enrichment test to identify genome-wide signals of adaptation among human populations, we find that most pathways globally enriched for signals of positive selection are either directly or indirectly involved in immune response. We also find evidence for long-distance genotypic linkage disequilibrium, suggesting functional epistatic interactions between members of the same pathway. Our results show that past interactions with pathogens have elicited widespread and coordinated genomic responses, and suggest that adaptation to pathogens can be considered as a primary example of polygenic selection.


Assuntos
Adaptação Biológica , Interações Hospedeiro-Patógeno/genética , Herança Multifatorial/genética , Seleção Genética/genética , Epistasia Genética , Genoma Humano , Genótipo , Humanos , Desequilíbrio de Ligação , Redes e Vias Metabólicas , Modelos Teóricos , Mutação , Polimorfismo de Nucleotídeo Único
18.
Evol Appl ; 17(2): e13666, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38405336

RESUMO

Directional selection alters the genome via hard sweeps, soft sweeps, and polygenic selection. However, mapping polygenic selection is difficult because it does not leave clear signatures on the genome like a selective sweep. In populations with temporally stratified genotypes, the Generation Proxy Selection Mapping (GPSM) method identifies variants associated with generation number (or appropriate proxy) and thus variants undergoing directional allele frequency changes. Here, we use GPSM on two large datasets of beef cattle to detect associations between an animal's generation and 11 million imputed SNPs. Using these datasets with high power and dense mapping resolution, GPSM detected a total of 294 unique loci actively under selection in two cattle breeds. We observed that GPSM has a high power to detect selection in the very recent past (<10 years), even when allele frequency changes are small. Variants identified by GPSM reside in genomic regions associated with known breed-specific selection objectives, such as fertility and maternal ability in Red Angus, and carcass merit and coat color in Simmental. Over 60% of the selected loci reside in or near (<50 kb) annotated genes. Using haplotype-based and composite selective sweep statistics, we identify hundreds of putative selective sweeps that likely occurred earlier in the evolution of these breeds; however, these sweeps have little overlap with recent polygenic selection. This makes GPSM a complementary approach to sweep detection methods when temporal genotype data are available. The selected loci that we identify across methods demonstrate the complex architecture of selection in domesticated cattle.

19.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915613

RESUMO

Many phenotypic traits have a polygenic genetic basis, making it challenging to learn their genetic architectures and predict individual phenotypes. One promising avenue to resolve the genetic basis of complex traits is through evolve-and-resequence experiments, in which laboratory populations are exposed to some selective pressure and trait-contributing loci are identified by extreme frequency changes over the course of the experiment. However, small laboratory populations will experience substantial random genetic drift, and it is difficult to determine whether selection played a roll in a given allele frequency change. Predicting how much allele frequencies change under drift and selection had remained an open problem well into the 21st century, even those contributing to simple, monogenic traits. Recently, there have been efforts to apply the path integral, a method borrowed from physics, to solve this problem. So far, this approach has been limited to genic selection, and is therefore inadequate to capture the complexity of quantitative, highly polygenic traits that are commonly studied. Here we extend one of these path integral methods, the perturbation approximation, to selection scenarios that are of interest to quantitative genetics. In particular, we derive analytic expressions for the transition probability (i.e., the probability that an allele will change in frequency from x , to y in time t ) of an allele contributing to a trait subject to stabilizing selection, as well as that of an allele contributing to a trait rapidly adapting to a new phenotypic optimum. We use these expressions to characterize the use of allele frequency change to test for selection, as well as explore optimal design choices for evolve-and-resequence experiments to uncover the genetic architecture of polygenic traits under selection.

20.
Genetics ; 227(1)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38504651

RESUMO

Synchronizing the timing of reproduction with the environment is crucial in the wild. Among the multiple mechanisms, annual plants evolved to sense their environment, the requirement of cold-mediated vernalization is a major process that prevents individuals from flowering during winter. In many annual plants including crops, both a long and short vernalization requirement can be observed within species, resulting in so-called early-(spring) and late-(winter) flowering genotypes. Here, using the grass model Brachypodium distachyon, we explored the link between flowering-time-related traits (vernalization requirement and flowering time), environmental variation, and diversity at flowering-time genes by combining measurements under greenhouse and outdoor conditions. These experiments confirmed that B. distachyon natural accessions display large differences regarding vernalization requirements and ultimately flowering time. We underline significant, albeit quantitative effects of current environmental conditions on flowering-time-related traits. While disentangling the confounding effects of population structure on flowering-time-related traits remains challenging, population genomics analyses indicate that well-characterized flowering-time genes may contribute significantly to flowering-time variation and display signs of polygenic selection. Flowering-time genes, however, do not colocalize with genome-wide association peaks obtained with outdoor measurements, suggesting that additional genetic factors contribute to flowering-time variation in the wild. Altogether, our study fosters our understanding of the polygenic architecture of flowering time in a natural grass system and opens new avenues of research to investigate the gene-by-environment interaction at play for this trait.


Assuntos
Brachypodium , Flores , Herança Multifatorial , Brachypodium/genética , Brachypodium/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Interação Gene-Ambiente , Meio Ambiente , Fenótipo , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA