Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36900867

RESUMO

Female breasts are regarded as a factor reflecting women's morphological beauty. An appropriate bra can fulfill aesthetic needs, thus boosting self-esteem. This study proposed a method to analyze young women's breast-bra morphological variations between two identical bras with different bra cup thicknesses. The 3D surface scan data of 129 female students who were braless and wore a thin bra (13 mm) and a thick bra (23 mm) were analyzed. Integral sections of the breasts and bra were cut at a fixed thickness of 10 mm, and slice maps were derived. Morphological parameters were extracted in braless and the two bra conditions. The variations in breast-bra shape caused by different thicknesses of bra cups were evaluated by quantifying breast ptosis, gathering, and breast slice area. The results showed that the thin bra lifted the breasts by 2.16 cm, whereas the thick bra decreased breast separation, gathering the breasts and moving them 2.15 cm laterally towards the center of the chest wall. Moreover, prediction models constructed using the critical morphological parameters were used to characterize breast-bra shape after wearing the provided bras. The findings lay the groundwork for quantifying the breast-bra shape variation caused by different bra cup thicknesses, allowing young females to choose optimally fitting bras to achieve their desired breast aesthetics.


Assuntos
Vestuário , Parede Torácica , Feminino , Humanos , Mama , Autoimagem
2.
Acta Crystallogr D Struct Biol ; 79(Pt 9): 806-819, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594303

RESUMO

In late 2020, the results of CASP14, the 14th event in a series of competitions to assess the latest developments in computational protein structure-prediction methodology, revealed the giant leap forward that had been made by Google's Deepmind in tackling the prediction problem. The level of accuracy in their predictions was the first instance of a competitor achieving a global distance test score of better than 90 across all categories of difficulty. This achievement represents both a challenge and an opportunity for the field of experimental structural biology. For structure determination by macromolecular X-ray crystallography, access to highly accurate structure predictions is of great benefit, particularly when it comes to solving the phase problem. Here, details of new utilities and enhanced applications in the CCP4 suite, designed to allow users to exploit predicted models in determining macromolecular structures from X-ray diffraction data, are presented. The focus is mainly on applications that can be used to solve the phase problem through molecular replacement.


Assuntos
Cristalografia por Raios X , Difração de Raios X
3.
Environ Sci Pollut Res Int ; 25(2): 1283-1293, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29086362

RESUMO

Increasing algae in Lake Erhai has resulted in frequent blooms that have not only led to water ecosystem degeneration but also seriously influenced the quality of the water supply and caused extensive damage to the local people, as the lake is a water resource for Dali City. Exploring the key factors affecting phytoplankton succession and developing predictive models with easily detectable parameters for phytoplankton have been proven to be practical ways to improve water quality. To this end, a systematic survey focused on phytoplankton succession was conducted over 2 years in Lake Erhai. The data from the first study year were used to develop predictive models, and the data from the second year were used for model verification. The seasonal succession of phytoplankton in Lake Erhai was obvious. The dominant groups were Cyanobacteria in the summer, Chlorophyta in the autumn and Bacillariophyta in the winter. The developments and verification of predictive models indicated that compared to phytoplankton biomass, phytoplankton density is more effective for estimating phytoplankton variation in Lake Erhai. CCA (canonical correlation analysis) indicated that TN (total nitrogen), TP (total phosphorus), DO (dissolved oxygen), SD (Secchi depth), Cond (conductivity), T (water temperature), and ORP (oxidation reduction potential) had significant influences (p < 0.05) on the phytoplankton community. The CCA of the dominant species found that Microcystis was significantly influenced by T. The dominant Chlorophyta, Psephonema aenigmaticum and Mougeotia, were significantly influenced by TN. All results indicated that TN and T were the two key factors driving phytoplankton succession in Lake Erhai.


Assuntos
Biodiversidade , Lagos/química , Fitoplâncton/fisiologia , Qualidade da Água , China , Modelos Biológicos , Fitoplâncton/classificação , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA