Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 25(11): e202400086, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38618870

RESUMO

Sustainable biocatalysis syntheses have gained considerable popularity over the years. However, further optimizations - notably to reduce costs - are required if the methods are to be successfully deployed in a range of areas. As part of this drive, various enzyme immobilization strategies have been studied, alongside process intensification from batch to continuous production. The flow bioreactor portfolio mainly ranges between packed bed reactors and wall-immobilized enzyme miniaturized reactors. Because of their simplicity, packed bed reactors are the most frequently encountered at lab-scale. However, at industrial scale, the growing pressure drop induced by the increase in equipment size hampers their implementation for some applications. Wall-immobilized miniaturized reactors require less pumping power, but a new problem arises due to their reduced enzyme-loading capacity. This review starts with a presentation of the current technology portfolio and a reminder of the metrics to be applied with flow bioreactors. Then, a benchmarking of the most recent relevant works is presented. The scale-up perspectives of the various options are presented in detail, highlighting key features of industrial requirements. One of the main objectives of this review is to clarify the strategies on which future study should center to maximize the performance of wall-immobilized enzyme reactors.


Assuntos
Biocatálise , Reatores Biológicos , Enzimas Imobilizadas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Miniaturização
2.
Chemistry ; 30(30): e202303692, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38462439

RESUMO

A novel class of diazonium salts is introduced for the photochemical aryl-aryl coupling to produce (substituted) biphenyls. As common diazonium tetrafluoroborate salts fail, soluble and safe aryl diazonium trifluoroacetates are applied. In this mild synthesis route no catalysts are required to generate an aryl-radical by irradiation with UV-A light (365 nm). This reactive species undergoes direct C-H arylation at an arene, forming the product in reasonable reaction times. With the implementation of a continuous flow setup in a capillary photoreactor 13 different biphenyl derivatives are successfully synthesized. By integrating an inline 19F-NMR benchtop spectrometer, samples are reliably quantified as the fluorine-substituents act as a probe. Here, real-time NMR spectroscopy is a perfect tool to monitor the continuously operated system, which produces fine chemicals of industrial relevance even in a multigram scale.

3.
Biotechnol Bioeng ; 121(2): 757-770, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902763

RESUMO

The most straightforward method to increase monoclonal antibody (mAb) product yield is to complete the purification process in less steps. Here, three different fiber chromatographic devices were implemented using a holistic approach to intensify the mAb purification process and increase yield. Fiber protein A (proA) chromatography was first investigated, but traditional depth filtration was not sufficient in reducing the contaminant load as the fiber proA device prematurely fouled. Further experimentation revealed that chromatin aggregates were the most likely reason for the fiber fouling. To reduce levels of chromatin aggregates, a chromatographic clarification device (CCD) was incorporated into the process, resulting in single-stage clarification of harvested cell culture fluid and reduction of DNA levels. The CCD clarified pool was then successfully processed through the fiber proA device, fully realizing the productivity gains that the fiber technology offers. After the proA and viral inactivation neutralization (VIN) hold step, the purification process was further intensified using a novel single-use fiber-based polishing anion exchange (AEX) material that is capable of binding both soluble and insoluble contaminants. The three-stage fiber chromatographic purification process was compared to a legacy five-step process of dual-stage depth filtration, bead-based proA chromatography, post-VIN depth filtration, and bead-based AEX chromatography. The overall yield from the five-step process was 60%, while the fiber chromatographic-enabled intensified process had an overall yield of 70%. The impurity clearance of DNA and host cell protein (HCP) for both processes were within the regulatory specification (<100 ppm HCP, <1 ppb DNA). For the harvest of a 2000 L cell culture, the intensified process is expected to increase productivity by 2.5-fold at clarification, 50-fold at the proA step, and 1.6-fold in polishing. Relative to the legacy process, the intensified process would reduce buffer use by 1088 L and decrease overall process product mass intensity by 12.6%.


Assuntos
Anticorpos Monoclonais , Cromatografia , Animais , Cricetinae , Anticorpos Monoclonais/química , Técnicas de Cultura de Células , DNA , Cromatina , Proteína Estafilocócica A/química , Cricetulus , Células CHO
4.
Biotechnol Bioeng ; 121(2): 771-783, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37920977

RESUMO

The semi and fully continuous production of monoclonal antibodies (mAbs) has been gaining traction as a lower cost, and efficient production of mAbs to broaden patient access. To be truly flexible and adaptive to process demands, the industry has lacked sufficient advanced control strategies. The variation of the upstream product concentration typically cannot be handled by the downstream capture step, which is configured for a constant feed concentration and fixed binding capacity. This inflexibility leads to losses of efficiency and product yield. This study shows that these challenges can be overcome by a novel advanced control strategy concept that includes dynamic control throughout a perfusion bioreactor, with cell retention by alternating tangential flow, integrated with simulated moving bed (SMB) multi-column chromatography. The automation workflow and advanced control strategy were implemented through the use of a visual programming development environment. This enabled dynamic flow control across the upstream and downstream process integrated with a dynamic column loading of the SMB. A sensor prototype, based on continuous biolayer interferometry measurements was applied to detect mAb breakthrough within the last column flow-through to manage column switching. This novel approach provided higher specificity and lower background signal compared to commonly used spectroscopy methods, resulting in an optimized resin utilization while simultaneously avoiding product loss. The dynamic loading was found to provide a twofold increase of the mAb concentration in the eluate compared to a conservative approach with a predefined recipe with similar impurity removal. This concept shows that advanced control strategies can lead to significant process efficiency and yield improvement.


Assuntos
Anticorpos Monoclonais , Cromatografia , Humanos , Anticorpos Monoclonais/química , Reatores Biológicos , Interferometria , Perfusão
5.
Biotechnol Bioeng ; 121(3): 877-893, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214109

RESUMO

A demand for process intensification in biomanufacturing has increased over the past decade due to the ever-expanding market for biopharmaceuticals. This is largely driven by factors such as a surge in biosimilars as patents expire, an aging population, and a rise in chronic diseases. With these market demands, pressure upon biomanufacturers to produce quality products with rapid turnaround escalates proportionally. Process intensification in biomanufacturing has been well received and accepted across industry based on the demonstration of its benefits of improved productivity and efficiency, while also reducing the cost of goods. However, while these benefits have been shown empirically, the challenges of adopting process intensification into industry remain, from smaller independent start-up to big pharma. Traditionally, moving from batch to a process intensification scheme has been viewed as an "all or nothing" approach involving continuous bioprocessing, in which the factors of complexity and significant capital costs hinder its adoption. In addition, the literature is crowded with a variety of terms used to describe process intensification (continuous, periodic counter-current, connected, intensified, steady-state, etc.). Often, these terms are used inappropriately or as synonyms, which generates confusion in the field. Through a detailed review of current state-of-the-art systems, consumables, and process intensification case studies, we herein propose a defined approach in the implementation of downstream process intensification through a standardized nomenclature and viewing it as distinct independent levels. These can function separately as intensified single-unit operations or be built upon by integration with other process steps allowing for simple, incremental, cost-effective implementation of process intensification in the manufacturing of biopharmaceuticals.


Assuntos
Medicamentos Biossimilares , Biotecnologia , Reatores Biológicos , Indústria Farmacêutica , Eficiência
6.
Biotechnol Bioeng ; 121(2): 566-579, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37986649

RESUMO

The inherent complexity of coupled biocatalytic reactions presents a major challenge for process development with one-pot multienzyme cascade transformations. Kinetic models are powerful engineering tools to guide the optimization of cascade reactions towards a performance suitable for scale up to an actual production. Here, we report kinetic model-based window of operation analysis for cellobiose production (≥100 g/L) from sucrose and glucose by indirect transglycosylation via glucose 1-phosphate as intermediate. The two-step cascade transformation is catalyzed by sucrose and cellobiose phosphorylase in the presence of substoichiometric amounts of phosphate (≤27 mol% of substrate). Kinetic modeling was instrumental to uncover the hidden effect of bulk microviscosity due to high sugar concentrations on decreasing the rate of cellobiose phosphorylase specifically. The mechanistic-empirical hybrid model thus developed gives a comprehensive description of the cascade reaction at industrially relevant substrate conditions. Model simulations serve to unravel opposed relationships between efficient utilization of the enzymes and maximized concentration (or yield) of the product within a given process time, in dependence of the initial concentrations of substrate and phosphate used. Optimum balance of these competing key metrics of process performance is suggested from the model-calculated window of operation and is verified experimentally. The evidence shown highlights the important use of kinetic modeling for the characterization and optimization of cascade reactions in ways that appear to be inaccessible to purely data-driven approaches.


Assuntos
Celobiose , Fosforilases , Celobiose/química , Glucosiltransferases/química , Glucose , Sacarose , Fosfatos
7.
Biotechnol Bioeng ; 121(3): 1090-1101, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151902

RESUMO

Protein A capture chromatography remains a high-cost and relatively low-productivity step for downstream processing of monoclonal antibodies. As bioprocessing transitions toward intensified processes, maximizing the efficiency of individual steps is key to achieving economic targets. This study was performed to assess the impact of inline concentration of clarified cell culture fluid (CCF), using single-pass tangential flow filtration, on protein A chromatography purification productivity. CCF with varying levels of impurities and turbidity were obtained dependent upon the clarification method. These CCFs were concentrated and processed over a protein A capture step. Productivity increases of 1.8- to 2.6-fold were achieved as compared to a protein A capture step with no CCF concentration. Achieving such targeted improvements requires careful consideration of the multiple components in the clarification strategy before implementation.


Assuntos
Anticorpos Monoclonais , Proteína Estafilocócica A , Animais , Cricetinae , Proteína Estafilocócica A/química , Anticorpos Monoclonais/química , Cromatografia , Técnicas de Cultura de Células/métodos , Filtração/métodos , Cricetulus , Células CHO
8.
Biotechnol Bioeng ; 121(2): 696-709, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994547

RESUMO

Intensified fed-batch (IFB), a popular cell culture intensification strategy, has been widely used for productivity improvement through high density inoculation followed by fed-batch cultivation. However, such an intensification strategy may counterproductively induce rapidly progressing cell apoptosis and difficult-to-sustain productivity. To improve culture performance, we developed a novel cell culture process intermittent-perfusion fed-batch (IPFB) which incorporates one single or multiple cycles of intermittent perfusion during an IFB process for better sustained cellular and metabolic behaviors and notably improved productivity. Unlike continuous perfusion or other semi-continuous processes such as hybrid perfusion fed-batch with only early-stage perfusion, IPFB applies limited times of intermittent perfusion in the mid-to-late stage of production and still inherits bolus feedings on nonperfusion days as in a fed-batch culture. Compared to IFB, an average titer increase of ~45% was obtained in eight recombinant CHO cell lines studied. Beyond IPFB, ultra-intensified IPFB (UI-IPFB) was designed with a markedly elevated seeding density of 20-80 × 106 cell/mL, achieved through the conventional alternating tangential flow filtration (ATF) perfusion expansion followed with a cell culture concentration step using the same ATF system. With UI-IPFB, up to ~6 folds of traditional fed-batch and ~3 folds of IFB productivity were achieved. Furthermore, the application grounded in these two novel processes showed broad-based feasibility in multiple cell lines and products of interest, and was proven to be effective in cost of goods reduction and readily scalable to a larger scale in existing facilities.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Cricetinae , Animais , Cricetulus , Células CHO , Perfusão
9.
Anal Bioanal Chem ; 416(10): 2553-2564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38459965

RESUMO

Crocin-I, a valuable natural compound found in saffron (Crocus sativus L.), is the most abundant among the various crocin structures. Developing a cost-effective and scalable purification process to produce high-purity crocin-I is of great interest for future investigations into its biological properties and its potential applications in the treatment of neurological disorders. However purifying crocin-I through single-column preparative chromatography (batch) poses a yield-purity trade-off due to structural similarities among crocins, meaning that the choice of the collection window sacrifices either yield in benefit of higher purity or vice versa. This study demonstrates how the continuous countercurrent operating mode resolves this dilemma. Herein, a twin-column MCSGP (multicolumn countercurrent solvent gradient purification) process was employed to purify crocin-I. This study involved an environmentally friendly ethanolic extraction of saffron stigma, followed by an investigation into the stability of the crocin-I within the feed under varying storage conditions to ensure a stable feed composition during the purification. Then, the batch purification process was initially designed, optimized, and subsequently followed by the scale-up to the MCSGP process. To ensure a fair comparison, both processes were evaluated under similar conditions (e.g., similar total column volume). The results showed that, at a purity grade of 99.7%, the MCSGP technique demonstrated significant results, namely + 334% increase in recovery + 307% increase in productivity, and - 92% reduction in solvent consumption. To make the purification process even greener, the only organic solvent employed was ethanol, without the addition of any additive. In conclusion, this study presents the MCSGP as a reliable, simple, and economical technique for purifying crocin-I from saffron extract, demonstrating for the first time that it can be effectively applied as a powerful approach for process intensification in the purification of natural products from complex matrices.


Assuntos
Distribuição Contracorrente , Crocus , Distribuição Contracorrente/métodos , Solventes/química , Carotenoides/química , Etanol/química
10.
Chem Eng Sci ; 2852024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38975615

RESUMO

In this work dynamic models of the continuous crystallization, filtration, deliquoring, washing, and drying steps are introduced, which are developed in the open-source pharmaceutical modeling tool PharmaPy. These models enable the simulation and digital design of an integrated continuous two-stage crystallization and filtration-drying carousel system. The carousel offers an intensified process that can manufacture products with tailored properties through optimal design and control. Results show that improved crystallization design enhances overall process efficiency by improving critical material attributes of the crystal slurry for downstream filtration and drying operations. The digital design of the integrated process achieves enhanced productivity while satisfying multiple design and product quality constraints. Additionally, the impact of model uncertainty on the optimal operating conditions is investigated. The findings demonstrate the systematic process development potential of PharmaPy, providing improved process understanding, design space identification, and optimized robust operation.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38653840

RESUMO

While monospecific antibodies have long been the foundational offering of protein therapeutics, recent advancements in antibody engineering have allowed for the development of far more complex antibody structures. Novel molecular format (NMF) proteins, such as bispecific antibodies (BsAbs), are structures capable of multispecific binding, allowing for expanded therapeutic functionality. As demand for NMF proteins continues to rise, biomanufacturers face the challenge of increasing bioreactor process productivity while simultaneously maintaining consistent product quality. This challenge is exacerbated when producing structurally complex proteins with asymmetric modalities, as seen in NMFs. In this study, the impact of a high inoculation density (HID) fed-batch process on the productivity and product quality attributes of two CHO cell lines expressing unique NMFs, a monospecific antibody with an Fc-fusion protein and a bispecific antibody, compared to low inoculation density (LID) platform fed-batch processes was evaluated. It was observed that an intensified platform fed-batch process increased product concentrations by 33 and 109% for the two uniquely structured complex proteins in a shorter culture duration while maintaining similar product quality attributes to traditional fed-batch processes.

12.
Sensors (Basel) ; 24(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38676186

RESUMO

We present a modular and cost-effective gamma ray computed tomography system for multiphase flow investigations in industrial apparatuses. It mainly comprises a 137Cs isotopic source and an in-house-assembled detector arc, with a total of 16 scintillation detectors, offering a quantum efficiency of approximately 75% and an active area of 10 × 10 mm2 each. The detectors are operated in pulse mode to exclude scattered gamma photons from counting by using a dual-energy discrimination stage. Flexible application of the computed tomography system, i.e., for various object sizes and densities, is provided by an elaborated detector arc design, in combination with a scanning procedure that allows for simultaneous parallel beam projection acquisition. This allows the scan time to be scaled down with the number of individual detectors. Eventually, the developed scanner successfully upgrades the existing tomography setup in the industry. Here, single pencil beam gamma ray computed tomography is already used to study hydraulics in gas-liquid contactors, with inner diameters of up to 440 mm. We demonstrate the functionality of the new system for radiographic and computed tomographic scans of DN110 and DN440 columns that are operated at varying iso-hexane/nitrogen liquid-gas flow rates.

13.
J Environ Manage ; 350: 119642, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016239

RESUMO

The complexity of wastewater matrix poses a challenge for conventional processes especially due to the presence of refractory compounds such as dyes. The present work focuses on utilizing ultrasound-induced cavitation in conjunction with different oxidants such as hydrogen peroxide, Fenton's reagent and potassium persulfate to treat Procion Brilliant Purple H-3R dye containing wastewater. The impact of various operating parameters as pH, frequency, and power on degradation levels has been studied with the aim of optimizing degradation. The optimal conditions for the degradation of Procion Brilliant Purple H-3R were determined as pH of 12, frequency of 22 kHz, and power of 250 W, resulting in a maximum degradation of 70.25%. Combination of a cavitation reactor with hydrogen peroxide, Fenton reagent, and KPS was then applied at optimized conditions, which confirmed a notable enhancement in degradation compared to the only ultrasound based process. Specifically, the degradation extent was 95.99% for combination with H2O2 at 0.5 g/L loading, 99.79% for combination with Fenton at H2O2/Fe2+ ratio of 50:1, and 99.05% for combination with KPS at loading of 0.75 g/L. The kinetic rate constant for the combined approach of US + Fenton was also maximum at 7.47 × 10-1 L mg-1 min-1. Toxicity analysis was conducted on two bacterial strains, Escherichia coli and Staphylococcus aureus, using the wastewater in native form and after treatment. The various processes were evaluated in terms of the cavitational yield and overall treatment cost and it was determined that US + Fenton process is the most efficient treatment method for fully degrading Procion Brilliant Purple H-3R, particularly at larger scales of operation and cost efficiently as demonstrated in the work.


Assuntos
Peróxido de Hidrogênio , Águas Residuárias , Peróxido de Hidrogênio/química , Oxirredução , Oxidantes , Corantes
14.
Prep Biochem Biotechnol ; : 1-4, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520299

RESUMO

In the [Bmim]Cl reaction medium, five different acidic ionic liquids were used as catalysts to study the effects of reaction time, reaction temperature, system water content, catalyst dosage, microwave power, and other factors on cellulose hydrolysis under microwave irradiation. The results showed that in the [Bmim]Cl reaction system, using N-methylpyrrolidone methylsulfonic acid salt as a catalyst, controlling the microwave reaction time at 10 min, reaction temperature at 130 °C, catalyst dosage at 1 g/g (cellulose), water addition at 0.756 µL/g ([Bmim]Cl), and microwave power at 480 W, resulted in the best cellulose hydrolysis effect with a glucose yield of 74.49%. Compared to conventional heating, the glucose yield increased by 24% and the hydrolysis time was reduced by 77%. Microwave irradiation significantly enhances the cellulose hydrolysis process in an ionic liquid medium.

15.
Biotechnol Bioeng ; 120(6): 1506-1520, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36787984

RESUMO

Polyphenolic aglycones featuring two sugars individually attached via C-glycosidic linkage (di-C-glycosides) represent a rare class of plant natural products with unique physicochemical properties and biological activities. Natural scarcity of such di-C-glycosides limits their use-inspired exploration as pharmaceutical ingredients. Here, we show a biocatalytic process technology for reaction-intensified production of the di-C-ß-glucosides of two representative phenol substrates, phloretin (a natural flavonoid) and phenyl-trihydroxyacetophenone (a phenolic synthon for synthesis), from sucrose. The synthesis proceeds via an iterative two-fold C-glycosylation of the respective aglycone, supplied as inclusion complex with 2-hydroxypropyl ß-cyclodextrin for enhanced water solubility of up to 50 mmol/L, catalyzed by a kumquat di-C-glycosyltransferase (di-CGT), and it uses UDP-Glc provided in situ from sucrose by a soybean sucrose synthase, with catalytic amounts (≤3 mol%) of UDP added. Time course analysis reveals the second C-glycosylation as rate-limiting (0.4-0.5 mmol/L/min) for the di-C-glucoside production. With internal supply from sucrose keeping the UDP-Glc at a constant steady-state concentration (≥50% of the UDP added) during the reaction, the di-C-glycosylation is driven to completion (≥95% yield). Contrary to the mono-C-glucoside intermediate which is stable, the di-C-glucoside requires the addition of reducing agent (10 mmol/L 2-mercaptoethanol) to prevent its decomposition during the synthesis. Both di-C-glucosides are isolated from the reaction mixtures in excellent purity (≥95%), and their expected structures are confirmed by NMR. Collectively, this study demonstrates efficient glycosyltransferase cascade reaction for flexible use in natural product di-C-ß-glucoside synthesis from expedient substrates.


Assuntos
Produtos Biológicos , Glucosídeos , Glicosídeos , Glicosiltransferases , Difosfato de Uridina , Sacarose
16.
Biotechnol Bioeng ; 120(9): 2639-2657, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36779302

RESUMO

We present a proof-of-concept study for production of a recombinant vesicular stomatitis virus (rVSV)-based fusogenic oncolytic virus (OV), rVSV-Newcastle disease virus (NDV), at high cell densities (HCD). Based on comprehensive experiments in 1 L stirred tank reactors (STRs) in batch mode, first optimization studies at HCD were carried out in semi-perfusion in small-scale cultivations using shake flasks. Further, a perfusion process was established using an acoustic settler for cell retention. Growth, production yields, and process-related impurities were evaluated for three candidate cell lines (AGE1.CR, BHK-21, HEK293SF)infected at densities ranging from 15 to 30 × 106 cells/mL. The acoustic settler allowed continuous harvesting of rVSV-NDV with high cell retention efficiencies (above 97%) and infectious virus titers (up to 2.4 × 109 TCID50 /mL), more than 4-100 times higher than for optimized batch processes. No decrease in cell-specific virus yield (CSVY) was observed at HCD, regardless of the cell substrate. Taking into account the accumulated number of virions both from the harvest and bioreactor, a 15-30 fold increased volumetric virus productivity for AGE1.CR and HEK293SF was obtained compared to batch processes performed at the same scale. In contrast to all previous findings, formation of syncytia was observed at HCD for the suspension cells BHK 21 and HEK293SF. Oncolytic potency was not affected compared to production in batch mode. Overall, our study describes promising options for the establishment of perfusion processes for efficient large-scale manufacturing of fusogenic rVSV-NDV at HCD for all three candidate cell lines.


Assuntos
Vírus Oncolíticos , Animais , Vírus Oncolíticos/genética , Técnicas de Cultura de Células , Reatores Biológicos , Linhagem Celular , Vesiculovirus/genética , Cultura de Vírus
17.
Appl Microbiol Biotechnol ; 107(19): 5947-5961, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542575

RESUMO

Retroviral vectors derived from murine leukemia virus (MLV) are used in somatic gene therapy applications e.g. for genetic modification of hematopoietic stem cells. Recently, we reported on the establishment of a suspension viral packaging cell line (VPC) for the production of MLV vectors. Human embryonic kidney 293-F (HEK293-F) cells were genetically modified for this purpose using transposon vector technology. Here, we demonstrate the establishment of a continuous high cell density (HCD) process using this cell line. First, we compared different media regarding the maximum achievable viable cell concentration (VCC) in small scale. Next, we transferred this process to a stirred tank bioreactor before we applied intensification strategies. Specifically, we established a perfusion process using an alternating tangential flow filtration system. Here, VCCs up to 27.4E + 06 cells/mL and MLV vector titers up to 8.6E + 06 transducing units/mL were achieved. Finally, we established a continuous HCD process using a tubular membrane for cell retention and continuous viral vector harvesting. Here, the space-time yield was 18-fold higher compared to the respective batch cultivations. Overall, our results clearly demonstrate the feasibility of HCD cultivations for high yield production of viral vectors, especially when combined with continuous viral vector harvesting. KEY POINTS: • A continuous high cell density process for MLV vector production was established • The tubular cell retention membrane allowed for continuous vector harvesting • The established process had a 18-fold higher space time yield compared to a batch.


Assuntos
Reatores Biológicos , Vetores Genéticos , Animais , Camundongos , Humanos , Células HEK293 , Contagem de Células , Células Epiteliais
18.
Biologicals ; 83: 101693, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37516085

RESUMO

Each process step in the manufacture of biological products requires expensive resources and reduces total process productivity. Since downstream processing of biologicals is the main cost driver, process intensification is a persistent topic during the entire product life cycle. We present here one approach for the intensification of bioprocesses by applying on-column virus inactivation using solvent/detergent (S/D) treatment during ion-exchange chromatography. The established purification process of a recombinant protein was used as a model to compare key process parameters (i.e., product yield, specific activity, impurity clearance) of the novel approach to the standard process protocol. Additional wash and incubation steps with and without S/D-containing buffers were introduced to ensure sufficient contact time to effectively eliminate enveloped viruses and to significantly decrease the amount of S/D reagents. Comparison of key process parameters demonstrated equivalent process performance. To assess the viral clearance capacity of the novel approach, XMuLV was spiked as model virus to the chromatographic load and all resulting fractions were analyzed by TCID50 and RT-qPCR. Data indicates the inactivation capability of on-column virus inactivation even at 10% of the nominal S/D concentration, although the mechanism of viral clearance needs further investigation.


Assuntos
Produtos Biológicos , Vírus , Detergentes/farmacologia , Produtos Biológicos/farmacologia , Inativação de Vírus , Solventes/farmacologia
19.
Luminescence ; 38(5): 568-575, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929687

RESUMO

In the current study, α-Bi2 O3 and ß-Bi2 O3 were synthesised using a one-step, novel, solid-solid combustion technique. The reaction rate was increased with the use of microwaves (molecular heating) compared to direct or indirect heating. A strong relationship was observed between the fuel, polymorphic structure, shape and optical properties of the synthesised Bi2 O3 . Photoluminescence studies reveal that two major visible emissions are observed for all samples. The two emissions are distinct with a broad peak in blue and a narrow peak in green. The intensity of the green characteristic emission depends strongly on the heating method used for synthesis and is more intense for microwave-synthesised samples.


Assuntos
Micro-Ondas
20.
Bioprocess Biosyst Eng ; 46(12): 1765-1776, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938390

RESUMO

The rising global prevalence of diabetes and increasing demand for insulin, calls for an increase in accessibility and affordability of insulin drugs through efficient and cost-effective manufacturing processes. Often downstream operations become manufacturing bottlenecks while processing a high volume of product. Thus, process integration and intensification play an important role in reducing process steps and time, volume reduction, and lower equipment footprints, which brings additional process efficiencies and lowers the production cost. Manufacturers thrive to optimize existing unit operation to maximize its benefit replacing with simple but different efficient technologies. In this manuscript, the typical property of insulin in forming the pH-dependent zinc-insulin complex is explored. The benefit of zinc chloride precipitation/crystallization has been shown to increase the in-process product purity by reducing the product and process-related impurities. Incorporation of such unit operation in the insulin process has also a clear potential for replacing the high cost involved capture chromatography step. Same time, the reduction in volume of operation, buffer consumption, equipment footprint, and capabilities of product long time storage brings manufacturing flexibility and efficiencies. The data and capabilities of simple operation captured here would be significantly helpful for insulins and other biosimilar manufacturer to make progresses on cost-effective productions.


Assuntos
Cromatografia , Insulina , Cromatografia/métodos , Cristalização , Insulina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA