Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Revista
Assunto da revista
Intervalo de ano de publicação
1.
Neuron ; 112(18): 3176-3191.e7, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39019042

RESUMO

Male animals often display higher levels of aggression than females. However, the neural circuitry mechanisms underlying this sexually dimorphic aggression remain elusive. Here, we identify a hypothalamic-amygdala circuit that mediates male-biased aggression in mice. Specifically, the ventrolateral part of the ventromedial hypothalamus (VMHvl), a sexually dimorphic region associated with eliciting male-biased aggression, projects densely to the posterior substantia innominata (pSI), an area that promotes similar levels of attack in both sexes of mice. Although the VMHvl innervates the pSI unidirectionally through both excitatory and inhibitory connections, it is the excitatory VMHvl-pSI projections that are strengthened in males to promote aggression, whereas the inhibitory connections that reduce aggressive behavior are strengthened in females. Consequently, the convergent hypothalamic input onto the pSI leads to heightened pSI activity in males, resulting in male-biased aggression. Our findings reveal a sexually distinct excitation-inhibition balance of a hypothalamic-amygdala circuit that underlies sexually dimorphic aggression.


Assuntos
Agressão , Tonsila do Cerebelo , Hipotálamo , Vias Neurais , Caracteres Sexuais , Animais , Agressão/fisiologia , Masculino , Feminino , Camundongos , Hipotálamo/fisiologia , Vias Neurais/fisiologia , Tonsila do Cerebelo/fisiologia , Camundongos Endogâmicos C57BL , Núcleo Hipotalâmico Ventromedial/fisiologia
2.
Neuron ; 109(9): 1540-1553.e9, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740417

RESUMO

Although aggressive behaviors are universal and essential for survival, "uncontrollable" and abnormal aggressive behaviors in animals or humans may have severe adverse consequences or social costs. Neural circuits regulating specific forms of aggression under defined conditions have been described, but how brain circuits govern a general aggressive response remains unknown. Here, we found that posterior substantia innominata (pSI) neurons responded to several aggression-provoking cues with the graded activity of differential dynamics, predicting the aggressive state and the topography of aggression in mice. Activation of pSI neurons projecting to the periaqueductal gray (PAG) increased aggressive arousal and robustly initiated/promoted all the types of aggressive behavior examined in an activity-level-dependent manner. Inactivation of the pSI circuit largely blocked diverse aggressive behaviors but not mating. By encoding a general aggressive response, the pSI-PAG circuit universally drives multiple aggressive behaviors and may provide a potential target for alleviating human pathological aggression.


Assuntos
Agressão/fisiologia , Mesencéfalo/fisiologia , Vias Neurais/fisiologia , Substância Inominada/fisiologia , Animais , Comportamento Animal/fisiologia , Masculino , Camundongos , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA