Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Retrovirology ; 16(1): 11, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947720

RESUMO

BACKGROUND: Reverse transcription (RT) of HIV and SIV is initiated by the binding of the acceptor stem of tRNALys3 to the primer binding site (PBS) of the viral RNA genome. Previous studies have suggested that this tRNALys3 is not the only molecule capable of priming reverse transcription, and that at least one other lysyl tRNA, tRNALys5, which has an acceptor stem sequence varying from tRNALys3 by only a single transition mutation resulting in the integration of a thymine (T) at position 8 of the PBS in the viral genome, can prime reverse transcription. RESULTS: We undertook an unbiased approach, evaluating the primer binding site by deep-sequencing of HIV and SIV directly from the plasma of 15 humans and 11 macaques. We found that in humans there are low but measurable levels of viral RNA genomes harboring a PBS containing the noncanonical T at position 8 (PBS-Lys5) corresponding to the tRNAlys5 sequence and representing an average of 0.52% (range 0.07-1.6%) of the total viral population. This value is remarkably consistent with the proportion of PBS-Lys5 we identified in a cross-sectional assessment of the LANL HIV database (0.51%). In macaques chronically infected with SIVmac239, the PBS-Lys5 was also detected but at a frequency 1-log less than seen for HIV, with an average of 0.056% (range 0.01-0.09%). At this proportion, PBS-Lys5 was comparable to other transition mutations, making it impossible to determine whether the mutation observed is a result of use of tRNALys5 as an RT primer at very low levels or merely the product of in vitro cDNA synthesis/PCR error. We also identified two novel PBS sequences in HIV and SIV at low levels in vivo corresponding to tRNALys6 and tRNALys1,2, suggesting that these tRNAs may rarely also be used to prime RT. In vivo reversion of the PBS-Lys5 found in SIVmac239 was rapid and reached background levels by 30 days post-infection. CONCLUSIONS: We conclude that while alternative tRNAs can initiate reverse transcription of HIV and SIV in vivo, their overall contributions to the replicating viral population are small.


Assuntos
HIV-1/genética , RNA de Transferência/genética , Transcrição Reversa , Vírus da Imunodeficiência Símia/genética , Animais , Sítios de Ligação , Estudos Transversais , DNA Viral/genética , Feminino , Genoma Viral , HIV-1/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Macaca/virologia , Masculino , RNA Viral/sangue , Vírus da Imunodeficiência Símia/fisiologia , Transcrição Gênica , Replicação Viral
2.
RNA ; 23(12): 1850-1859, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28860303

RESUMO

Human tRNALys3 serves as the primer for reverse transcription in human immunodeficiency virus type-1 (HIV-1) and anneals to the complementary primer binding site (PBS) in the genome. All tRNALys isoacceptors interact with human lysyl-tRNA synthetase (hLysRS) and are selectively packaged into virions. tRNALys3 must be released from hLysRS in order to anneal to the PBS, and this process is proposed to be facilitated by the interaction of hLysRS with a tRNA-like element (TLE) first identified in the HIV-1 5'-untranslated region (5'-UTR) of the subtype B NL4-3 virus. However, a significant subset of HIV-1 strains represented by the MAL isolate possess a different secondary structure in this region of the genome. Thus, to establish the conservation of this mechanism for primer targeting and release, we investigated the subtype A-like 5'-UTR of the MAL isolate. hLysRS bound to a 229-nt MAL RNA containing the PBS domain with high affinity (Kd = 47 nM), and to a 98-nt truncated construct with ∼10-fold reduced affinity. These results resemble previous studies using analogous NL4-3-derived RNAs. However, in contrast to studies with NL4-3, no binding was observed to smaller stem-loop elements within the MAL PBS domain. The tertiary structure of the 98-nt construct was analyzed using small-angle X-ray scattering, revealing remarkable global structural similarity to the corresponding NL4-3 PBS/TLE region. These results suggest that the tRNA-like structure within the 5'-UTR is conserved across distinct HIV-1 subtypes and that hLysRS recognition of the MAL isolate is likely not conferred by specific sequence elements but by 3D structure.


Assuntos
Regiões 5' não Traduzidas/genética , Infecções por HIV/genética , HIV-1/genética , Lisina-tRNA Ligase/metabolismo , Mimetismo Molecular , RNA de Transferência de Lisina/genética , RNA Viral/genética , Sequência de Bases , Sítios de Ligação , Regulação Viral da Expressão Gênica , Genoma Viral , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/classificação , Humanos , Lisina-tRNA Ligase/genética , Conformação de Ácido Nucleico , Replicação Viral
3.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30068653

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) gene-editing technology has been used to inactivate viral DNA as a new strategy to eliminate chronic viral infections, including HIV-1. This utility of CRISPR-Cas9 is challenged by the high heterogeneity of HIV-1 sequences, which requires the design of the single guide RNA (sgRNA; utilized by the CRISPR-Cas9 system to recognize the target DNA) to match a specific HIV-1 strain in an HIV patient. One solution to this challenge is to target the viral primer binding site (PBS), which HIV-1 copies from cellular tRNA3Lys in each round of reverse transcription and is thus conserved in almost all HIV-1 strains. In this study, we demonstrate that PBS-targeting sgRNA directs Cas9 to cleave the PBS DNA, which evokes deletions or insertions (indels) and strongly diminishes the production of infectious HIV-1. While HIV-1 escapes from PBS-targeting Cas9/sgRNA, unique resistance mechanisms are observed that are dependent on whether the plus or the minus strand of the PBS DNA is bound by sgRNA. Characterization of these viral escape mechanisms will inform future engineering of Cas9 variants that can more potently and persistently inhibit HIV-1 infection.IMPORTANCE The results of this study demonstrate that the gene-editing complex Cas9/sgRNA can be programmed to target and cleave HIV-1 PBS DNA, and thus, inhibit HIV-1 infection. Given that almost all HIV-1 strains have the same PBS, which is copied from the cellular tRNA3Lys during reverse transcription, PBS-targeting sgRNA can be used to inactivate HIV-1 DNA of different strains. We also discovered that HIV-1 uses different mechanisms to resist Cas9/sgRNAs, depending on whether they target the plus or the minus strand of PBS DNA. These findings allow us to predict that a Cas9 variant that uses the CCA sequence as the protospacer adjacent motif (PAM) should more strongly and persistently suppress HIV-1 replication. Together, these data have identified the PBS as the target DNA of Cas9/sgRNA and have predicted how to improve Cas9/sgRNA to achieve more efficient and sustainable suppression of HIV-1 infection, therefore improving the capacity of Cas9/sgRNA in curing HIV-1 infection.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , DNA Viral/metabolismo , Edição de Genes , HIV-1/genética , RNA Guia de Cinetoplastídeos/metabolismo , Linhagem Celular , DNA Viral/genética , Humanos , Mutagênese Insercional , RNA Guia de Cinetoplastídeos/genética , Deleção de Sequência
4.
Genetica ; 147(1): 91-101, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30783944

RESUMO

Cultivated grapevine (Vitis vinifera L. ssp. sativa D.C.) is one of the oldest agricultural crops, each variety comprising an array of clones obtained by vegetative propagation from a selected vine grown from a single seedling. Most clones within a variety are identical, but some show a different form of accession, giving rise to new divergent phenotypes. Understanding the associations among the genotypes within a variety is crucial to efficient management and effective grapevine improvement. Inter-primer binding-site (iPBS) markers may aid in determining the new clones inside closely related genotypes. Following this idea, iPBS markers were used to assess the genetic variation of 33 grapevine genotypes collected from Russia. We used molecular markers to identify the differences among and within five grapevine clonal populations and analysed the variation, using clustering and statistical approaches. Four of a total of 30 PBS primers were selected, based on amplification efficiency. Polymerase chain reaction (PCR) with PBS primers resulted in a total of 1412 bands ranging from 300 to 6000 bp, with a polymorphism ratio of 44%, ranging from 58 to 75 bands per group. In total, were identified seven private bands in 33 genotypes. Results of molecular variance analysis showed that 40% of the total variation was observed within groups and only 60% between groups. Cluster analysis clearly showed that grapevine genotypes are highly divergent and possess abundant genetic diversities. The iPBS PCR-based genome fingerprinting technology used in this study effectively differentiated genotypes into five grapevine groups and indicated that iPBS markers are useful tools for clonal selection. The number of differences between clones was sufficient to identify them as separate clones of studied varieties containing unique mutations. Our previous phenotypic and phenological studies have confirmed that these genotypes differ from those of maternal plants. This work emphasized the need for a better understanding of the genotypic differences among closely related varieties of grapevine and has implications for the management of its selection processes.


Assuntos
Genótipo , Filogenia , Polimorfismo Genético , Vitis/genética , Especiação Genética , Sequências Repetitivas de Ácido Nucleico , Seleção Genética , Vitis/classificação
5.
Exp Mol Pathol ; 105(1): 37-40, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29847769

RESUMO

The detection of hotspot mutations in key cancer genes is now an essential part of the diagnostic work-up in molecular pathology. Nearly all assays for mutation detection involve an amplification step. A second single nucleotide variant (SNV) on the same allele adjacent to a mutational hotspot can interfere with primer binding, leading to unnoticed allele-specific amplification of the wild type allele and thereby false-negative mutation testing. We present two diagnostic cases with false negative sequence results for JAK2 and SRSF2. In both cases mutations would have escaped detection if only one strand of DNA had been analysed. Because many commercially available diagnostic kits rely on the analysis of only one DNA strand they are prone to fail in cases like these. Detailed protocols and quality control measures to prevent corresponding pitfalls are presented.


Assuntos
Testes Genéticos/normas , Mutação , Policitemia Vera/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/normas , Reações Falso-Negativas , Testes Genéticos/métodos , Humanos , Janus Quinase 2/genética , Análise de Sequência de DNA/métodos , Fatores de Processamento de Serina-Arginina/genética
6.
Genomics ; 109(3-4): 312-319, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28502701

RESUMO

Polymerase chain reaction (PCR) is one of the most important laboratory techniques used in molecular biology, genetics and molecular diagnostics. The success of a PCR-based method largely depends on the correct nucleic acid sequence analysis in silico prior to a wet-bench experiment. Here, we report the development of an online Java-based software for virtual PCR on linear or circular DNA templates and multiple primer or probe search from large or small databases. Primer or probe sensitivity and specificity are predicted by searching a database to find sequences with an optimal number of mismatches, similarity and stability. The software determines primer location, orientation, efficiency of binding and calculates primer melting temperatures for standard and degenerate oligonucleotides. The software is suitable for batch file processing, which is essential for automation when working with large amounts of data. The online Java software is available for download at http://primerdigital.com/tools/pcr.html. Accession numbers for the sequences resulting from this study: EU140956 EU177767 EU867815 EU882730 FJ975775-FJ975780 HM481419 HM481420 KC686837-KC686839 KM262797.


Assuntos
Simulação por Computador , Primers do DNA , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , Software , Sondas de DNA
7.
Plant J ; 85(1): 70-82, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611654

RESUMO

Small RNAs are involved in a plethora of functions in plant genomes. In general, transcriptional gene silencing is mediated by 24-nucleotide siRNAs and is required for maintaining transposable elements in a silenced state. However, microRNAs are not commonly associated with transposon silencing. In this study, we performed small RNA transcriptome and degradome analyses of the Rosaceae model plant Fragaria vesca (the woodland strawberry) at the genome-wide level, and identified miRNA families and their targets. We report a highly specific mechanism of LTR retrotransposon silencing mediated by an abundant, ubiquitously expressed miRNA (fve-miR1511) generated from a single locus. This miRNA specifically targets LTR retroelements, silencing them post-transcriptionally by perfectly pairing to the highly conserved primer binding site for methionyl initiator tRNA that is essential for reverse transcription. We investigated the possible origins of this miRNA, and present evidence that the pre-miR1511 hairpin structure probably derived from a locus coding for tRNA(iM) (et) through a single microinversion event. Our study shows that this miRNA targets retrotransposons specifically and constitutively, and contributes to features such as genome stability, size and architecture in a far more direct way than previously thought.


Assuntos
Endorribonucleases , Fragaria/genética , Genoma de Planta/genética , MicroRNAs/genética , Complexos Multienzimáticos , Polirribonucleotídeo Nucleotidiltransferase , RNA Helicases , Retroelementos/genética , Transcriptoma , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Sequências Repetidas Terminais/genética
8.
Int J Legal Med ; 131(6): 1531-1535, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28386691

RESUMO

Phenomena known as null alleles and peak imbalance can occur because of mutations in the primer binding sites used for DNA typing. In these cases, an accurate statistical evaluation of DNA typing is difficult. The estimated likelihood ratio is incorrectly calculated because of the null allele and allele dropout caused by mutation-induced peak imbalance. Although a number of studies have attempted to uncover examples of these phenomena, few reports are available on the human identification kit manufactured by Qiagen. In this study, 196 Japanese individuals who were heterozygous at D2S1360 were genotyped using an Investigator HDplex Kit with optimal amounts of DNA. A peak imbalance was frequently observed at the D2S1360 locus. We performed a sequencing analysis of the area surrounding the D2S1360 repeat motif to identify the cause for peak imbalance. A point mutation (G>A transition) 136 nucleotides upstream from the D2S1360 repeat motif was discovered in a number of samples. The allele frequency of the mutation was 0.0566 in the Japanese population. Therefore, human identification or kinship testing using the Investigator HDplex Kit requires caution because of the higher frequency of single nucleotide polymorphisms at the primer binding site of D2S1360 locus in the Japanese population.


Assuntos
Impressões Digitais de DNA/instrumentação , Heterozigoto , Polimorfismo de Nucleotídeo Único , Povo Asiático/genética , Primers do DNA , Frequência do Gene , Genótipo , Humanos , Japão , Mutação Puntual , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
9.
Genome ; 57(5): 245-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25072847

RESUMO

Retrotransposons have been used frequently for the development of molecular markers by using their insertion polymorphisms among cultivars, because multiple copies of these elements are dispersed throughout the genome and inserted copies are inherited genetically. Although a large number of long terminal repeat (LTR) retrotransposon families exist in the higher eukaryotic genomes, the identification of families that show high insertion polymorphism has been challenging. Here, we performed an efficient screening of these retrotransposon families using an Illumina HiSeq2000 sequencing platform with comprehensive LTR library construction based on the primer binding site (PBS), which is located adjacent to the 5' LTR and has a motif that is universal and conserved among LTR retrotransposon families. The paired-end sequencing library of the fragments containing a large number of LTR sequences and their insertion sites was sequenced for seven strawberry (Fragaria × ananassa Duchesne) cultivars and one diploid wild species (Fragaria vesca L.). Among them, we screened 24 families with a "unique" insertion site that appeared only in one cultivar and not in any others, assuming that this type of insertion should have occurred quite recently. Finally, we confirmed experimentally the selected LTR families showed high insertion polymorphisms among closely related cultivars.


Assuntos
Primers do DNA/metabolismo , Fragaria/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Retroelementos/genética , Sequências Repetidas Terminais , Sequência de Bases , Sítios de Ligação , Sequência Conservada , DNA de Plantas/genética , DNA de Plantas/metabolismo , Mutagênese Insercional , Polimorfismo Genético
10.
Plants (Basel) ; 12(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37836210

RESUMO

The adaptive potential and biochemical properties of the Amaranthaceae species make them promising for introduction into agriculture and markets, particularly in arid conditions. Molecular genetic polymorphism analysis is the most powerful tool for studying plant resources; therefore, the current study aimed to investigate the polymorphisms of allelic variations in the ARF and SOD gene families, as well as the genetic diversity of six Amaranthaceae species, using retrotransposon-based fingerprinting with the multi-locus EPIC-PCR profiling approach. Additionally, the iPBS PCR amplification was employed for genome profiling, revealing variations in genetic diversity among the studied Amaranthaceae samples. The observed genetic diversity in Amaranthaceae species contributes to their enhanced tolerance to adverse environmental conditions. The knowledge about the genetic diversity of genes crucial in plant development and stress resistance can be useful for the genetic improvement of cultivated Amaranthaceae species.

11.
Genes (Basel) ; 14(4)2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-37107552

RESUMO

Representatives of the Crassulaceae family's genus Rhodiola are succulents, making them distinctive in a changing environment. One of the most significant tools for analyzing plant resources, including numerous genetic processes in wild populations, is the analysis of molecular genetic polymorphism. This work aimed to look at the polymorphisms of allelic variations of the superoxide dismutase (SOD) and auxin response factor (ARF) gene families, as well as the genetic diversity of five Rhodiola species, using the retrotransposons-based fingerprinting approach. The multi-locus exon-primed intron-crossing (EPIC-PCR) profiling approach was used to examine allelic variations in the SOD and ARF gene families. We implemented the inter-primer binding site (iPBS) PCR amplification technique for genome profiling, which demonstrated a significant level of polymorphism in the Rhodiola samples studied. Natural populations of Rhodiola species have a great capacity for adaptation to unfavorable environmental influences. The genetic variety of wild populations of Rhodiola species leads to their improved tolerance of opposing environmental circumstances and species evolutionary divergence based on the diversity of reproductive systems.


Assuntos
Crassulaceae , Rhodiola , Rhodiola/genética , Variação Genética/genética , Filogenia , Polimorfismo Genético , Crassulaceae/genética
12.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35294336

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is adaptively evolving to ensure its persistence within human hosts. It is therefore necessary to continuously monitor the emergence and prevalence of novel variants that arise. Importantly, some mutations have been associated with both molecular diagnostic failures and reduced or abrogated next-generation sequencing (NGS) read coverage in some genomic regions. Such impacts are particularly problematic when they occur in genomic regions such as those that encode the spike (S) protein, which are crucial for identifying and tracking the prevalence and dissemination dynamics of concerning viral variants. Targeted Sanger sequencing presents a fast and cost-effective means to accurately extend the coverage of whole-genome sequences. We designed a custom set of primers to amplify a 401 bp segment of the receptor-binding domain (RBD) (between positions 22698 and 23098 relative to the Wuhan-Hu-1 reference). We then designed a Sanger sequencing wet-laboratory protocol. We applied the primer set and wet-laboratory protocol to sequence 222 samples that were missing positions with key mutations K417N, E484K, and N501Y due to poor coverage after NGS sequencing. Finally, we developed SeqPatcher, a Python-based computational tool to analyse the trace files yielded by Sanger sequencing to generate consensus sequences, or take preanalysed consensus sequences in fasta format, and merge them with their corresponding whole-genome assemblies. We successfully sequenced 153 samples of 222 (69 %) using Sanger sequencing and confirmed the occurrence of key beta variant mutations (K417N, E484K, N501Y) in the S genes of 142 of 153 (93 %) samples. Additionally, one sample had the Y508F mutation and four samples the S477N. Samples with RT-PCR Ct scores ranging from 13.85 to 37.47 (mean=25.70) could be Sanger sequenced efficiently. These results show that our method and pipeline can be used to improve the quality of whole-genome assemblies produced using NGS and can be used with any pairs of the most used NGS and Sanger sequencing platforms.


Assuntos
Genoma Viral , SARS-CoV-2/genética , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Mutação
13.
Viruses ; 12(8)2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718022

RESUMO

Endogenous retroviruses (ERVs) in mammals are closely related to infectious retroviruses and utilize host tRNAs as a primer for reverse transcription and replication, a hallmark of long terminal repeat (LTR) retroelements. Their dependency on tRNA makes these elements vulnerable to targeting by small RNAs derived from the 3'-end of mature tRNAs (3'-tRFs), which are highly expressed during epigenetic reprogramming and potentially protect many tissues in eukaryotes. Here, we review some key functions of ERV reprogramming during mouse and human development and discuss how small RNA-mediated silencing maintains genome stability when ERVs are temporarily released from heterochromatin repression. In particular, we take a closer look at the tRNA primer binding sites (PBS) of two highly active ERV families in mice and their sequence variation that is shaped by the conflict of successful tRNA priming for replication versus evasion of silencing by 3'-tRFs.


Assuntos
Retrovirus Endógenos/genética , Retrovirus Endógenos/patogenicidade , Inativação Gênica , Interações entre Hospedeiro e Microrganismos , RNA de Transferência/genética , Animais , Sítios de Ligação , HIV/genética , Humanos , Camundongos , Retroelementos , Infecções por Retroviridae/virologia , Sequências Repetidas Terminais
14.
Mob DNA ; 10: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30622655

RESUMO

BACKGROUND: Plant LTR-retrotransposons are classified into two superfamilies, Ty1/copia and Ty3/gypsy. They are further divided into an enormous number of families which are, due to the high diversity of their nucleotide sequences, usually specific to a single or a group of closely related species. Previous attempts to group these families into broader categories reflecting their phylogenetic relationships were limited either to analyzing a narrow range of plant species or to analyzing a small numbers of elements. Furthermore, there is no reference database that allows for similarity based classification of LTR-retrotransposons. RESULTS: We have assembled a database of retrotransposon encoded polyprotein domains sequences extracted from 5410 Ty1/copia elements and 8453 Ty3/gypsy elements sampled from 80 species representing major groups of green plants (Viridiplantae). Phylogenetic analysis of the three most conserved polyprotein domains (RT, RH and INT) led to dividing Ty1/copia and Ty3/gypsy retrotransposons into 16 and 14 lineages respectively. We also characterized various features of LTR-retrotransposon sequences including additional polyprotein domains, extra open reading frames and primer binding sites, and found that the occurrence and/or type of these features correlates with phylogenies inferred from the three protein domains. CONCLUSIONS: We have established an improved classification system applicable to LTR-retrotransposons from a wide range of plant species. This system reflects phylogenetic relationships as well as distinct sequence and structural features of the elements. A comprehensive database of retrotransposon protein domains (REXdb) that reflects this classification provides a reference for efficient and unified annotation of LTR-retrotransposons in plant genomes. Access to REXdb related tools is implemented in the RepeatExplorer web server (https://repeatexplorer-elixir.cerit-sc.cz/) or using a standalone version of REXdb that can be downloaded seaparately from RepeatExplorer web page (http://repeatexplorer.org/).

15.
Mol Ther Methods Clin Dev ; 12: 58-70, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30534579

RESUMO

The unique ability of retroviruses to integrate genes into host genomes is of great value for long-term expression in gene therapy, but only when integrations occur at safe genomic sites. To reap the benefit of using retroviruses without severe detrimental effects, we developed several murine leukemia virus (MLV)-based gammaretroviral vectors with safer integration patterns by perturbing the structure of the integrase via insertion of DNA-binding zinc-finger domains (ZFDs) into an internal position of the enzyme. ZFD insertion significantly reduced the inherent, strong MLV integration preference for genomic regions near transcriptional start sites (TSSs), which are the most dangerous spots. The altered retroviral integration pattern was related to increased formation of residual primer-binding site sequences at the 3' end of proviruses. Several ZFD insertion mutants showed lower frequencies of integrations into the TSS genome regions when having the residual primer-binding site sequences in the proviruses. Our findings not only can extend the use of retroviruses in biomedical applications, but also provide a glimpse into the mechanisms underlying retroviral integration.

16.
Cell Rep ; 29(7): 1909-1922.e5, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722206

RESUMO

Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) is accompanied by dramatic changes in epigenetic programs, including silencing of endogenous and exogenous retroviruses. Here, we utilized replication-defective and persistent Sendai virus (SeVdp)-based vectors to monitor retroviral silencing during reprogramming. We observed that retroviral silencing occurred at an early reprogramming stage without a requirement for KLF4 or the YY1-binding site in the retroviral genome. Insertional chromatin immunoprecipitation (iChIP) enabled us to isolate factors assembled on the silenced provirus, including components of inhibitor of histone acetyltransferase (INHAT), which includes the SET/TAF-I oncoprotein. Knockdown of SET/TAF-I in mouse embryonic fibroblasts (MEFs) diminished retroviral silencing during reprogramming, and overexpression of template activating factor-I α (TAF-Iα), a SET/TAF-I isoform predominant in embryonic stem cells (ESCs), reinforced retroviral silencing by an SeVdp-based vector that is otherwise defective in retroviral silencing. Our results indicate an important role for TAF-Iα in retroviral silencing during reprogramming.


Assuntos
Técnicas de Reprogramação Celular , Reprogramação Celular , Retrovirus Endógenos , Inativação Gênica , Células-Tronco Embrionárias Murinas , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/virologia , Vírus Sendai/genética , Vírus Sendai/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
17.
Trends Cell Biol ; 28(10): 793-806, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29934075

RESUMO

tRNA fragments (tRFs) are a class of small, regulatory RNAs with diverse functions. 3'-Derived tRFs perfectly match long terminal repeat (LTR)-retroelements which use the 3'-end of tRNAs to prime reverse transcription. Recent work has shown that tRFs target LTR-retroviruses and -transposons for the RNA interference (RNAi) pathway and also inhibit mobility by blocking reverse transcription. The highly conserved tRNA primer binding site (PBS) in LTR-retroelements is a unique target for 3'-tRFs to recognize and block abundant but diverse LTR-retrotransposons that become transcriptionally active during epigenetic reprogramming in development and disease. 3'-tRFs are processed from full-length tRNAs under so far unknown conditions and potentially protect many cell types. tRFs appear to be an ancient link between RNAi, transposons, and genome stability.


Assuntos
RNA de Transferência , Retroelementos/genética , Animais , Sítios de Ligação , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo
18.
Viruses ; 10(1)2017 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-29295533

RESUMO

Within the Pumwani sex worker cohort, a subgroup remains seronegative, despite frequent exposure to HIV-1; some of them seroconverted several years later. This study attempts to identify viral variations in 5'LTR-leader sequences (5'LTR-LS) that might contribute to the late seroconversion. The 5'LTR-LS contains sites essential for replication and genome packaging, viz, primer binding site (PBS), major splice donor (SD), and major packaging signal (PS). The 5'LTR-LS of 20 late seroconverters (LSC) and 122 early seroconverters (EC) were amplified, cloned, and sequenced. HelixTree 6.4.3 was employed to classify HIV subtypes and sequence variants based on seroconversion status. We find that HIV-1 subtypes A1.UG and D.UG were overrepresented in the viruses infecting the LSC (P < 0.0001). Specific variants of PBS (Pc < 0.0001), SD1 (Pc < 0.0001), and PS (Pc < 0.0001) were present only in the viral population from EC or LSC. Combinations of PBS [PBS-2 (Pc < 0.0001) and PBS-3 (Pc < 0.0001)] variants with specific SD sequences were only seen in LSC or EC. Combinations of A1.KE or D with specific PBS and SD variants were only present in LSC or EC (Pc < 0.0001). Furthermore, PBS variants only present in LSC co-clustered with PBS references utilizing tRNAArg; whereas, the PBS variants identified only in EC co-clustered with PBS references using tRNALys3 and its variants. This is the first report that specific PBS, SD1, and PS sequence variants within 5'LTR-LS are associated with HIV-1 seroconversion, and it could aid designing effective anti-HIV strategies.


Assuntos
Regiões 5' não Traduzidas/genética , Infecções por HIV/virologia , Repetição Terminal Longa de HIV/genética , HIV-1/classificação , HIV-1/genética , Soroconversão , Profissionais do Sexo/estatística & dados numéricos , Sequência de Bases , Sítios de Ligação/genética , Estudos de Coortes , DNA Viral/genética , Feminino , Variação Genética , Infecções por HIV/diagnóstico , Infecções por HIV/imunologia , Soropositividade para HIV/virologia , HIV-1/imunologia , HIV-1/fisiologia , Humanos , Quênia , Filogenia , Sítios de Splice de RNA/genética , Montagem de Vírus/genética
19.
Methods Mol Biol ; 1620: 1-31, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28540697

RESUMO

The polymerase chain reaction (PCR) is fundamental to molecular biology and is the most important practical molecular technique for the research laboratory. The principle of this technique has been further used and applied in plenty of other simple or complex nucleic acid amplification technologies (NAAT). In parallel to laboratory "wet bench" experiments for nucleic acid amplification technologies, in silico or virtual (bioinformatics) approaches have been developed, among which in silico PCR analysis. In silico NAAT analysis is a useful and efficient complementary method to ensure the specificity of primers or probes for an extensive range of PCR applications from homology gene discovery, molecular diagnosis, DNA fingerprinting, and repeat searching. Predicting sensitivity and specificity of primers and probes requires a search to determine whether they match a database with an optimal number of mismatches, similarity, and stability. In the development of in silico bioinformatics tools for nucleic acid amplification technologies, the prospects for the development of new NAAT or similar approaches should be taken into account, including forward-looking and comprehensive analysis that is not limited to only one PCR technique variant. The software FastPCR and the online Java web tool are integrated tools for in silico PCR of linear and circular DNA, multiple primer or probe searches in large or small databases and for advanced search. These tools are suitable for processing of batch files that are essential for automation when working with large amounts of data. The FastPCR software is available for download at http://primerdigital.com/fastpcr.html and the online Java version at http://primerdigital.com/tools/pcr.html .


Assuntos
Biologia Computacional/métodos , Internet , Técnicas de Amplificação de Ácido Nucleico/métodos , Software , Simulação por Computador , Reação em Cadeia da Polimerase/métodos
20.
Forensic Sci Int Genet ; 24: 143-147, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27420391

RESUMO

This paper considers the situation where two DNA systems with differing primers have been used to produce DNA profiles for loading and searching of a DNA Database. With any profiling system there exists the possibility of a "primer binding site mutation" (PBSM). When such a mutation occurs at one of the loci in a profile, it has the effect that the associated allele is not visible in the profile. In the case where a person has two different alleles at a given locus (heterozygous) the effect of a PBSM would be that the profile would appear to be that of an individual with only one allele at that locus (homozygous). The paper investigates the potential for an adventitious match as a result of a PBSM when, for example, a crime profile and person profile that have originated from two different individuals are found to be the same as a result of a PBSM in one of the profiles. It is demonstrated, both by theory and using simulations, that the effect of PBSMs is to slightly decrease the adventitious match probability from what it would had the same DNA system been used.


Assuntos
Sítios de Ligação , Impressões Digitais de DNA , Primers do DNA , Bases de Dados de Ácidos Nucleicos , Mutação , Humanos , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA