Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Stat Med ; 43(15): 2972-2986, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38747472

RESUMO

The U.S. Food and Drug Administration (FDA) has launched Project Optimus to shift dose selection from the maximum tolerated dose (MTD) to the dose that produces the optimal risk-benefit tradeoff. One approach highlighted in the FDA's guidance involves conducting a randomized phase II trial following the completion of a phase I trial, where multiple doses (typically including the MTD and one or two doses lower than the MTD) are compared to identify the optimal dose that maximizes the benefit-risk tradeoff. This article focuses on the design of such a multiple-dose randomized trial, specifically the determination of the sample size. We generalized the standard definitions of type I error and power to accommodate the unique characteristics of dose optimization and derived a decision rule along with an algorithm to determine the optimal sample size. The resulting design is referred to as MERIT (Multiple-dosE RandomIzed Trial design for dose optimization based on toxicity and efficacy). Simulation studies demonstrate that MERIT has desirable operating characteristics, and a sample size between 20 and 40 per dosage arm often offers reasonable power and type I errors to ensure patient safety and benefit. To facilitate the implementation of the MERIT design, we provide software, available at https://www.trialdesign.org.


Assuntos
Algoritmos , Ensaios Clínicos Fase II como Assunto , Simulação por Computador , Dose Máxima Tolerável , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Tamanho da Amostra , Humanos , Ensaios Clínicos Fase II como Assunto/métodos , Relação Dose-Resposta a Droga , Estados Unidos , United States Food and Drug Administration
2.
Stat Med ; 43(18): 3383-3402, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845095

RESUMO

The US FDA's Project Optimus initiative that emphasizes dose optimization prior to marketing approval represents a pivotal shift in oncology drug development. It has a ripple effect for rethinking what changes may be made to conventional pivotal trial designs to incorporate a dose optimization component. Aligned with this initiative, we propose a novel seamless phase II/III design with dose optimization (SDDO framework). The proposed design starts with dose optimization in a randomized setting, leading to an interim analysis focused on optimal dose selection, trial continuation decisions, and sample size re-estimation (SSR). Based on the decision at interim analysis, patient enrollment continues for both the selected dose arm and control arm, and the significance of treatment effects will be determined at final analysis. The SDDO framework offers increased flexibility and cost-efficiency through sample size adjustment, while stringently controlling the Type I error. This proposed design also facilitates both accelerated approval (AA) and regular approval in a "one-trial" approach. Extensive simulation studies confirm that our design reliably identifies the optimal dosage and makes preferable decisions with a reduced sample size while retaining statistical power.


Assuntos
Antineoplásicos , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Desenvolvimento de Medicamentos , Humanos , Ensaios Clínicos Fase II como Assunto/métodos , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Desenvolvimento de Medicamentos/métodos , Tamanho da Amostra , Simulação por Computador , Relação Dose-Resposta a Droga , Projetos de Pesquisa , Estados Unidos , United States Food and Drug Administration , Aprovação de Drogas , Ensaios Clínicos Controlados Aleatórios como Assunto , Neoplasias/tratamento farmacológico
3.
Clin Trials ; 21(3): 273-286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243399

RESUMO

The U.S. Food and Drug Administration launched Project Optimus with the aim of shifting the paradigm of dose-finding and selection toward identifying the optimal biological dose that offers the best balance between benefit and risk, rather than the maximum tolerated dose. However, achieving dose optimization is a challenging task that involves a variety of factors and is considerably more complicated than identifying the maximum tolerated dose, both in terms of design and implementation. This article provides a comprehensive review of various design strategies for dose-optimization trials, including phase 1/2 and 2/3 designs, and highlights their respective advantages and disadvantages. In addition, practical considerations for selecting an appropriate design and planning and executing the trial are discussed. The article also presents freely available software tools that can be utilized for designing and implementing dose-optimization trials. The approaches and their implementation are illustrated through real-world examples.


Assuntos
Dose Máxima Tolerável , Projetos de Pesquisa , Humanos , Relação Dose-Resposta a Droga , Software , Ensaios Clínicos Fase I como Assunto/métodos , Ensaios Clínicos Fase II como Assunto/métodos , Estados Unidos , United States Food and Drug Administration , Ensaios Clínicos Fase III como Assunto/métodos
4.
J Biopharm Stat ; : 1-15, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39127994

RESUMO

Dose optimization is a critical challenge in drug development. Historically, dose determination in oncology has followed a divergent path from other non-oncology therapeutic areas due to the unique characteristics and requirements in Oncology. However, with the emergence of new drug modalities and mechanisms of drugs in oncology, such as immune therapies, radiopharmaceuticals, targeted therapies, cytostatic agents, and others, the dose-response relationship for efficacy and toxicity could be vastly varied compared to the cytotoxic chemotherapies. The doses below the MTD may demonstrate similar efficacy to the MTD with an improved tolerability profile, resembling what is commonly observed in non-oncology treatments. Hence, alternate strategies for dose optimization are required for new modalities in oncology drug development. This paper delves into the historical evolution of dose finding methods from non-oncology to oncology, highlighting examples and summarizing the underlying drivers of change. Subsequently, a practical framework and guidance are provided to illustrate how dose optimization can be incorporated into various stages of the development program. We provide the following general recommendations: 1) The objective for phase I is to identify a dose range rather than a single MTD dose for subsequent development to better characterize the safety and tolerability profile within the dose range. 2) At least two doses separable by PK are recommended for dose optimization in phase II. 3) Ideally, dose optimization should be performed before launching the confirmatory study. Nevertheless, innovative designs such as seamless II/III design can be implemented for dose selection and may accelerate the drug development program.

5.
J Pharmacokinet Pharmacodyn ; 51(4): 335-352, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38504032

RESUMO

The development of optimized dosing regimens plays a crucial role in oncology drug development. This study focused on the population pharmacokinetic modelling and simulation of docetaxel, comparing the pharmacokinetic exposure of oral docetaxel plus encequidar (oDox + E) with the standard of care intravenous (IV) docetaxel regimen. The aim was to evaluate the feasibility of oDox + E as a potential alternative to IV docetaxel. The article demonstrates an approach which aligns with the FDA's Project Optimus which aims to improve oncology drug development through model informed drug development (MIDD). The key question answered by this study was whether a feasible regimen of oDox + E existed. The purpose of this question was to provide an early GO / NO-GO decision point to guide drug development and improve development efficiency. METHODS:  A stepwise approach was employed to develop a population pharmacokinetic model for total and unbound docetaxel plasma concentrations after IV docetaxel and oDox + E administration. Simulations were performed from the final model to assess the probability of target attainment (PTA) for different oDox + E dose regimens (including multiple dose regimens) in relation to IV docetaxel using AUC over effective concentration (AUCOEC) metric across a range of effective concentrations (EC). A Go / No-Go framework was defined-the first part of the framework assessed whether a feasible oDox + E regimen existed (i.e., a PTA ≥ 80%), and the second part defined the conditions to proceed with a Go decision. RESULTS:  The overall population pharmacokinetic model consisted of a 3-compartment model with linear elimination, constant bioavailability, constant binding mechanics, and a combined error model. Simulations revealed that single dose oDox + E regimens did not achieve a PTA greater than 80%. However, two- and three-dose regimens at 600 mg achieved PTAs exceeding 80% for certain EC levels. CONCLUSION:  The study demonstrates the benefits of MIDD using oDox + E as a motivating example. A population pharmacokinetic model was developed for the total and unbound concentration in plasma of docetaxel after administration of IV docetaxel and oDox + E. The model was used to simulate oDox + E dose regimens which were compared to the current standard of care IV docetaxel regimen. A GO / NO-GO framework was applied to determine whether oDox + E should progress to the next phase of drug development and whether any conditions should apply. A two or three-dose regimen of oDox + E at 600 mg was able to achieve non-inferior pharmacokinetic exposure to current standard of care IV docetaxel in simulations. A Conditional GO decision was made based on this result and further quantification of the "effective concentration" would improve the ability to optimise the dose regimen.


Assuntos
Administração Intravenosa , Docetaxel , Modelos Biológicos , Docetaxel/farmacocinética , Docetaxel/administração & dosagem , Humanos , Administração Oral , Área Sob a Curva , Masculino , Simulação por Computador , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Equivalência Terapêutica , Feminino , Pessoa de Meia-Idade
6.
Ann Oncol ; 34(1): 48-60, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182023

RESUMO

In 2021, the Food and Drug Administration Oncology Center of Excellence announced Project Optimus focusing on dose optimization for oncology drugs. The Methodology for the Development of Innovative Cancer Therapies (MDICT) Taskforce met to review and discuss the optimization of dosage for oncology trials and to develop a practical guide for oncology phase I trials. Defining a single recommended phase II dose based on toxicity may define doses that are neither the most effective nor the best tolerated. MDICT recommendations address the need for robust non-clinical data which are needed to inform trial design, as well as an expert team including statisticians and pharmacologists. The protocol must be flexible and adaptive, with clear definition of all endpoints. Health authorities should be consulted early and regularly. Strategies such as randomization, intrapatient dose escalation, and real-world eligibility criteria are encouraged whereas serial tumor sampling is discouraged in the absence of a strong rationale and appropriately validated assay. Endpoints should include consideration of all longitudinal toxicity. The phase I dose escalation trial should define the recommended dose range for later testing in randomized phase II trials, rather than a single recommended phase II dose, and consider scenarios where different populations may require different dosages. The adoption of these recommendations will improve dosage selection in early clinical trials of new anticancer treatments and ultimately, outcomes for patients.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/efeitos adversos , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Relação Dose-Resposta a Droga , Oncologia , Neoplasias/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Terapias em Estudo/métodos
7.
Contemp Clin Trials ; 132: 107278, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419308

RESUMO

The Project Optimus initiative by the FDA's Oncology Center of Excellence is widely viewed as a groundbreaking effort to change the status quo of conventional dose-finding strategies in oncology. Unlike in other therapeutic areas where multiple doses are evaluated thoroughly in dose ranging studies, early-phase oncology dose-finding studies are characterized by the practice of identifying a single dose, such as the maximum tolerated dose (MTD) or the recommended phase 2 dose (RP2D). Following the spirit of Project Optimus, we propose an Multi-Arm Two-Stage (MATS) design for proof-of-concept (PoC) and dose optimization that allows the evaluation of two selected doses from a dose-escalation trial. The design assesses the higher dose first across multiple indications in the first stage, and adaptively enters the second stage for an indication if the higher dose exhibits promising anti-tumor activities. In the second stage, a randomized comparison between the higher and lower doses is conducted to achieve PoC and dose optimization. A Bayesian hierarchical model governs the statistical inference and decision making by borrowing information across doses, indications, and stages. Our simulation studies show that the proposed MATS design yield desirable performance. An R Shiny application has been developed and made available at https://matsdesign.shinyapps.io/mats/.


Assuntos
Neoplasias , Projetos de Pesquisa , Humanos , Teorema de Bayes , Relação Dose-Resposta a Droga , Neoplasias/tratamento farmacológico , Oncologia , Simulação por Computador , Dose Máxima Tolerável
8.
Front Oncol ; 13: 1235947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38348118

RESUMO

Oncology drug discovery and development has always been an area facing many challenges. Phase 1 oncology studies are typically small, open-label, sequential studies enrolling a small sample of adult patients (i.e., 3-6 patients/cohort) in dose escalation. Pediatric evaluations typically lag behind the adult development program. The pediatric starting dose is traditionally referenced on the recommended phase 2 dose in adults with the incorporation of body size scaling. The size of the study is also small and dependent upon the prevalence of the disease in the pediatric population. Similar to adult development, the dose is escalated or de-escalated until reaching the maximum tolerated dose (MTD) that also provides desired biological activities or efficacy. The escalation steps and identification of MTD are often rule-based and do not incorporate all the available information, such as pharmacokinetic (PK), pharmacodynamic (PD), tolerability and efficacy data. Therefore, it is doubtful if the MTD approach is optimal to determine the dosage. Hence, it is important to evaluate whether there is an optimal dosage below the MTD, especially considering the emerging complexity of combination therapies and the long-term tolerability and safety of the treatments. Identification of an optimal dosage is also vital not only for adult patients but for pediatric populations as well. Dosage-finding is much more challenging for pediatric populations due to the limited patient population and differences among the pediatric age range in terms of maturation and ontogeny that could impact PK. Many sponsors defer the pediatric strategy as they are often perplexed by the challenges presented by pediatric oncology drug development (model of action relevancy to pediatric population, budget, timeline and regulatory requirements). This leads to a limited number of approved drugs for pediatric oncology patients. This review article provides the current regulatory landscape, incentives and how they impact pediatric drug discovery and development. We also consider different pediatric cancers and potential clinical trial challenges/opportunities when designing pediatric clinical trials. An outline of how quantitative methods such as pharmacometrics/modelling & simulation can support the dosage-finding and justification is also included. Finally, we provide some reflections that we consider helpful to accelerate pediatric drug discovery and development.

9.
Front Oncol ; 13: 1144056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937434

RESUMO

Modern cancer therapeutics are increasingly targeted, bringing the promise of new and improved activity, alongside better tolerability. However, while many are indeed resulting in dramatic improvements in disease control and patient survival, short- and long-term tolerability has not always accompanied it. The choice of dose and schedule is often in the upper range of the therapeutic window, driven by the maximum tolerated dose (MTD) model of previous cytotoxic agents. There is increasing recognition that this needs to change, by taking a more holistic approach to determine the optimal dose for desired biological effects and tolerability early in clinical development. In the US, the FDA's Oncology Centre of Excellence is addressing this via the Project Optimus initiative: aiming to reform dose optimisation studies so that they can demonstrate the most appropriate dose selection. Early clinical development will need to demonstrate the dose-exposure, -pharmacodynamic, -toxicity and -activity relationships, including randomised evaluations for dose selection. Regulatory agencies outside the US are similarly exploring this. Along with Australia, Brazil, Canada, Israel, Singapore and Switzerland, the UK participates in Project Orbis, a collaborative program with the FDA to accelerate patient access to new cancer medicines through coordinated regulatory review. Close alignment with Project Optimus will be important internationally and will require changes across industry, including for academic units and small biotech. We discuss our perspective on the implications, and opportunities, for early phase oncology trials as a uniquely charity-funded drug development facility, the Centre for Drug Development within the Cancer Research UK charity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA